• No results found

Cs2(SO4)0 57(SeO4)0 43·Te(OH)6, an adduct between dicaesium sulfate selenate and telluric acid

N/A
N/A
Protected

Academic year: 2020

Share "Cs2(SO4)0 57(SeO4)0 43·Te(OH)6, an adduct between dicaesium sulfate selenate and telluric acid"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

i256

Abdelhediet al. Cs

2(SO4)0.57(SeO4)0.43Te(OH)6 doi:10.1107/S1600536805034574 Acta Cryst.(2005). E61, i256–i258 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Cs

2

(SO

4

)

0.57

(SeO

4

)

0.43

Te(OH)

6

, an adduct between

dicaesium sulfate selenate and telluric acid

Mohamed Abdelhedi,a,b Mohamed Dammak,b* Alain Cousson,aMartine Nierlichcand Kolsi Abdelwahebb

aLaboratoire Le´on Brillouin, CE/Saclay, Baˆt. 563,

91191 Gif-sur-Yvette Cedex, France,

bLaboratoire de l’Etat Solide, Faculte´ des

Sciences de Sfax, 3018 Sfax, Tunisia, andcSCM,

CE/Saclay, Baˆt. 125, 91191 Gif-sur-Yvette Cedex, France

Correspondence e-mail: meddammak@yahoo.fr

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(S–O) = 0.009 A˚ H-atom completeness 0% Disorder in main residue

Rfactor = 0.037

wRfactor = 0.035

Data-to-parameter ratio = 10.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, dicaesium sulfate selenate–telluric acid adduct, Cs2(SO4)0.57(SeO4)0.43Te(OH)6, is a solid solution in the series Cs2(SO4)Te(OH)6/Cs2(SeO4)Te(OH)6. It crystal-lizes in the same structure as the end member Cs2(SeO4)Te(OH)6 in space group P21/c, whereas the corresponding sulfate adopts another structure type and crystallizes in space groupR3. The structure contains planes of statistically distributed SO4/SeO4 tetrahedra alternating with planes of Te(OH)6 octahedra, and with Cs

+

cations situated between the planes. Both Te atoms lie on centres of symmetry.

Comment

Pursuing our study of adducts between sulfate and/or selenate salts with telluric acid, among which we have solved the crystal structures of Cs2SO4Te(OH)6, Cs2SeO4Te(OH)6(Dammaket

al., 2001) and Rb2(SO4)0.5(SeO4)0.5Te(OH)6(Abdelhediet al., 2005), we have grown crystals of Cs2(SO4)0.57(SeO4)0.43 -Te(OH)6, (I), from a solution of Cs2SO4, Cs2SeO4and telluric acid.

Compound (I) is a solid solution in the series Cs2(SO4)Te(OH)6/Cs2(SeO4)Te(OH)6and crystallizes in the same space group as the end member Cs2(SeO4)Te(OH)6, whereas the sulfate end member adopts another structure type in space groupR3 (Dammaket al., 2001). In (I), the S and Se atoms are statistically distributed over the same site. The crystal structure can be regarded as being built up of planes of Te(OH)6octahedra (atx= 0 and12) alternating with planes of

XO4tetrahedra (atx=14and 3

4;X= S and Se), with Cs +

cations intercalated between the planes (Figs. 1 and 2). In the XO4 tetrahedra, the X—O distances range from 1.511 (9) A˚ to

[image:1.610.217.445.551.728.2]

Received 16 September 2005 Accepted 24 October 2005 Online 31 October 2005

Figure 1

(2)

1.558 (9) A˚ , intermediate between those observed in the end members Cs2SO4Te(OH)6 [1.399 (10)–1.405 (7) A˚ ] and Cs2SeO4Te(OH)6 [1.630 (4)–1.649 (4) A˚ ; Dammak et al., 2001]. The Te atoms occupy two sites, giving rise to two kinds of octahedra,viz. Te1O6and Te2O6, having bond lengths and angles similar to those in K2SO4Te(OH)6(Zilberet al., 1980) and Tl2SO4Te(OH)6 (Zilber et al., 1982) (Table 1). The coordination environments around both Cs cations are slightly different, with Cs1 having ten coordination partners and Cs2 having 11 coordination partners (Table 1; Figs. 3 and 4). In contrast, the Rb cations in Rb2(SO4)0.5(SeO4)0.5Te(OH)6 (Abdelhedi et al., 2005) and the Cs cations in Cs2SeO4Te(OH)6 (Dammak et al., 2001) are ninefold coor-dinate.

