• No results found

2′,2′ Di­benzyl­ideneisophthalohydrazide methanol solvate

N/A
N/A
Protected

Academic year: 2020

Share "2′,2′ Di­benzyl­ideneisophthalohydrazide methanol solvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o759–o761 doi:10.1107/S1600536806002297 Xue and Liu C

23H22N4O3

o759

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2

000

,2

000

-Dibenzylideneisophthalohydrazide

methanol solvate

Min Xue and Shi-Xiong Liu*

Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People’s Republic of China

Correspondence e-mail: shixiongliu@yahoo.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.047 wRfactor = 0.155

Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 5 January 2006 Accepted 18 January 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, C22H18N4O2CH3OH, was synthesized by the reaction of benzaldehyde and isophthaloyl hydrazine in methanol. The molecule is non-planar, the dihedral angles between the pairs of aromatic rings being 13.2 (1), 27.0 (1) and 18.4 (1). The hydrazide molecules are linked via hydrogen

bonds into a chain along thecaxis.

Comment

The chemistry of aroylhydrazone compounds has received increasing attention because the hydrazone group is strongly coordinated to many metal atoms and aroylhydrazone compounds possess widespread applications in the treatment of tuberculosis. They also exhibit fungicidal activity (Edwards

et al., 1975; Zhiet al., 2003; Yang & Pan, 2004). We report here the synthesis and crystal structure of the title compound, (I), obtained by the condensation of benzaldehyde with isophthaloyl hydrazine.

The molecular structure of (I) is shown in Fig. 1. The title molecule is non-planar. The dihedral angle between rings C1– C6 and C9–C14 is 13.2 (1), between rings C1–C6 and C17–

C22 is 27.0 (1) and between rings C9–C14 and C17–C22 is

[image:1.610.204.461.386.459.2] [image:1.610.215.448.548.707.2]

18.4 (1). Similar C O distances (Table 1) have been

Figure 1

(2)

observed in many hydrazone compounds. The N1—C7 and N4—C16 bond lengths are close to the value of 1.280 (5) A˚ found for the imine bond length in p -dimethylenedioxy-benzaldehyde 2,4-dinitrobenzoylhydrazone (Wanget al., 2004) and shorter than the value of 1.337 (2) A˚ found for the C—N single bond in the 1:1 complex of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and nicotinoylhydrazine (Liu et al., 2001). The N1—N2 and N3—N4 bond lengths are close to the values 1.3794 (19) and 1.388 (2) A˚ in p -dimethylenedioxy-benzaldehyde benzoylhydrazone (Funet al., 1997), indicating that a partially conjugated system operates in this hydrazone. There are four intermolecular hydrogen bonds in the crystal structure (Table 2), which link adjacent molecules to form a chain. The H atom on O3 engages in binding to atoms N1iiand O1iisimultaneously.

Experimental

Isophthaloyl hydrazine (17.8 mmol, 3.45 g) was dissolved in anhy-drous methanol (50 ml), and benzaldehyde (35.7 mmol, 3.65 ml) was added. The mixture was refluxed for 3 h and the resulting precipitate was collected by filtration and washed with methanol and diethyl ether. The product (0.37 g) was dissolved in methanol (15 ml) and CH2Cl2(15 ml), and kept at room temperature for 20 d to obtain colourless single crystals.

Crystal data

C23H22N4O3

Mr= 402.45

Monoclinic,C2=c a= 20.168 (4) A˚

b= 14.737 (3) A˚

c= 16.357 (3) A˚

= 116.54 (3)

V= 4349.0 (15) A˚3

Z= 8

Dx= 1.229 Mg m 3

MoKradiation Cell parameters from 4999

reflections

= 1.8–27.5

= 0.08 mm1

T= 293 (2) K Prism, colorless 0.550.420.36 mm

Data collection

Rigaku Weissenberg IP diffractometer

!scans

Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999)

Tmin= 0.778,Tmax= 0.970

20697 measured reflections

4999 independent reflections 3243 reflections withI> 2(I)

Rint= 0.031

max= 27.5

h= 0!26

k=19!19

l=21!19

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.047

wR(F2) = 0.155

S= 1.04 4999 reflections 273 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0901P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.20 e A˚

3

min=0.23 e A˚

[image:2.610.45.292.69.273.2]

3

Table 1

Selected geometric parameters (A˚ ,).

