2 Cyano N (2 hy­droxy­phenyl)­acet­amide

Download (0)

Full text

(1)

Acta Cryst.(2003). E59, o723±o725 DOI: 10.1107/S1600536803008316 Resendeet al. C9H8N2O2

o723

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Cyano-

N

-(2-hydroxyphenyl)acetamide

Jackson AntoÃnio Lamounier Camargos Resende,a* Sauli

Santos Jr,bJavier Ellenab and

Silvana Guilardia

aInstituto de QuõÂmica, Universidade Federal de UberlaÃndia, Caixa Postal 593, CEP 38408-100, UberlaÃndia, MG, Brazil, andbInstituto de FõÂsica de SaÄo Carlos, Universidade de SaÄo Paulo, Caixa Postal 369, CEP 13560-970, SaÄo Carlos, SP, Brazil

Correspondence e-mail: silvana@ufu.br

Key indicators

Single-crystal X-ray study

T= 120 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.051

wRfactor = 0.131

Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The crystal structure of the title compound, C9H8O2N2, is

described. The crystal structure is stabilized by a hydrogen-bonded network along the [101] and [301] directions.

Comment

Coumarins are a family of compounds that has been studied extensively due to its practical applications; optical brightness, laser dyes, sensitizers in phototherapy, etc., are some of the uses of this class of compound (Machado & Miranda, 2001).

The title compound, (4), was obtained during the synthesis of the 3-substituted 7-hydroxycoumarin, (3), from 2,4-di-hydroxybenzaldeyde, (1), and benzoxazol-2-ylacetonitrile, (2), as outlined in the Scheme. It is possible that the ®nal mixture contained some of the unreacted precursor (2), this being hydrolysed during the second step of the reaction or during work-up (Luanet al., 2002; Elnagdiet al., 1997). AnORTEP-3 (Farrugia, 1997) drawing of (4) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The 2-hydroxyphenyl and 2-cyanoacetamide moieties are planar and the angle between these systems is 7.48 (18).

In the crystal structure, the molecule is linked by two kinds of hydrogen bonds,viz. two-center and three-center bonding (Table 2). The two-center hydrogen bond O1ÐH1 N2iilinks

the molecules in an in®nite zigzag in the [301] direction (Fig. 2a; for symmetry codes see Table 2). The three-center hydrogen bond involves the intramolecular interaction N1Ð H O1 and the intermolecular interaction N1ÐH O2i,

producing an in®nite zigzag in the [101] direction (Fig. 2b). Atom H is in the plane formed by atoms N1, O1 and O2, indicating the presence of the three-center hydrogen bond (Jeffrey & Maluszynska, 1982). The N1 O1 distance of 2.627 (3) AÊ is clearly indicative of strong intramolecular hydrogen bonding; this distance is signi®cantly shorter than the sum of the van der Waals radii for oxygen and nitrogen (3.07 AÊ; Bondi, 1964). This intramolecular N1 O1 distance is comparable to those observed in 2-[(2-iodophenyl)imino-methyl]phenol [2.624 (5) AÊ], N,N0-bis(p

-chlorosalicylidene-amine)-1,2-diaminobenzene [2.615 (6) AÊ] and 2,20

(2)

organic papers

o724

Resendeet al. C9H8N2O2 Acta Cryst.(2003). E59, o723±o725

dimethyldiphenol [2.611 (6) AÊ] (Elmali & Elerman, 1997; Xu

et al., 1994; Elermanet al., 1994).

Experimental

The method of preparation included heatingortho-aminophenol and ethyl cyanoacetate at 453 K for 6 h, without isolation of the inter-mediate. After cooling, 2,4-dihydroxybenzaldehyde, ammonium acetate and ethanol were added and the mixture was heated to re¯ux for 30 min. After cooling, the resulting solid was ®ltered and washed with water, ethanol and diethyl ether. Possibly the hydrolysis of the benzoxazol-2-ylacetonitrile, (2), produced the title compound (Luan et al., 2002; Elnagdiet al., 1997).

Crystal data

C9H8N2O2

Mr= 176.17 Monoclinic,Cc a= 5.6672 (3) AÊ b= 18.0609 (11) AÊ c= 8.1949 (5) AÊ = 99.135 (3) V= 828.15 (8) AÊ3

Z= 4

Dx= 1.413 Mg mÿ3

MoKradiation Cell parameters from 8167

re¯ections = 1.0±27.5 = 0.10 mmÿ1

T= 120 (2) K Prism, yellow 0.120.060.06 mm

Data collection

Nonius KappaCCD diffractometer !and'scans withoffsets 2565 measured re¯ections 1436 independent re¯ections 1301 re¯ections withI> 2(I)

Rint= 0.096

max= 25

h=ÿ6!6 k=ÿ20!21 l=ÿ9!9

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.051

wR(F2) = 0.131

S= 1.06 1436 re¯ections 143 parameters

H-atom parameters constrained

w= 1/[2(Fo2) + (0.0677P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.004

max= 0.23 e AÊÿ3

min=ÿ0.19 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.14 (2)

Table 1

Selected geometric parameters (AÊ,).