Experimental

Crystals were grown at room temperature by evaporating an aqueous solution of telluric acid, H6TeO6(Aldrich, 99%), caesium carbonate, Cs2CO3(Aldrich 99.9%), selenic acid, H2SeO4(Aldrich 94%) and caesium sulfate Cs2SO4, (Aldrich 99.999%) (in the stoichiometric ratio 1:0.5:0.5:0.5). After a few days, colourless single crystals of Cs2(SO4)0.57(SeO4)0.43Te(OH)6were obtained.

Crystal data

Cs2(SO4)0.57(SeO4)0.43Te(OH)6

Mr= 611.68

Monoclinic,P21=c a= 12.2646 (4) A˚

b= 7.3926 (4) A˚

c= 12.6354 (6) A˚ = 111.095 (3) V= 1068.84 (9) A˚3

Z= 4

Dx= 3.765 Mg m 3

MoKradiation Cell parameters from 986

reflections = 1.8–25.8

= 11.12 mm1

T= 298 K Prism, colourless 0.100.050.05 mm

Data collection

Nonius KappaCCD diffractometer ’scans

Absorption correction: multi-scan (using intensity measurements) MULABS inPLATON(Spek, 2003)

Tmin= 0.541,Tmax= 0.573

2044 measured reflections

1881 independent reflections 1216 reflections withI> 3(I)

Rint= 0.042

max= 25.8

h=14!14

k=8!0

l= 0!14

Refinement

Refinement onF R[F2> 2(F2)] = 0.037

wR(F2) = 0.035

S= 0.94 1216 reflections 114 parameters

H-atom parameters not refined Weighting scheme: Chebychev

polynomial (Watkin, 1994; Prince, 1982)

w= [1(Fo2Fc)2/362(Fo)]2/

[2.38T0(x)2.95T1(x) +

2.50T2(x)1.02T3(x) +

0.340T4(x)], wherex=F/Fmax;

robust weighting (Prince, 1982)

(/)max< 0.001

max= 2.43 e A˚

3

min=2.54 e A˚

3

Extinction correction: Larson (1970)

Extinction coefficient: 17.2 (14)

Table 1

Selected geometric parameters (A˚ ,).

Xis disordered S/Se on a single site.

Te1—O1i 1.935 (8) Te1—O2i 1.917 (8) Te1—O3i 1.896 (8) Te2—O4ii 1.937 (8) Te2—O6ii 1.925 (8) Te2—O5ii 1.905 (8)

X1—O7 1.511 (9)

X1—O8 1.526 (8)

X1—O9 1.558 (9)

X1—O10 1.546 (8) Cs1—O5iii 2.988 (9) Cs1—O1iii 3.065 (9) Cs1—O3iv 3.116 (9) Cs1—O2v 3.147 (9) Cs1—O7v 3.255 (9) Cs1—O9vi 3.292 (9) Cs1—O8iv 3.334 (9) Cs1—O1vii 3.413 (9) Cs1—O6viii 3.460 (9) Cs1—O7iii 3.698 (8) Cs2—O6ix 3.098 (8) Cs2—O4 3.109 (8) Cs2—O2x 3.133 (9) Cs2—O3ii 3.153 (9) Cs2—O9iv 3.165 (9) Cs2—O8xi 3.248 (9) Cs2—O4iv 3.301 (8) Cs2—O5iv 3.337 (8) Cs2—O10ii 3.404 (8) Cs2—O10ix 3.639 (10) Cs2—O6iv 3.675 (9) O1i —Te1—O2i 86.5 (4) O1i —Te1—O3i 91.3 (4) O2i —Te1—O3i 88.5 (4) O2i—Te1—O1 93.5 (4) O3i

—Te1—O1 88.7 (4) O3i

—Te1—O2 91.5 (4) O4ii—Te2—O6ii 87.9 (4) O4ii —Te2—O5ii 88.5 (3) O6ii —Te2—O5ii 87.8 (4) O6ii

—Te2—O4 92.1 (4) O5ii

—Te2—O4 91.5 (3) O6ii

—Te2—O5 92.2 (4) O7—X1—O8 110.8 (5) O7—X1—O9 107.3 (4) O8—X1—O9 108.6 (5) O7—X1—O10 108.1 (5) O8—X1—O10 108.6 (5) O9—X1—O10 113.4 (5)