C1—C7 1.454 (2) C7—N1 1.270 (2) C8—O1 1.2219 (17) C8—N2 1.351 (2) C8—C9 1.499 (2) C11—C15 1.497 (2)

C15—O2 1.2305 (18) C15—N3 1.348 (2) C16—N4 1.272 (2) C16—C17 1.463 (2) N1—N2 1.3838 (18) N3—N4 1.3837 (16)

O1—C8—N2 122.96 (15) O2—C15—N3 122.84 (14)

C7—N1—N2 114.50 (13) C16—N4—N3 115.12 (13)

O1—C8—C9—C10 153.04 (15) C10—C11—C15—O2 151.34 (15)

O1—C8—N2—N1 4.5 (2) O2—C15—N3—N4 0.7 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H2A O2i

0.86 2.17 3.0048 (17) 164 O3—H3C N1ii

0.89 2.28 3.0954 (18) 153 O3—H3C O1ii 0.89 2.30 2.9550 (19) 131 N3—H3A O3 0.86 2.05 2.8848 (19) 163

Symmetry codes: (i)xþ1 2;yþ

1

2;z; (ii)xþ 1 2;yþ

1 2;zþ

1 2.

Atoms H3Aand H3Cwere located in difference Fourier maps, but were then allowed to ride on N3 and O3, with N—H = 0.86 A˚ and O—H = 0.89 A˚ . The other H atoms were placed in idealized positions (aromatic C—H = 0.93 A˚ , methanol C—H = 0.96 A˚ and N—H = 0.86 A˚ ) and were refined using a riding model, with Uiso(H) = 1.5Ueq(C).

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN

(Molecular Structure Corporation, 1999); program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEX (McArdle, 1995); software used to prepare material for publication:SHELXL97-2(Sheldrick, 1997).

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 20431010 and 20171012).

organic papers

o760

Xue and Liu C

23H22N4O3 Acta Cryst.(2006). E62, o759–o761

Figure 2

(3)

References

Edwards, E. I., Epton, R. & Marr, G. (1975).J. Organomet. Chem.85, C23– C25.

Fun, H.-K., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Gong, X.-Y. & Guo, Y.-M. (1997).Acta Cryst.C53, 1454–1455.

Liu, L., Jia, D.-Z., Qiao, Y.-M. & Yu, K.-B. (2001).Acta Chim. Sin.59, 1495– 1501.

McArdle, P. (1995).J. Appl. Cryst.28, 65.

Molecular Structure Corporation (1999). TEXRAY (Version 1.10) and

TEXSAN(Version 1.10). MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXL97-2. University of Go¨ttingen, Germany.

Wang, J.-L., Jia, Y.-J., Miao, F.-M. & Li, A.-X. (2004).Chin. J. Org. Chem.24, 41–49.

Yang, J.-G. & Pan, F.-Y. (2004).Acta Cryst.E60, o2009–o2010.

Zhi, J. F., Bin, Z., Su, H. W. & Zheng, M. L. (2003).Chin. J. Appl. Chem.20, 365–367.

organic papers

Acta Cryst.(2006). E62, o759–o761 Xue and Liu C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o759–o761

supporting information

Acta Cryst. (2006). E62, o759–o761 [https://doi.org/10.1107/S1600536806002297]

2

,2

-Dibenzylideneisophthalohydrazide methanol solvate

Min Xue and Shi-Xiong Liu

2′,2′-Dibenzylideneisophthalohydrazide methanol solvate

Crystal data

C23H22N4O3

Mr = 402.45

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 20.168 (4) Å

b = 14.737 (3) Å

c = 16.357 (3) Å

β = 116.54 (3)°

V = 4349.0 (15) Å3

Z = 8

F(000) = 1696

Dx = 1.229 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4999 reflections

θ = 1.8–27.5°

µ = 0.08 mm−1

T = 293 K Prism, colorless 0.55 × 0.42 × 0.36 mm

Data collection

Rigaku Weissenberg IP diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan

(TEXRAY; Molecular Structure Corporation, 1999)

Tmin = 0.778, Tmax = 0.970

20697 measured reflections 4999 independent reflections 3243 reflections with I > 2σ(I)

