• No results found

5′ Amino­hy­droxy­methyl­ene 1′,2′ di­chloro spiro­[7H pyrano­[3,2 c;5,6 c′]­dichromene 7,4′ cyclo­hex 2′ ene] 3′,6,6′,8 tetraone di­methyl­form­amide disolvate, a spiro compound from the reaction of 4 hy­droxy­coumarin with 2,3 di­chloro 5,6 di­cyano­ben

N/A
N/A
Protected

Academic year: 2020

Share "5′ Amino­hy­droxy­methyl­ene 1′,2′ di­chloro spiro­[7H pyrano­[3,2 c;5,6 c′]­dichromene 7,4′ cyclo­hex 2′ ene] 3′,6,6′,8 tetraone di­methyl­form­amide disolvate, a spiro compound from the reaction of 4 hy­droxy­coumarin with 2,3 di­chloro 5,6 di­cyano­ben"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1911±o1913 doi: 10.1107/S160053680402416X Zhang, Huang, Gu and Ng C25H11Cl2NO82C3H7NO

o1911

Acta Crystallographica Section E Structure Reports

Online ISSN 1600-5368

5

000

-Aminohydroxymethylene-1

000

,2

000

-dichloro-spiro[7

H

-pyrano[3,2-

c

;5,6-

c

000

]dichromene-7,4

000

-cyclohex-2

000

-ene]-3

000

,6,6

000

,8-tetraone dimethylformamide disolvate,

a spiro compound from the reaction of

4-hydroxy-coumarin with 2,3-dichloro-5,6-dicyanobenzoquinone

Sheng-Ling Zhang,aZhi-Shu

Huang,aLian-Quan Guband

Seik Weng Ngc*

aSchool of Chemistry and Chemical Engineering,

Sun Yat-Sen University, Guangzhou 510275, People's Republic of China,bSchool of

Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, andcDepartment of

Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.003 AÊ Disorder in solvent or counterion

Rfactor = 0.047

wRfactor = 0.137

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

4-Hydroxycoumarin reacts with 2,3-dichloro-5,6-dicyano-benzoquinone to form the title compound, C25H11Cl2NO8 -2C3H7NO, which crystallizes as an N,N-dimethylformamide disolvate. Two coumarin units are fused at their 3-position (through the spiro C atom) and at their 4-position (through an ether linkage) to give a planar moiety.

Comment

When 4-hydroxycoumarin is reacted withp-benzoquinone, the H atom at the 4-position is replaced by the 3-benzoquinonyl group to yield compounds that can be reduced and then cyclodehydrated to form coumestans (Wagh & Usgaonkar, 1976). The reagent reacts similarly with o-benzoquinone (Srihari & Sundaramurthy, 1980). With 2,3-dichloro-5,6-di-cyanobenzoquinone (DDQ), 4-hydroxycoumarin is instead converted to the dehydro dimer, 4,40-dihydroxy-3,30

-dicou-marin (Buggle et al., 1973). In our work, this reaction gave instead the title spiro compound (Fig. 1); we did not expect DDQ to react with functional groups (Walker & Hiebert, 1967; Fu & Harvey, 1978).

The two coumarin units are fused at their 4-positions through an ether oxygen linkage and also through their 3-positions through a C atom (which is part of a cyclohexene unit). The fused double-coumarin unit is planar and is essen-tially perpendicular to the cyclohexene unit. The compound features an unusual C(OH)(NH2) substituent; a search of the Cambridge Structural Database (Version 5.25; Allen, 2002) revealed only six examples, ®ve of these being drugs: tetracycline hydrochloride (Clegg & Teat, 2000), 6-methyl-eneoxytetracycline hydrobromide (Maria et al., 1994), -6-deoxy-oxytetracycline hydrochloride (Bordner, 1979), 4-de-amino-4-hydroxy-4,11a-anhydrotetracycline methanol solvate (Barton et al., 1977) and 5a-epi-6-thiatetracycline dimethyl-formamide (DMF) solvate (Prewoet al., 1980). The exception

is nitromalonamide, (NH2)(OH)C C(NO2)C(O)NH2

(Simonsen & Thorup, 1979). In the title compound, fused

(2)

coumarin molecules form centrosymmetric dimers through

NÐH O hydrogen bonds, and the C(OH)(NH2) unit is

further stabilized by OÐH O and NÐH O hydrogen

bonding to the DMF molecules (Table 2).

Experimental

4-Hydroxycoumarin (0.4 g, 2.5 mmol) and 2,3-dichloro-5,6-dicyano-benzoquinone (0.56 g, 2.4 mmol) were dissolved in ethanol (30 ml), and a drop of glacial acetic acid was added to the solution. The solution was heated under re¯ux for 24 h. The solvent was removed to afford a crude product that was puri®ed by column chromato-graphy on silica gel (1:5 methanol/chloroform). A pale yellow compound was isolated in about 60% yield. Crystals were grown from a DMF solution of the compound.