Symmetry codes: (i) x;y;zþ1; (ii) xþ1;yþ1;zþ1; (iii)

xþ1;y1 2;zþ

1

2; (iv) xþ1;yþ 1 2;zþ

1

2; (v) xþ1;y;z; (vi) xþ1;y;z;

(vii)xþ1;yþ1 2;z

1

2; (viii)x;yþ 1 2;z

1

2; (ix)x;yþ1;z; (x)xþ1;yþ1;z; (xi) xþ1;yþ3

2;zþ 1 2.

inorganic papers

Acta Cryst.(2005). E61, i256–i258 Abdelhediet al. Cs

[image:2.610.46.281.73.220.2]

2(SO4)0.57(SeO4)0.43Te(OH)6

i257

Figure 2

Part of the crystal structure of (I), with displacement parameters drawn at the 50% probability level. [Symmetry codes: (a)x,y, 1z; (b) 1x,

1y, 1z.] Figure 3

(3)

For the refinement of the occupation factors for S and Se, their sum was restrained to be equal to 1. The highest peak is situated 1.00 A˚ from Cs2, and the deepest hole 0.63 A˚ from S/Se. H atoms could not be located.

Data collection: COLLECT (Nonius, 2001); cell refinement:

DENZO (Otwinowski & Minor, 1997); data reduction: DENZO;

program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure:CRYSTALS(Betteridgeet al., 2003); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: CRYS-TALS.

References

Abdelhedi, M., Dammak, M., Cousson, A. & Kolsi, A. W. (2005).J. Alloys Compd.398, 55–61.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Brandenburg, K. & Berndt, M. (1999).DIAMOND. Version 2.1.b. Crystal Impact GbR, Bonn, Germany.

Dammak, M., Mhiri, T., Jaud, J. & Savariault, J. M. (2001).Int. J. Inorg. Mater.

3, 861–873.

Larson, A. C. (1970).Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 29. Copenhagen: Munksgaard.

Nonius (2001).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Prince, E. (1982).Mathematical Techniques in Crystallography and Materials Science.New York: Springer-Verlag.

Sheldrick, G. M. (1985).SHELXS86. University of Go¨ttingen, Germany. Spek, A. L. (2003).PLATON. University of Utrecht, The Netherlands. Watkin, D. J. (1994).Acta Cryst.A50, 411–437.

Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1980).Acta Cryst.B36, 2743– 2745.

Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1982).Acta Cryst.B38, 1554– 1556.

inorganic papers

i258

Abdelhediet al. Cs

[image:3.610.58.267.72.257.2]

2(SO4)0.57(SeO4)0.43Te(OH)6 Acta Cryst.(2005). E61, i256–i258

Figure 4

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, i256–i258

supporting information

Acta Cryst. (2005). E61, i256–i258 [https://doi.org/10.1107/S1600536805034574]

Cs

2

(SO

4

)

0.57

(SeO

4

)

0.43

·

Te(OH)

6

, an adduct between dicaesium sulfate selenate

and telluric acid

Mohamed Abdelhedi, Mohamed Dammak, Alain Cousson, Martine Nierlich and Kolsi

Abdelwaheb

Dicesium sulfate-selenate tellurate

Crystal data

Cs2(SO4)0.57(SeO4)0.43·Te(OH)6 Mr = 611.68

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 12.2646 (4) Å

b = 7.3926 (4) Å

c = 12.6354 (6) Å

β = 111.095 (3)°

V = 1068.84 (9) Å3 Z = 4

F(000) = 1063.2

Dx = 3.765 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 986 reflections

θ = 1.8–25.8°

µ = 11.12 mm−1 T = 298 K Prism, colourless 0.10 × 0.05 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer

Graphite monochromator

φ scans

Absorption correction: empirical (using intensity measurements)

MULABS in PLATON (Spek, 2003)

Tmin = 0.541, Tmax = 0.573

2044 measured reflections 1881 independent reflections 1216 reflections with I > 3σ(I)

Rint = 0.042

θmax = 25.8°, θmin = 1.8° h = −14→14

k = −8→0

l = 0→14

Refinement

Refinement on F

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.035 S = 0.94 1216 reflections 114 parameters 1 restraint

Primary atom site location: heavy-atom method H-atom parameters not refined

Weighting scheme: Chebychev polynomial (Watkin, 1994; Prince, 1982) w = 1/[2.38T0(x)-2.95T1(x) + 2.50T2-1.02T3 +