Rint = 0.031

θmax = 27.5°, θmin = 1.8°

h = 0→26

k = −19→19

l = −21→19

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.155

S = 1.04 4999 reflections 273 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0901P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.20 e Å−3

Δρmin = −0.23 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o759–o761

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.44217 (9) −0.05548 (11) 0.33589 (11) 0.0529 (4)

C2 0.43306 (10) −0.13845 (12) 0.36941 (13) 0.0610 (4)

H2B 0.3877 −0.1683 0.3417 0.073*

C3 0.49100 (12) −0.17650 (16) 0.44357 (15) 0.0800 (6)

H3B 0.4848 −0.2320 0.4663 0.096*

C4 0.55846 (12) −0.1323 (2) 0.48442 (16) 0.0899 (7)

H4B 0.5974 −0.1582 0.5349 0.108*

C5 0.56849 (12) −0.05116 (19) 0.45155 (18) 0.0918 (7)

H5A 0.6141 −0.0219 0.4792 0.110*

C6 0.51095 (11) −0.01310 (14) 0.37759 (16) 0.0761 (6)

H6A 0.5179 0.0420 0.3548 0.091*

C7 0.38278 (10) −0.00983 (11) 0.25938 (12) 0.0569 (4)

H7A 0.3946 0.0409 0.2347 0.068*

C8 0.19378 (9) 0.00274 (9) 0.11527 (11) 0.0493 (4)

C9 0.14804 (9) 0.07022 (9) 0.04362 (11) 0.0475 (3)

C10 0.17282 (8) 0.15852 (9) 0.04371 (10) 0.0440 (3)

H10A 0.2169 0.1778 0.0918 0.053*

C11 0.13266 (8) 0.21787 (9) −0.02682 (10) 0.0445 (3)

C12 0.06619 (10) 0.18904 (12) −0.09731 (13) 0.0649 (5)

H12A 0.0394 0.2276 −0.1460 0.078*

C13 0.03989 (11) 0.10285 (13) −0.09500 (15) 0.0794 (6)

H13A −0.0058 0.0847 −0.1409 0.095*

C14 0.08071 (10) 0.04353 (12) −0.02534 (14) 0.0652 (5)

H14A 0.0628 −0.0145 −0.0249 0.078*

C15 0.16019 (8) 0.31091 (10) −0.03247 (11) 0.0458 (3)

C16 0.28167 (10) 0.46415 (10) 0.12448 (12) 0.0552 (4)

H16A 0.2934 0.4281 0.1758 0.066*

C17 0.31690 (9) 0.55314 (11) 0.13602 (12) 0.0542 (4)

C18 0.37162 (12) 0.57653 (13) 0.22157 (15) 0.0721 (5)

H18A 0.3843 0.5366 0.2703 0.087*

C19 0.40756 (13) 0.65904 (16) 0.23486 (18) 0.0919 (7)

H19A 0.4445 0.6743 0.2924 0.110*

C20 0.38907 (14) 0.71824 (15) 0.16387 (19) 0.0931 (7)

H20A 0.4130 0.7740 0.1733 0.112*

C21 0.33506 (13) 0.69571 (13) 0.07835 (17) 0.0804 (6)

H21A 0.3232 0.7358 0.0299 0.097*

C22 0.29830 (11) 0.61377 (11) 0.06400 (14) 0.0643 (5)

H22A 0.2612 0.5992 0.0063 0.077*

C23 0.30528 (19) 0.23499 (17) 0.29017 (17) 0.1246 (12)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o759–o761

H23B 0.2932 0.2150 0.3378 0.187*

H23C 0.3522 0.2658 0.3167 0.187*

N1 0.31563 (7) −0.03554 (8) 0.22437 (9) 0.0512 (3)

N2 0.26757 (7) 0.01782 (8) 0.15277 (9) 0.0535 (3)

H2A 0.2847 0.0608 0.1321 0.064*

N3 0.20711 (7) 0.34913 (8) 0.04749 (9) 0.0480 (3)

H3A 0.2192 0.3210 0.0982 0.052 (5)*

N4 0.23556 (7) 0.43439 (8) 0.04670 (9) 0.0481 (3)

O1 0.16633 (7) −0.06044 (7) 0.13789 (9) 0.0647 (3)

