Acta Cryst.(2003). E59, o723±o725 DOI: 10.1107/S1600536803008316 Resendeet al. C9H8N2O2
o723
organic papers
Acta Crystallographica Section E Structure Reports Online
ISSN 1600-5368
2-Cyano-
N
-(2-hydroxyphenyl)acetamide
Jackson AntoÃnio Lamounier Camargos Resende,a* Sauli
Santos Jr,bJavier Ellenab and
Silvana Guilardia
aInstituto de QuõÂmica, Universidade Federal de UberlaÃndia, Caixa Postal 593, CEP 38408-100, UberlaÃndia, MG, Brazil, andbInstituto de FõÂsica de SaÄo Carlos, Universidade de SaÄo Paulo, Caixa Postal 369, CEP 13560-970, SaÄo Carlos, SP, Brazil
Correspondence e-mail: silvana@ufu.br
Key indicators
Single-crystal X-ray study
T= 120 K
Mean(C±C) = 0.004 AÊ
Rfactor = 0.051
wRfactor = 0.131
Data-to-parameter ratio = 10.0
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved
The crystal structure of the title compound, C9H8O2N2, is
described. The crystal structure is stabilized by a hydrogen-bonded network along the [101] and [301] directions.
Comment
Coumarins are a family of compounds that has been studied extensively due to its practical applications; optical brightness, laser dyes, sensitizers in phototherapy, etc., are some of the uses of this class of compound (Machado & Miranda, 2001).
The title compound, (4), was obtained during the synthesis of the 3-substituted 7-hydroxycoumarin, (3), from 2,4-di-hydroxybenzaldeyde, (1), and benzoxazol-2-ylacetonitrile, (2), as outlined in the Scheme. It is possible that the ®nal mixture contained some of the unreacted precursor (2), this being hydrolysed during the second step of the reaction or during work-up (Luanet al., 2002; Elnagdiet al., 1997). AnORTEP-3 (Farrugia, 1997) drawing of (4) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The 2-hydroxyphenyl and 2-cyanoacetamide moieties are planar and the angle between these systems is 7.48 (18).
In the crystal structure, the molecule is linked by two kinds of hydrogen bonds,viz. two-center and three-center bonding (Table 2). The two-center hydrogen bond O1ÐH1 N2iilinks
the molecules in an in®nite zigzag in the [301] direction (Fig. 2a; for symmetry codes see Table 2). The three-center hydrogen bond involves the intramolecular interaction N1Ð H O1 and the intermolecular interaction N1ÐH O2i,
producing an in®nite zigzag in the [101] direction (Fig. 2b). Atom H is in the plane formed by atoms N1, O1 and O2, indicating the presence of the three-center hydrogen bond (Jeffrey & Maluszynska, 1982). The N1 O1 distance of 2.627 (3) AÊ is clearly indicative of strong intramolecular hydrogen bonding; this distance is signi®cantly shorter than the sum of the van der Waals radii for oxygen and nitrogen (3.07 AÊ; Bondi, 1964). This intramolecular N1 O1 distance is comparable to those observed in 2-[(2-iodophenyl)imino-methyl]phenol [2.624 (5) AÊ], N,N0-bis(p
-chlorosalicylidene-amine)-1,2-diaminobenzene [2.615 (6) AÊ] and 2,20
organic papers
o724
Resendeet al. C9H8N2O2 Acta Cryst.(2003). E59, o723±o725dimethyldiphenol [2.611 (6) AÊ] (Elmali & Elerman, 1997; Xu
et al., 1994; Elermanet al., 1994).
Experimental
The method of preparation included heatingortho-aminophenol and ethyl cyanoacetate at 453 K for 6 h, without isolation of the inter-mediate. After cooling, 2,4-dihydroxybenzaldehyde, ammonium acetate and ethanol were added and the mixture was heated to re¯ux for 30 min. After cooling, the resulting solid was ®ltered and washed with water, ethanol and diethyl ether. Possibly the hydrolysis of the benzoxazol-2-ylacetonitrile, (2), produced the title compound (Luan et al., 2002; Elnagdiet al., 1997).