Crystal data

C25H11Cl2NO82C3H7NO

Mr= 670.44 Triclinic,P1 a= 11.549 (1) AÊ b= 11.720 (1) AÊ c= 12.458 (1) AÊ = 112.263 (2)

= 95.223 (2)

= 91.974 (2) V= 1549.6 (3) AÊ3

Z= 2

Dx= 1.437 Mg mÿ3 MoKradiation Cell parameters from 905

re¯ections = 2.4±25.7

= 0.27 mmÿ1

T= 295 (2) K Block, orange 0.310.220.16 mm

Data collection

Bruker SMART area-detector diffractometer

'and!scans

Absorption correction: none 13 301 measured re¯ections 6683 independent re¯ections

3733 re¯ections withI> 2(I) Rint= 0.027

max= 27.1

h=ÿ14!14 k=ÿ14!14 l=ÿ15!15

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.047

wR(F2) = 0.137

S= 1.00 6683 re¯ections 479 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0658P)2 + 0.1399P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.32 e AÊÿ3 min=ÿ0.25 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cl1ÐC4 1.705 (2)

Cl2ÐC5 1.716 (2)

O1ÐC3 1.248 (2)

O2ÐC6 1.206 (3)

O3ÐC1 1.321 (3)

O4ÐC9 1.199 (3)

O5ÐC9 1.372 (3)

O5ÐC10 1.373 (3)

O6ÐC16 1.370 (2)

O6ÐC17 1.368 (2)

O7ÐC23 1.375 (3)

O7ÐC24 1.372 (3)

O8ÐC24 1.201 (3)

N1ÐC1 1.310 (3)

C1ÐC2 1.414 (3)

C2ÐC3 1.407 (3)

C2ÐC7 1.526 (3)

C3ÐC4 1.500 (3)

C4ÐC5 1.326 (3)

C5ÐC6 1.471 (3)

C6ÐC7 1.545 (3)

C7ÐC25 1.523 (3)

C7ÐC8 1.524 (3)

C8ÐC9 1.450 (3)

C17ÐC18 1.435 (3)

C17ÐC25 1.343 (3)

C24ÐC25 1.443 (3)

C9ÐO5ÐC10 121.9 (2) C16ÐO6ÐC17 117.4 (2) C23ÐO7ÐC24 121.6 (2)

O3ÐC1ÐN1 117.9 (2)

O3ÐC1ÐC2 117.7 (2)

N1ÐC1ÐC2 124.4 (2)

C1ÐC2ÐC3 119.3 (2)

C1ÐC2ÐC7 117.8 (2)

C3ÐC2ÐC7 123.0 (2)

O1ÐC3ÐC2 125.5 (2)

O1ÐC3ÐC4 116.8 (2)

C2ÐC3ÐC4 117.7 (2)

C3ÐC4ÐC5 123.8 (2)

Cl1ÐC4ÐC3 115.0 (2) Cl1ÐC4ÐC5 121.2 (2)

C4ÐC5ÐC6 122.0 (2)

Cl2ÐC5ÐC4 123.0 (2) Cl2ÐC5ÐC6 115.0 (2)

O2ÐC6ÐC5 121.9 (2)

O2ÐC6ÐC7 119.1 (2)

C5ÐC6ÐC7 119.1 (2)

C2ÐC7ÐC8 111.0 (2)

C2ÐC7ÐC25 111.2 (2) C8ÐC7ÐC25 106.9 (2) C6ÐC7ÐC25 106.5 (2)

C2ÐC7ÐC6 114.5 (2)

C6ÐC7ÐC8 106.4 (2)

C7ÐC8ÐC9 116.4 (2)

C7ÐC8ÐC16 124.0 (2) C9ÐC8ÐC16 119.6 (2)

O4ÐC9ÐO5 117.7 (2)

O4ÐC9ÐC8 124.8 (2)

O5ÐC9ÐC8 117.5 (2)