O2 0.14186 (7) 0.34821 (8) −0.10677 (8) 0.0594 (3)

O3 0.25191 (8) 0.29256 (8) 0.23362 (9) 0.0731 (4)

H3C 0.2470 0.3409 0.2625 0.113 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0530 (9) 0.0534 (8) 0.0523 (9) −0.0016 (7) 0.0237 (8) 0.0004 (7)

C2 0.0547 (9) 0.0610 (10) 0.0635 (11) 0.0017 (8) 0.0233 (9) 0.0126 (9)

C3 0.0744 (13) 0.0886 (13) 0.0765 (14) 0.0166 (11) 0.0332 (12) 0.0312 (12)

C4 0.0634 (12) 0.125 (2) 0.0619 (13) 0.0257 (13) 0.0104 (10) 0.0114 (13)

C5 0.0596 (12) 0.1021 (17) 0.0881 (17) −0.0089 (12) 0.0102 (12) −0.0106 (14)

C6 0.0641 (11) 0.0710 (12) 0.0842 (14) −0.0108 (10) 0.0250 (11) −0.0024 (11)

C7 0.0638 (10) 0.0463 (8) 0.0614 (11) −0.0015 (7) 0.0288 (9) 0.0101 (7)

C8 0.0616 (9) 0.0400 (7) 0.0478 (9) −0.0037 (7) 0.0257 (8) 0.0010 (6)

C9 0.0517 (8) 0.0422 (7) 0.0493 (9) −0.0009 (6) 0.0233 (7) 0.0025 (6)

C10 0.0448 (7) 0.0420 (7) 0.0433 (8) −0.0001 (6) 0.0178 (7) 0.0010 (6)

C11 0.0441 (7) 0.0423 (7) 0.0448 (8) 0.0012 (6) 0.0178 (7) 0.0019 (6)

C12 0.0574 (10) 0.0579 (10) 0.0588 (11) −0.0001 (8) 0.0074 (9) 0.0094 (8)

C13 0.0592 (11) 0.0637 (11) 0.0800 (14) −0.0137 (9) −0.0007 (10) 0.0032 (10)

C14 0.0576 (10) 0.0504 (9) 0.0744 (12) −0.0112 (8) 0.0178 (9) 0.0026 (9)

C15 0.0454 (8) 0.0425 (7) 0.0474 (9) 0.0069 (6) 0.0188 (7) 0.0073 (7)

C16 0.0644 (10) 0.0446 (8) 0.0550 (10) 0.0001 (7) 0.0253 (9) 0.0053 (7)

C17 0.0594 (9) 0.0438 (8) 0.0621 (10) −0.0010 (7) 0.0297 (9) −0.0033 (7)

C18 0.0752 (12) 0.0652 (11) 0.0675 (12) −0.0098 (9) 0.0243 (10) −0.0047 (10)

C19 0.0905 (16) 0.0802 (14) 0.0882 (17) −0.0301 (12) 0.0250 (14) −0.0150 (13)

C20 0.1007 (17) 0.0598 (11) 0.113 (2) −0.0301 (12) 0.0423 (16) −0.0086 (13)

C21 0.0999 (15) 0.0519 (10) 0.0894 (16) −0.0105 (10) 0.0422 (14) 0.0062 (10)

C22 0.0750 (11) 0.0461 (8) 0.0687 (12) −0.0017 (8) 0.0293 (10) 0.0003 (8)

C23 0.168 (3) 0.0819 (16) 0.0697 (16) 0.0374 (17) 0.0041 (17) −0.0013 (13)

N1 0.0580 (8) 0.0439 (6) 0.0490 (8) 0.0024 (6) 0.0214 (6) 0.0084 (6)

N2 0.0578 (8) 0.0446 (6) 0.0557 (8) 0.0014 (6) 0.0233 (7) 0.0156 (6)

N3 0.0566 (7) 0.0380 (6) 0.0472 (8) −0.0019 (5) 0.0213 (6) 0.0062 (6)

N4 0.0535 (7) 0.0362 (6) 0.0553 (8) 0.0016 (5) 0.0250 (7) 0.0042 (6)

O1 0.0729 (8) 0.0519 (6) 0.0663 (8) −0.0115 (6) 0.0284 (7) 0.0122 (6)