Crystal data
C9H8N2O2
Mr= 176.17 Monoclinic,Cc a= 5.6672 (3) AÊ b= 18.0609 (11) AÊ c= 8.1949 (5) AÊ = 99.135 (3) V= 828.15 (8) AÊ3
Z= 4
Dx= 1.413 Mg mÿ3
MoKradiation Cell parameters from 8167
re¯ections = 1.0±27.5 = 0.10 mmÿ1
T= 120 (2) K Prism, yellow 0.120.060.06 mm
Data collection
Nonius KappaCCD diffractometer !and'scans withoffsets 2565 measured re¯ections 1436 independent re¯ections 1301 re¯ections withI> 2(I)
Rint= 0.096
max= 25
h=ÿ6!6 k=ÿ20!21 l=ÿ9!9
Re®nement
Re®nement onF2
R[F2> 2(F2)] = 0.051
wR(F2) = 0.131
S= 1.06 1436 re¯ections 143 parameters
H-atom parameters constrained
w= 1/[2(Fo2) + (0.0677P)2]
whereP= (Fo2+ 2Fc2)/3
(/)max= 0.004
max= 0.23 e AÊÿ3
min=ÿ0.19 e AÊÿ3
Extinction correction:SHELXL97 Extinction coef®cient: 0.14 (2)
Table 1
Selected geometric parameters (AÊ,).
O1ÐC6 1.367 (3)
O2ÐC7 1.222 (3)
N1ÐC7 1.348 (3)
N1ÐC1 1.414 (4)
N2ÐC9 1.148 (4)
C7ÐN1ÐC1 127.8 (2)
C2ÐC1ÐN1 125.1 (2)
C6ÐC1ÐN1 115.9 (2)
O1ÐC6ÐC5 122.8 (2)
O1ÐC6ÐC1 116.5 (2)
O2ÐC7ÐN1 125.4 (2)
N1ÐC7ÐC8 112.7 (2)
N2ÐC9ÐC8 179.0 (3)
Table 2
Hydrogen-bonding geometry (AÊ,).
DÐH A DÐH H A D A DÐH A
N1ÐH O1 0.87 (4) 2.17 (4) 2.629 (4) 111 (3)
N1ÐH O2i 0.87 (4) 2.08 (4) 2.961 (4) 162 (3)
O1ÐH1 N2ii 0.90 (4) 1.88 (4) 2.762 (4) 164 (4)
Symmetry codes: (i)1
2x;32ÿy;12z; (ii)32x;32ÿy;12z.
H atoms were located in a difference Fourier synthesis and re®ned with a riding model. For methyl H atomsUisowas set equal to 1.5Ueq
of the carrier atom; for other H atomsUisowas set equal to 1.2Ueq. In
the absence of signi®cant anomalous scattering effects, the Flack (1983) parameter re®nement is essentially meaningless. Friedel pairs were merged before re®nement.
Data collection:COLLECT(Nonius, 1997±2002); cell re®nement: HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (CCDC, 2003); software used to prepare material for publication:WinGX(Farrugia, 1999).
The authors thank the Brazilian agencies CNPq, FAPEMIG, FAPESP and CAPES for ®nancial support. Dr E. E. Castellano, of the Instituto de FõÂsica de SaÄo Carlos of the Universidade de SaÄo Paulo, is acknowledged for the data collection.
References
Bondi, A. (1964).J. Phys. Chem.68, 441±451.
CCDC (2003). MERCURY. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. http://www.ccdc.cam.ac.uk/mercury/ Elerman, Y., Elmali, A., Kabak, M., Aydin, M. & Peder, M. (1994).J. Chem.
Crystallogr.24, 603±606.
Figure 1
AnORTEP-3 view (Farrugia, 1997) of (4), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Figure 2
Elmali, A. & Elerman, Y. (1997).Acta Cryst.C53, 791±793.