O1ÐC6 1.367 (3)

O2ÐC7 1.222 (3)

N1ÐC7 1.348 (3)

N1ÐC1 1.414 (4)

N2ÐC9 1.148 (4)

C7ÐN1ÐC1 127.8 (2)

C2ÐC1ÐN1 125.1 (2)

C6ÐC1ÐN1 115.9 (2)

O1ÐC6ÐC5 122.8 (2)

O1ÐC6ÐC1 116.5 (2)

O2ÐC7ÐN1 125.4 (2)

N1ÐC7ÐC8 112.7 (2)

N2ÐC9ÐC8 179.0 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH O1 0.87 (4) 2.17 (4) 2.629 (4) 111 (3)

N1ÐH O2i 0.87 (4) 2.08 (4) 2.961 (4) 162 (3)

O1ÐH1 N2ii 0.90 (4) 1.88 (4) 2.762 (4) 164 (4)

Symmetry codes: (i)1

2‡x;32ÿy;12‡z; (ii)32‡x;32ÿy;12‡z.

H atoms were located in a difference Fourier synthesis and re®ned with a riding model. For methyl H atomsUisowas set equal to 1.5Ueq

of the carrier atom; for other H atomsUisowas set equal to 1.2Ueq. In

the absence of signi®cant anomalous scattering effects, the Flack (1983) parameter re®nement is essentially meaningless. Friedel pairs were merged before re®nement.

Data collection:COLLECT(Nonius, 1997±2002); cell re®nement: HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (CCDC, 2003); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors thank the Brazilian agencies CNPq, FAPEMIG, FAPESP and CAPES for ®nancial support. Dr E. E. Castellano, of the Instituto de FõÂsica de SaÄo Carlos of the Universidade de SaÄo Paulo, is acknowledged for the data collection.

References

Bondi, A. (1964).J. Phys. Chem.68, 441±451.

CCDC (2003). MERCURY. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. http://www.ccdc.cam.ac.uk/mercury/ Elerman, Y., Elmali, A., Kabak, M., Aydin, M. & Peder, M. (1994).J. Chem.

Crystallogr.24, 603±606.

Figure 1

AnORTEP-3 view (Farrugia, 1997) of (4), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

(3)

Elmali, A. & Elerman, Y. (1997).Acta Cryst.C53, 791±793.

Elnagdi, M. H., Abdallah, S. O., Ghoneim, K. M., Ebied, E. M. & Kassab, K. N. (1997).J. Chem. Res.(S), pp. 44±45; (M) pp. 375±384.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Jeffrey, G. A. & Maluszynska, H. (1982).Int. J. Biol. Macromol.pp. 173±185. Luan, X. H., Cerqueira, N. M. F. S. A., Oliveira, A. M. A. G., Raposo, M. M. M., Rodrigues, L. M., Coelho, P. & Oliveira-Campos, A. M. F. (2002).Adv. Colour Sci. Technol.5, 18±23.

Machado, A. E. H. & Miranda, J. A. (2001).J. Photochem. Photobiol. A Chem. 141, 109±116.

Nonius (1997±2002).COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994).Acta Cryst. C50, 1169±1171.

Acta Cryst.(2003). E59, o723±o725 Resendeet al. C9H8N2O2

o725

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, o723–o725

supporting information

Acta Cryst. (2003). E59, o723–o725 [doi:10.1107/S1600536803008316]

2-Cyano-

N

-(2-hydroxyphenyl)acetamide

Jackson Ant

ô

nio Lamounier Camargos Resende, Sauli Santos Jr, Javier Ellena and Silvana

Guilardi

S1. Comment

Coumarins are a family of compounds that have been studied extensively due to its practical applications. Optical

brightness, laser dyes, sensitizes in phototerapy, etc., is some of the usefulness of this class of compounds (Machado &

Miranda, 2001).

The title compound, (4), was obtained during the synthesis of the 3-substituted 7-hydroxycoumarins, (3), from

2,4-di-hydroxybenzaldeyde, (1), and benzoxazol-2-ylacetonitrile, (2), as outlined in the Scheme. Possibly, the final mixture

contained some of the unreacted precursor (2), this being hydrolyzed during the second step of the reaction or during

work-up (Luan et al., 2002; Elnagdi et al., 1997). An ORTEP-3 (Farrugia, 1997) drawing of (4) is shown in Fig. 1, and

selected geometric parameters presented in Table 1. The 2-hydroxyphenyl and 2-cyanoacetamide moieties are planar and

the angle between these systems is 7.48 (18)°.