O2 0.0663 (7) 0.0536 (6) 0.0485 (7) −0.0019 (5) 0.0169 (6) 0.0121 (5)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o759–o761

Geometric parameters (Å, º)

C1—C2 1.385 (2) C14—H14A 0.9300

C1—C6 1.391 (3) C15—O2 1.2305 (18)

C1—C7 1.454 (2) C15—N3 1.348 (2)

C2—C3 1.373 (3) C16—N4 1.272 (2)

C2—H2B 0.9300 C16—C17 1.463 (2)

C3—C4 1.382 (3) C16—H16A 0.9300

C3—H3B 0.9300 C17—C18 1.384 (3)

C4—C5 1.363 (4) C17—C22 1.390 (2)

C4—H4B 0.9300 C18—C19 1.382 (3)

C5—C6 1.367 (3) C18—H18A 0.9300

C5—H5A 0.9300 C19—C20 1.364 (3)

C6—H6A 0.9300 C19—H19A 0.9300

C7—N1 1.270 (2) C20—C21 1.375 (3)

C7—H7A 0.9300 C20—H20A 0.9300

C8—O1 1.2219 (17) C21—C22 1.381 (3)

C8—N2 1.351 (2) C21—H21A 0.9300

C8—C9 1.499 (2) C22—H22A 0.9300

C9—C14 1.379 (2) C23—O3 1.358 (3)

C9—C10 1.394 (2) C23—H23A 0.9600

C10—C11 1.384 (2) C23—H23B 0.9600

C10—H10A 0.9300 C23—H23C 0.9600

C11—C12 1.388 (2) N1—N2 1.3838 (18)

C11—C15 1.497 (2) N2—H2A 0.8600

C12—C13 1.383 (3) N3—N4 1.3837 (16)

C12—H12A 0.9300 N3—H3A 0.8600

C13—C14 1.379 (3) O3—H3C 0.8853

C13—H13A 0.9300

C2—C1—C6 118.81 (17) C9—C14—H14A 120.0

C2—C1—C7 123.03 (15) O2—C15—N3 122.84 (14)

C6—C1—C7 118.16 (16) O2—C15—C11 120.92 (14)

C3—C2—C1 119.94 (18) N3—C15—C11 116.21 (13)

C3—C2—H2B 120.0 N4—C16—C17 122.27 (15)

C1—C2—H2B 120.0 N4—C16—H16A 118.9

C2—C3—C4 120.0 (2) C17—C16—H16A 118.9

C2—C3—H3B 120.0 C18—C17—C22 119.22 (16)

C4—C3—H3B 120.0 C18—C17—C16 118.40 (16)

C5—C4—C3 120.7 (2) C22—C17—C16 122.37 (16)

C5—C4—H4B 119.7 C19—C18—C17 120.2 (2)

C3—C4—H4B 119.7 C19—C18—H18A 119.9

C4—C5—C6 119.5 (2) C17—C18—H18A 119.9

C4—C5—H5A 120.3 C20—C19—C18 120.3 (2)

C6—C5—H5A 120.3 C20—C19—H19A 119.9

C5—C6—C1 121.1 (2) C18—C19—H19A 119.9

C5—C6—H6A 119.5 C19—C20—C21 120.2 (2)

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o759–o761

N1—C7—C1 123.54 (15) C21—C20—H20A 119.9

N1—C7—H7A 118.2 C20—C21—C22 120.3 (2)

C1—C7—H7A 118.2 C20—C21—H21A 119.8

O1—C8—N2 122.96 (15) C22—C21—H21A 119.8

O1—C8—C9 122.57 (15) C21—C22—C17 119.80 (19)

N2—C8—C9 114.47 (12) C21—C22—H22A 120.1

C14—C9—C10 119.25 (15) C17—C22—H22A 120.1

C14—C9—C8 119.16 (14) O3—C23—H23A 109.5

C10—C9—C8 121.56 (14) O3—C23—H23B 109.5

C11—C10—C9 120.86 (14) H23A—C23—H23B 109.5

C11—C10—H10A 119.6 O3—C23—H23C 109.5

C9—C10—H10A 119.6 H23A—C23—H23C 109.5

C10—C11—C12 119.15 (14) H23B—C23—H23C 109.5

C10—C11—C15 122.34 (13) C7—N1—N2 114.50 (13)