Elnagdi, M. H., Abdallah, S. O., Ghoneim, K. M., Ebied, E. M. & Kassab, K. N. (1997).J. Chem. Res.(S), pp. 44±45; (M) pp. 375±384.
Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838. Flack, H. D. (1983).Acta Cryst.A39, 876±881.
Jeffrey, G. A. & Maluszynska, H. (1982).Int. J. Biol. Macromol.pp. 173±185. Luan, X. H., Cerqueira, N. M. F. S. A., Oliveira, A. M. A. G., Raposo, M. M. M., Rodrigues, L. M., Coelho, P. & Oliveira-Campos, A. M. F. (2002).Adv. Colour Sci. Technol.5, 18±23.
Machado, A. E. H. & Miranda, J. A. (2001).J. Photochem. Photobiol. A Chem. 141, 109±116.
Nonius (1997±2002).COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.
Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994).Acta Cryst. C50, 1169±1171.
Acta Cryst.(2003). E59, o723±o725 Resendeet al. C9H8N2O2
o725
supporting information
sup-1
Acta Cryst. (2003). E59, o723–o725supporting information
Acta Cryst. (2003). E59, o723–o725 [doi:10.1107/S1600536803008316]
2-Cyano-
N
-(2-hydroxyphenyl)acetamide
Jackson Ant
ô
nio Lamounier Camargos Resende, Sauli Santos Jr, Javier Ellena and Silvana
Guilardi
S1. Comment
Coumarins are a family of compounds that have been studied extensively due to its practical applications. Optical
brightness, laser dyes, sensitizes in phototerapy, etc., is some of the usefulness of this class of compounds (Machado &
Miranda, 2001).
The title compound, (4), was obtained during the synthesis of the 3-substituted 7-hydroxycoumarins, (3), from
2,4-di-hydroxybenzaldeyde, (1), and benzoxazol-2-ylacetonitrile, (2), as outlined in the Scheme. Possibly, the final mixture
contained some of the unreacted precursor (2), this being hydrolyzed during the second step of the reaction or during
work-up (Luan et al., 2002; Elnagdi et al., 1997). An ORTEP-3 (Farrugia, 1997) drawing of (4) is shown in Fig. 1, and
selected geometric parameters presented in Table 1. The 2-hydroxyphenyl and 2-cyanoacetamide moieties are planar and
the angle between these systems is 7.48 (18)°.
In the crystal structure, the molecule is linked by two kinds of hydrogen bonds, viz. a two-center and a three-center
bonding (Table 2). The two-center hydrogen bond O1—H1···N2 links the molecules in an infinite zigzag in the [301]
direction (Fig. 2a). The three-center hydrogen bond involves the intramolecular interaction N1—H···O1 and the
intermolecular interaction N1—H···O2 that produces an infinite zigzag the [101] direction (Fig. 2 b). The H atom is in the
plane formed by atoms N1, O1 and O2 that indicate the presence of the three-center hydrogen bond (Jeffrey &
Maluszynska, 1982). The N1···O1 distance of 2.627 (3) Å is clearly indicative of strong intramolecular hydrogen
bonding; this distance is significantly shorter than the sum of the van der Waals radii for oxygen and nitrogen (3.07 Å;
Bondi, 1964). This intramolecular N1···O1 distance is comparable to those observed for
2-[(2-iodophenyl)iminomethyl]-phenol [2.624 (5) Å], N,N′-bis(p-chlorosalicylideneamine)-1,2-diaminobenzene [2.615 (6) Å] and
2,2′-azinodimethyl-diphenol [2.611 (6) Å] (Elmali & Elerman, 1997; Xu et al., 1994; Elerman et al., 1994).
S2. Experimental
The method of preparation included heating ortho-aminophenol and ethyl cyanoacetate at 453 K for 6 h. Without
isolation of the intermediate, after cooling, 2,4-dihydroxybenzaldehyde, ammonium acetate and ethanol were added and
the mixture was heated to reflux for 30 min. After cooling, the solid obtained was filtered and washed with water, ethanol
and diethyl ether. Possibly the hydrolysis of the benzoxazol-2-ylacetonitrile, (2), produced the title compound (Luan et
al., 2002; Elnagdi et al., 1997).