In the crystal structure, the molecule is linked by two kinds of hydrogen bonds, viz. a two-center and a three-center

bonding (Table 2). The two-center hydrogen bond O1—H1···N2 links the molecules in an infinite zigzag in the [301]

direction (Fig. 2a). The three-center hydrogen bond involves the intramolecular interaction N1—H···O1 and the

intermolecular interaction N1—H···O2 that produces an infinite zigzag the [101] direction (Fig. 2 b). The H atom is in the

plane formed by atoms N1, O1 and O2 that indicate the presence of the three-center hydrogen bond (Jeffrey &

Maluszynska, 1982). The N1···O1 distance of 2.627 (3) Å is clearly indicative of strong intramolecular hydrogen

bonding; this distance is significantly shorter than the sum of the van der Waals radii for oxygen and nitrogen (3.07 Å;

Bondi, 1964). This intramolecular N1···O1 distance is comparable to those observed for

2-[(2-iodophenyl)iminomethyl]-phenol [2.624 (5) Å], N,N′-bis(p-chlorosalicylideneamine)-1,2-diaminobenzene [2.615 (6) Å] and

2,2′-azinodimethyl-diphenol [2.611 (6) Å] (Elmali & Elerman, 1997; Xu et al., 1994; Elerman et al., 1994).

S2. Experimental

The method of preparation included heating ortho-aminophenol and ethyl cyanoacetate at 453 K for 6 h. Without

isolation of the intermediate, after cooling, 2,4-dihydroxybenzaldehyde, ammonium acetate and ethanol were added and

the mixture was heated to reflux for 30 min. After cooling, the solid obtained was filtered and washed with water, ethanol

and diethyl ether. Possibly the hydrolysis of the benzoxazol-2-ylacetonitrile, (2), produced the title compound (Luan et

al., 2002; Elnagdi et al., 1997).

S3. Refinement

H atoms were located by difference Fourier syntesis, the positional parameters have been refined with Uiso set to 1.5 (for

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, o723–o725

Figure 1

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, o723–o725

Figure 2

A Mercury view (CCDC, 2003) of the (a) two-center and (b) three-center hydrogen bonds in the crystal packing.

(4)

Crystal data

C9H8N2O2

Mr = 176.17 Monoclinic, Cc a = 5.6672 (3) Å

b = 18.0609 (11) Å

c = 8.1949 (5) Å

β = 99.135 (3)°

V = 828.15 (8) Å3

Z = 4

F(000) = 368

Dx = 1.413 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 8167 reflections

θ = 1.0–27.5°

µ = 0.10 mm−1

T = 120 K Prism, yellow

0.12 × 0.06 × 0.06 mm

Data collection

Nonius KappaCCD diffractometer

CCD rotation images, thick slices scans 2565 measured reflections

1436 independent reflections 1301 reflections with I > 2σ(I)

Rint = 0.096

θmax = 25°, θmin = 2.3°

h = −6→6

k = −20→21

l = −9→9

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.051

wR(F2) = 0.131

S = 1.06 1436 reflections 143 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0677P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.004

Δρmax = 0.23 e Å−3

Δρmin = −0.19 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.14 (2) Absolute structure: Flack (1983) Absolute structure parameter: −2.9 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 1.5419 (3) 0.66992 (11) 1.0278 (3) 0.0452 (6)

O2 0.7768 (3) 0.71253 (10) 0.6798 (2) 0.0411 (5)

N1 1.1093 (4) 0.70133 (13) 0.8761 (3) 0.0368 (6)

N2 0.4490 (5) 0.86111 (15) 0.7505 (3) 0.0491 (7)

C1 1.2195 (4) 0.63753 (16) 0.8222 (3) 0.0364 (6)

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o723–o725

C3 1.2436 (6) 0.52986 (17) 0.6520 (4) 0.0440 (7)

C4 1.4707 (6) 0.51492 (17) 0.7357 (4) 0.0437 (7)

C5 1.5747 (4) 0.56132 (17) 0.8617 (3) 0.0412 (7)

C6 1.4499 (4) 0.62188 (15) 0.9051 (3) 0.0370 (6)

C7 0.9075 (4) 0.73486 (14) 0.8029 (3) 0.0347 (6)

C8 0.8534 (5) 0.80604 (16) 0.8918 (4) 0.0402 (7)

C9 0.6276 (5) 0.83698 (17) 0.8142 (3) 0.0409 (7)