C12—C11—C15 118.44 (14) C8—N2—N1 120.25 (12)

C13—C12—C11 119.88 (17) C8—N2—H2A 119.9

C13—C12—H12A 120.1 N1—N2—H2A 119.9

C11—C12—H12A 120.1 C15—N3—N4 118.98 (13)

C14—C13—C12 120.66 (17) C15—N3—H3A 120.5

C14—C13—H13A 119.7 N4—N3—H3A 120.5

C12—C13—H13A 119.7 C16—N4—N3 115.12 (13)

C13—C14—C9 120.07 (16) C23—O3—H3C 112.5

C13—C14—H14A 120.0

C6—C1—C2—C3 1.2 (3) C8—C9—C14—C13 −176.01 (18)

C7—C1—C2—C3 −178.17 (17) C10—C11—C15—O2 151.34 (15)

C1—C2—C3—C4 −0.4 (3) C12—C11—C15—O2 −25.5 (2)

C2—C3—C4—C5 −0.4 (4) C10—C11—C15—N3 −26.8 (2)

C3—C4—C5—C6 0.3 (4) C12—C11—C15—N3 156.30 (15)

C4—C5—C6—C1 0.6 (4) N4—C16—C17—C18 −173.87 (17)

C2—C1—C6—C5 −1.3 (3) N4—C16—C17—C22 4.9 (3)

C7—C1—C6—C5 178.1 (2) C22—C17—C18—C19 −0.4 (3)

C2—C1—C7—N1 9.4 (3) C16—C17—C18—C19 178.41 (19)

C6—C1—C7—N1 −169.93 (18) C17—C18—C19—C20 0.4 (4)

O1—C8—C9—C14 −28.7 (2) C18—C19—C20—C21 −0.7 (4)

N2—C8—C9—C14 151.56 (16) C19—C20—C21—C22 1.1 (4)

O1—C8—C9—C10 153.04 (15) C20—C21—C22—C17 −1.1 (3)

N2—C8—C9—C10 −26.7 (2) C18—C17—C22—C21 0.8 (3)

C14—C9—C10—C11 −3.4 (2) C16—C17—C22—C21 −177.99 (18)

C8—C9—C10—C11 174.88 (14) C1—C7—N1—N2 179.25 (14)

C9—C10—C11—C12 1.3 (2) O1—C8—N2—N1 −4.5 (2)

C9—C10—C11—C15 −175.52 (14) C9—C8—N2—N1 175.28 (13)

C10—C11—C12—C13 1.9 (3) C7—N1—N2—C8 −173.87 (15)

C15—C11—C12—C13 178.82 (18) O2—C15—N3—N4 0.7 (2)

C11—C12—C13—C14 −3.0 (3) C11—C15—N3—N4 178.84 (12)

C12—C13—C14—C9 0.8 (3) C17—C16—N4—N3 −179.83 (13)

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o759–o761

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2A···O2i 0.86 2.17 3.0048 (17) 164

O3—H3C···N1ii 0.89 2.28 3.0954 (18) 153

O3—H3C···O1ii 0.89 2.30 2.9550 (19) 131

N3—H3A···O3 0.86 2.05 2.8848 (19) 163

Figure

Figure 1
Table 1

References

Related documents

Registrar, Department of Urology, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, Maharashtra, India. Associate

Knowledge-based WSD methods mainly ex- ploit two kinds of knowledge to disambiguate pol- ysemous words: 1) The gloss, which defines a word sense meaning, is mainly used in Lesk

This situation is more grave while receiving dental or medical treatment as the health professionals might be unaware about the special modes of communication causing

We study the role of labor market mismatch in the adjustment to a trade lib- eralization that results in the o¤shoring of high-tech production.. Our model features

The main contributions of our work, are as fol- lows: 1) We present a novel use for a neural lan- guage modeling approach that leverages shared context between documents within

To assess the effect of exchange rate misalignment on Senegal's economic performance, we estimate the real GDP growth equation explained by misalignment (measured by the BEER

However, in a follow-up experiment using a high-quality sample of high-income consumers, we find debt can no longer be explained by poor cognitive reflection and lack of self

In particular, the baseline 2SLS estimates indicates that one additional year of schooling is causally linked to a 6 percentage point increase in the likelihood of