0.340Tn-1(x)],

where x = F /Fmax; robust weighting (Prince,

1982): W = w[1-(δF/6σF)2]2

(Δ/σ)max = 0.000204

Δρmax = 2.43 e Å−3

Δρmin = −2.54 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, i256–i258

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Te1 0.0000 0.0000 0.5000 0.0126

Te2 0.5000 0.5000 0.5000 0.0125

Cs1 0.86573 (7) 0.03842 (10) 0.10885 (7) 0.0157

Cs2 0.63706 (7) 0.99099 (11) 0.35694 (6) 0.0147

S1 0.24815 (10) −0.00046 (10) 0.24890 (10) 0.0182 0.566 (7)

Se1 0.24815 (10) −0.00046 (10) 0.24890 (10) 0.0182 0.434 (7)

O1 −0.0176 (8) 0.2415 (11) 0.4370 (7) 0.0224

O2 −0.1109 (8) −0.0746 (11) 0.3562 (7) 0.0198

O3 0.1211 (7) −0.0524 (12) 0.4446 (7) 0.0218

O4 0.4726 (8) 0.6954 (10) 0.3913 (7) 0.0173

O5 0.3627 (8) 0.3851 (11) 0.3997 (7) 0.0177

O6 0.5857 (8) 0.3786 (11) 0.4197 (7) 0.0169

O7 0.1425 (8) 0.1012 (11) 0.2521 (7) 0.0222

O8 0.2189 (9) −0.1993 (11) 0.2202 (8) 0.0203

O9 0.2838 (8) 0.0861 (11) 0.1537 (8) 0.0240

O10 0.3449 (8) 0.0117 (12) 0.3679 (7) 0.0236

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Te1 0.01131 (16) 0.01085 (16) 0.01222 (16) 0.00000 (16) 0.00004 (16) 0.00000 (16)

Te2 0.01232 (16) 0.01082 (16) 0.01294 (16) 0.00030 (16) 0.00275 (16) 0.00025 (16)

Cs1 0.0132 (4) 0.0164 (3) 0.0178 (3) 0.0005 (3) 0.0058 (3) 0.0013 (3)

Cs2 0.0129 (4) 0.0147 (3) 0.0162 (3) −0.0007 (3) 0.0049 (3) 0.0002 (3)

S1 0.01767 (10) 0.01767 (10) 0.01767 (10) −0.00276 (10) 0.00445 (10) −0.00276 (10)

Se1 0.01767 (10) 0.01767 (10) 0.01767 (10) −0.00276 (10) 0.00445 (10) −0.00276 (10)

O1 0.023 (6) 0.017 (4) 0.026 (5) 0.002 (4) 0.008 (4) 0.004 (3)

O2 0.014 (5) 0.017 (4) 0.024 (5) 0.001 (3) 0.002 (4) 0.000 (3)

O3 0.013 (5) 0.023 (4) 0.032 (5) 0.001 (4) 0.011 (4) 0.003 (4)

O4 0.017 (5) 0.017 (4) 0.018 (4) −0.004 (3) 0.006 (4) −0.001 (3)

O5 0.014 (5) 0.021 (4) 0.016 (4) −0.005 (3) 0.004 (4) −0.001 (3)

O6 0.018 (5) 0.018 (4) 0.017 (4) 0.002 (3) 0.009 (4) 0.000 (3)

O7 0.025 (6) 0.015 (4) 0.026 (5) 0.001 (3) 0.008 (4) 0.008 (3)

O8 0.017 (5) 0.015 (4) 0.028 (5) 0.000 (4) 0.007 (4) 0.001 (3)

O9 0.018 (5) 0.021 (4) 0.031 (5) 0.003 (4) 0.007 (4) 0.000 (4)

O10 0.026 (5) 0.019 (4) 0.022 (4) 0.002 (4) 0.004 (4) 0.005 (4)

Geometric parameters (Å, º)

Te1—O1i 1.935 (8) Cs1—O1iii 3.065 (9)

Te1—O2i 1.917 (8) Cs1—O3iv 3.116 (9)

Te1—O3i 1.896 (8) Cs1—O2v 3.147 (9)

Te1—O1 1.935 (8) Cs1—O7v 3.255 (9)

Te1—O2 1.917 (8) Cs1—O9vi 3.292 (9)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, i256–i258