H1 1.678 (7) 0.652 (2) 1.088 (5) 0.061*

H 1.189 (6) 0.7213 (19) 0.965 (5) 0.049*

H2 0.962 (6) 0.601 (2) 0.634 (5) 0.049*

H3 1.174 (6) 0.497 (2) 0.563 (5) 0.049*

H4 1.557 (6) 0.4738 (19) 0.709 (5) 0.049*

H5 1.755 (6) 0.553 (2) 0.919 (4) 0.049*

H81 0.841 (6) 0.7933 (18) 1.006 (5) 0.049*

H82 0.975 (6) 0.844 (2) 0.900 (4) 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0354 (10) 0.0493 (12) 0.0468 (11) 0.0038 (9) −0.0059 (8) −0.0061 (9)

O2 0.0413 (11) 0.0397 (10) 0.0390 (10) −0.0013 (8) −0.0041 (8) 0.0008 (8)

N1 0.0324 (12) 0.0395 (12) 0.0357 (12) 0.0032 (9) −0.0033 (9) −0.0026 (10)

N2 0.0414 (13) 0.0482 (14) 0.0527 (14) 0.0039 (11) −0.0076 (11) −0.0031 (11)

C1 0.0340 (13) 0.0366 (14) 0.0381 (14) 0.0000 (10) 0.0046 (10) 0.0029 (11)

C2 0.0350 (14) 0.0427 (17) 0.0386 (14) −0.0025 (11) 0.0019 (11) −0.0014 (11)

C3 0.0462 (16) 0.0404 (15) 0.0442 (15) −0.0007 (12) 0.0036 (12) −0.0034 (12)

C4 0.0484 (16) 0.0397 (15) 0.0438 (16) 0.0044 (13) 0.0095 (12) 0.0012 (11)

C5 0.0357 (14) 0.0441 (15) 0.0432 (14) 0.0052 (12) 0.0045 (11) 0.0015 (12)

C6 0.0348 (14) 0.0396 (15) 0.0356 (14) −0.0050 (11) 0.0024 (11) 0.0009 (11)

C7 0.0333 (13) 0.0360 (14) 0.0327 (12) −0.0020 (10) −0.0011 (10) 0.0045 (11)

C8 0.0377 (14) 0.0391 (15) 0.0407 (16) 0.0036 (12) −0.0030 (11) 0.0006 (12)

C9 0.0415 (14) 0.0390 (15) 0.0399 (14) −0.0025 (12) −0.0006 (11) −0.0021 (11)

Geometric parameters (Å, º)

O1—C6 1.367 (3) C2—C3 1.387 (4)

O2—C7 1.222 (3) C3—C4 1.386 (5)

N1—C7 1.348 (3) C4—C5 1.387 (4)

N1—C1 1.414 (4) C5—C6 1.379 (4)

N2—C9 1.148 (4) C7—C8 1.532 (4)

C1—C2 1.395 (4) C8—C9 1.448 (4)

C1—C6 1.402 (4)

C7—N1—C1 127.8 (2) O1—C6—C5 122.8 (2)

C2—C1—C6 119.0 (2) O1—C6—C1 116.5 (2)

C2—C1—N1 125.1 (2) C5—C6—C1 120.8 (2)

C6—C1—N1 115.9 (2) O2—C7—N1 125.4 (2)

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, o723–o725

C4—C3—C2 120.3 (3) N1—C7—C8 112.7 (2)

C3—C4—C5 120.2 (3) C9—C8—C7 110.2 (2)

C6—C5—C4 119.8 (2) N2—C9—C8 179.0 (3)

C7—N1—C1—C2 −11.0 (4) C2—C1—C6—O1 179.9 (2)

C7—N1—C1—C6 169.1 (2) N1—C1—C6—O1 −0.2 (3)

C6—C1—C2—C3 −0.9 (4) C2—C1—C6—C5 0.5 (4)

N1—C1—C2—C3 179.2 (3) N1—C1—C6—C5 −179.5 (2)

C1—C2—C3—C4 1.2 (4) C1—N1—C7—O2 4.4 (4)

C2—C3—C4—C5 −1.2 (5) C1—N1—C7—C8 −175.9 (2)

C3—C4—C5—C6 0.9 (4) O2—C7—C8—C9 3.3 (4)

C4—C5—C6—O1 −179.8 (3) N1—C7—C8—C9 −176.4 (2)

C4—C5—C6—C1 −0.6 (4) C7—C8—C9—N2 −3E1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H···O1 0.87 (4) 2.17 (4) 2.629 (4) 111 (3)

N1—H···O2i 0.87 (4) 2.08 (4) 2.961 (4) 162 (3)

O1—H1···N2ii 0.90 (4) 1.88 (4) 2.762 (4) 164 (4)

Figure

Figure 1

Figure 1

p.5
Figure 2

Figure 2

p.6

References