S3. Refinement
H atoms were located by difference Fourier syntesis, the positional parameters have been refined with Uiso set to 1.5 (for
supporting information
sup-2
Acta Cryst. (2003). E59, o723–o725Figure 1
supporting information
sup-3
Acta Cryst. (2003). E59, o723–o725Figure 2
A Mercury view (CCDC, 2003) of the (a) two-center and (b) three-center hydrogen bonds in the crystal packing.
(4)
Crystal data
C9H8N2O2
Mr = 176.17 Monoclinic, Cc a = 5.6672 (3) Å
b = 18.0609 (11) Å
c = 8.1949 (5) Å
β = 99.135 (3)°
V = 828.15 (8) Å3
Z = 4
F(000) = 368
Dx = 1.413 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 8167 reflections
θ = 1.0–27.5°
µ = 0.10 mm−1
T = 120 K Prism, yellow
0.12 × 0.06 × 0.06 mm
Data collection
Nonius KappaCCD diffractometer
CCD rotation images, thick slices scans 2565 measured reflections
1436 independent reflections 1301 reflections with I > 2σ(I)
Rint = 0.096
θmax = 25°, θmin = 2.3°
h = −6→6
k = −20→21
l = −9→9
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.051
wR(F2) = 0.131
S = 1.06 1436 reflections 143 parameters 2 restraints
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.004
Δρmax = 0.23 e Å−3
Δρmin = −0.19 e Å−3
Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient: 0.14 (2) Absolute structure: Flack (1983) Absolute structure parameter: −2.9 (16)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
O1 1.5419 (3) 0.66992 (11) 1.0278 (3) 0.0452 (6)
O2 0.7768 (3) 0.71253 (10) 0.6798 (2) 0.0411 (5)
N1 1.1093 (4) 0.70133 (13) 0.8761 (3) 0.0368 (6)
N2 0.4490 (5) 0.86111 (15) 0.7505 (3) 0.0491 (7)
C1 1.2195 (4) 0.63753 (16) 0.8222 (3) 0.0364 (6)
supporting information
sup-4
Acta Cryst. (2003). E59, o723–o725C3 1.2436 (6) 0.52986 (17) 0.6520 (4) 0.0440 (7)
C4 1.4707 (6) 0.51492 (17) 0.7357 (4) 0.0437 (7)
C5 1.5747 (4) 0.56132 (17) 0.8617 (3) 0.0412 (7)
C6 1.4499 (4) 0.62188 (15) 0.9051 (3) 0.0370 (6)
C7 0.9075 (4) 0.73486 (14) 0.8029 (3) 0.0347 (6)
C8 0.8534 (5) 0.80604 (16) 0.8918 (4) 0.0402 (7)
C9 0.6276 (5) 0.83698 (17) 0.8142 (3) 0.0409 (7)
H1 1.678 (7) 0.652 (2) 1.088 (5) 0.061*
H 1.189 (6) 0.7213 (19) 0.965 (5) 0.049*
H2 0.962 (6) 0.601 (2) 0.634 (5) 0.049*
H3 1.174 (6) 0.497 (2) 0.563 (5) 0.049*
H4 1.557 (6) 0.4738 (19) 0.709 (5) 0.049*
H5 1.755 (6) 0.553 (2) 0.919 (4) 0.049*