Te2—O4ii 1.937 (8) Cs1—O1vii 3.413 (9)

Te2—O6ii 1.925 (8) Cs1—O6viii 3.460 (9)

Te2—O5ii 1.905 (8) Cs1—O7iii 3.698 (8)

Te2—O4 1.937 (8) Cs2—O6ix 3.098 (8)

Te2—O5 1.905 (8) Cs2—O4 3.109 (8)

Te2—O6 1.925 (8) Cs2—O2x 3.133 (9)

S1—O7 1.511 (9) Cs2—O3ii 3.153 (9)

S1—O8 1.526 (8) Cs2—O9iv 3.165 (9)

S1—O9 1.558 (9) Cs2—O8xi 3.248 (9)

S1—O10 1.546 (8) Cs2—O4iv 3.301 (8)

Se1—O7 1.511 (9) Cs2—O5iv 3.337 (8)

Se1—O8 1.526 (8) Cs2—O10ii 3.404 (8)

Se1—O9 1.558 (9) Cs2—O10ix 3.639 (10)

Se1—O10 1.546 (8) Cs2—O6iv 3.675 (9)

Cs1—O5iii 2.988 (9)

O1i—Te1—O2i 86.5 (4) O4ii—Te2—O5 91.5 (3)

O1i—Te1—O3i 91.3 (4) O6ii—Te2—O5 92.2 (4)

O2i—Te1—O3i 88.5 (4) O5ii—Te2—O5 179.994

O1i—Te1—O1 179.994 O4—Te2—O5 88.5 (3)

O2i—Te1—O1 93.5 (4) O4ii—Te2—O6 92.1 (4)

O3i—Te1—O1 88.7 (4) O6ii—Te2—O6 179.994

O1i—Te1—O2 93.5 (4) O5ii—Te2—O6 92.2 (4)

O2i—Te1—O2 179.994 O4—Te2—O6 87.9 (4)

O3i—Te1—O2 91.5 (4) O5—Te2—O6 87.8 (4)

O1—Te1—O2 86.5 (4) O7—S1—O8 110.8 (5)

O1i—Te1—O3 88.7 (4) O7—S1—O9 107.3 (4)

O2i—Te1—O3 91.5 (4) O8—S1—O9 108.6 (5)

O3i—Te1—O3 179.994 O7—S1—O10 108.1 (5)

O1—Te1—O3 91.3 (4) O8—S1—O10 108.6 (5)

O2—Te1—O3 88.5 (4) O9—S1—O10 113.4 (5)

O4ii—Te2—O6ii 87.9 (4) O7—Se1—O8 110.8 (5)

O4ii—Te2—O5ii 88.5 (3) O7—Se1—O9 107.3 (4)

O6ii—Te2—O5ii 87.8 (4) O8—Se1—O9 108.6 (5)

O4ii—Te2—O4 179.994 O7—Se1—O10 108.1 (5)

O6ii—Te2—O4 92.1 (4) O8—Se1—O10 108.6 (5)

O5ii—Te2—O4 91.5 (3) O9—Se1—O10 113.4 (5)

Figure

Figure 1Projection of the crystal structure of (I) on to the ac plane.
Figure 2
Figure 4The coordination of Cs2.

References

Related documents

sheet resistance of around 1000 ohm/sq and transparency above 85% are satisfied for all samples obtained using the three coating methods, except for the dip coating op- erated at

Under Regulation 23 (1) (c) you are required to: Put management systems in place in the designated centre to ensure that the service provided is safe, appropriate to residents'

Compliance with the Health Act 2007 (Care and Support of Residents in Designated Centres for Persons (Children And Adults) With Disabilities) Regulations 2013, Health Act 2007

Under Regulation 14 (4) you are required to: Where a person is appointed as a person in charge of more than one designated centre, satisfy the chief inspector that he or she

In this paper, we design the methods for es- timating marginal distribution for data in NLG and NLU tasks: language modeling is utilized for sequential data (natural

Because de facto states can’t win independence struggle against thier parent state without an external support, their patron states’ involvement would become inevitable. Such

These results support foreign aid skeptics such as [7, 16, 28 &amp; 29] amongst others whose school of thought argues that foreign aid does not help poor countries to grow richer

common price ending, (2) shoppers make larger errors when recalling 90-ending prices than.. other prices, and (3) the likelihood of noticing a price change is smaller for