H81 0.841 (6) 0.7933 (18) 1.006 (5) 0.049*
H82 0.975 (6) 0.844 (2) 0.900 (4) 0.049*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
O1 0.0354 (10) 0.0493 (12) 0.0468 (11) 0.0038 (9) −0.0059 (8) −0.0061 (9)
O2 0.0413 (11) 0.0397 (10) 0.0390 (10) −0.0013 (8) −0.0041 (8) 0.0008 (8)
N1 0.0324 (12) 0.0395 (12) 0.0357 (12) 0.0032 (9) −0.0033 (9) −0.0026 (10)
N2 0.0414 (13) 0.0482 (14) 0.0527 (14) 0.0039 (11) −0.0076 (11) −0.0031 (11)
C1 0.0340 (13) 0.0366 (14) 0.0381 (14) 0.0000 (10) 0.0046 (10) 0.0029 (11)
C2 0.0350 (14) 0.0427 (17) 0.0386 (14) −0.0025 (11) 0.0019 (11) −0.0014 (11)
C3 0.0462 (16) 0.0404 (15) 0.0442 (15) −0.0007 (12) 0.0036 (12) −0.0034 (12)
C4 0.0484 (16) 0.0397 (15) 0.0438 (16) 0.0044 (13) 0.0095 (12) 0.0012 (11)
C5 0.0357 (14) 0.0441 (15) 0.0432 (14) 0.0052 (12) 0.0045 (11) 0.0015 (12)
C6 0.0348 (14) 0.0396 (15) 0.0356 (14) −0.0050 (11) 0.0024 (11) 0.0009 (11)
C7 0.0333 (13) 0.0360 (14) 0.0327 (12) −0.0020 (10) −0.0011 (10) 0.0045 (11)
C8 0.0377 (14) 0.0391 (15) 0.0407 (16) 0.0036 (12) −0.0030 (11) 0.0006 (12)
C9 0.0415 (14) 0.0390 (15) 0.0399 (14) −0.0025 (12) −0.0006 (11) −0.0021 (11)
Geometric parameters (Å, º)
O1—C6 1.367 (3) C2—C3 1.387 (4)
O2—C7 1.222 (3) C3—C4 1.386 (5)
N1—C7 1.348 (3) C4—C5 1.387 (4)
N1—C1 1.414 (4) C5—C6 1.379 (4)
N2—C9 1.148 (4) C7—C8 1.532 (4)
C1—C2 1.395 (4) C8—C9 1.448 (4)
C1—C6 1.402 (4)
C7—N1—C1 127.8 (2) O1—C6—C5 122.8 (2)
C2—C1—C6 119.0 (2) O1—C6—C1 116.5 (2)
C2—C1—N1 125.1 (2) C5—C6—C1 120.8 (2)
C6—C1—N1 115.9 (2) O2—C7—N1 125.4 (2)
supporting information
sup-5
Acta Cryst. (2003). E59, o723–o725C4—C3—C2 120.3 (3) N1—C7—C8 112.7 (2)
C3—C4—C5 120.2 (3) C9—C8—C7 110.2 (2)
C6—C5—C4 119.8 (2) N2—C9—C8 179.0 (3)
C7—N1—C1—C2 −11.0 (4) C2—C1—C6—O1 179.9 (2)
C7—N1—C1—C6 169.1 (2) N1—C1—C6—O1 −0.2 (3)
C6—C1—C2—C3 −0.9 (4) C2—C1—C6—C5 0.5 (4)
N1—C1—C2—C3 179.2 (3) N1—C1—C6—C5 −179.5 (2)
C1—C2—C3—C4 1.2 (4) C1—N1—C7—O2 4.4 (4)
C2—C3—C4—C5 −1.2 (5) C1—N1—C7—C8 −175.9 (2)
C3—C4—C5—C6 0.9 (4) O2—C7—C8—C9 3.3 (4)
C4—C5—C6—O1 −179.8 (3) N1—C7—C8—C9 −176.4 (2)
C4—C5—C6—C1 −0.6 (4) C7—C8—C9—N2 −3E1 (2)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
N1—H···O1 0.87 (4) 2.17 (4) 2.629 (4) 111 (3)
N1—H···O2i 0.87 (4) 2.08 (4) 2.961 (4) 162 (3)
O1—H1···N2ii 0.90 (4) 1.88 (4) 2.762 (4) 164 (4)