O5ÐC10ÐC11 116.8 (2) O5ÐC10ÐC15 121.9 (2) C10ÐC15ÐC16 116.2 (2) C14ÐC15ÐC16 124.6 (2) O6ÐC16ÐC8 123.6 (2) O6ÐC16ÐC15 113.8 (2) C8ÐC16ÐC15 122.6 (2) O6ÐC17ÐC18 114.0 (2) O6ÐC17ÐC25 123.6 (2) C18ÐC17ÐC25 122.4 (2) C17ÐC18ÐC19 124.3 (2) C17ÐC18ÐC23 116.7 (2) O7ÐC23ÐC18 121.6 (2) O7ÐC23ÐC22 116.9 (2) O7ÐC24ÐO8 117.0 (2) O7ÐC24ÐC25 118.2 (2) O8ÐC24ÐC25 124.8 (2) C7ÐC25ÐC17 123.6 (2) C7ÐC25ÐC24 117.1 (2) C24ÐC25ÐC17 119.3 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O3ÐH3O O9 0.84 (1) 1.77 (2) 2.553 (3) 154 (3) N1ÐH1n1 O10 0.84 (1) 2.05 (1) 2.845 (5) 158 (3) N1ÐH1n1 O100 0.84 (1) 2.17 (2) 2.96 (2) 159 (3)

N1ÐH1n2 O1i 0.85 (1) 2.39 (2) 3.008 (3) 130 (2)

Symmetry code: (i)ÿx;1ÿy;1ÿz.

One of the two DMF molecules is disordered over two sites; the two components are approximately related by a false rotation. For the major and minor components, the two CÐO distances were

organic papers

o1912

Zhang, Huang, Gu and Ng C25H11Cl2NO82C3H7NO Acta Cryst.(2004). E60, o1911±o1913 Figure 1

ORTEPII (Johnson, 1976) plot of C25H11NO82DMF. Displacement

(3)

restrained to be within 0.01 AÊ of each other; the six NÐC distances were similarly restrained. Additionally, the C C distances were restrained to be within 0.02 AÊ of each other, and the displacement parameters were restrained to be approximately isotropic. The four-atom molecules were restrained to lie in a plane to within 0.05 AÊ. The disorder re®ned to a 72 (1):28 (1) ratio. The hydroxy and amine H atoms were located and re®ned with distance restraints [OÐH = NÐ H = 0.85 (1) AÊ and H H = 1.39 (1) AÊ]. The displacement para-meters were re®ned. All other H atoms were placed at calculated positions in the riding-model approximation (CÐHaromatic= 0.93 AÊ

and CÐHmethyl= 0.96 AÊ), with their displacement parameters set to

1.2 timesUeqof the parent atoms for the aromatic H atoms and to 1.5

timesUeqfor the methyl H atoms. The methyl groups were rotated to

®t the electron density.

Data collection:SMART(Bruker, 2001); cell re®nement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the National Nature Science Foundation of China (20272085), the Guangdong Provincial Science Foundation (031594), the Hong Kong Polytechnic University ASD Fund,

Shaoguan College and the University of Malaya for gener-ously supporting this work.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Barton, D. H. R., Ley, S. V., Meguro, K. & Williams, D. J. (1977).J. Chem. Soc. Chem. Commun.pp. 790±791.

Bordner, J. (1979).Acta Cryst.B35, 219±222.

Bruker (2001).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Buggle, K., Donnelly, J. A. & Mahler, L. J. (1973).Chem. Ind.pp. 88±89. Clegg, W. & Teat, S. J. (2000).Acta Cryst.C56, 1343±1345.

Fu, P. P. & Harvey, R. G. (1978).Chem. Rev.78, 317±361.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Maria, A. A. F., Carrondo, C. T., Matias, P. M., Heggie, W. & Page, P. R. (1994). Struct. Chem.5, 73±77.

Prewo, R., Stezowski, J. J. & Kirchlechner, R. (1980).J. Am. Chem. Soc.102, 7021±7026.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Simonsen, O & Thorup, N. (1979).Acta Cryst.B35, 432±435.

Srihari, K. & Sundaramurthy, V. (1980).Proc. Indian Acad. Chem. Sci.89, 405± 410.

Wagh, U. M. & Usgaonkar, R. N. (1976).Indian J. Chem. Sect. B,14, 861± 863.

Walker, D. & Hiebert, J. D. (1976).Chem. Rev.67, 153±195.

organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, o1911–o1913

supporting information

Acta Cryst. (2004). E60, o1911–o1913 [https://doi.org/10.1107/S160053680402416X]

5

-Aminohydroxymethylene-1

,2

-dichloro-spiro[7

H

-pyrano[3,2-

c

;5,6-c

]dichromene-7,4

-cyclohex-2

-ene]-3

,6,6

,8-tetraone dimethylformamide

disolvate, a spiro compound from the reaction of 4-hydroxycoumarin with

2,3-dichloro-5,6-dicyanobenzoquinone

Sheng-Ling Zhang, Zhi-Shu Huang, Lian-Quan Gu and Seik Weng Ng

5′-Aminohydroxymethylene-1′,2′-dichloro-spiro[7H- pyrano[3,2 - c;5,6 - c′]dichromene-7,4′-cyclohex-2′ -ene]-3′,6,6′,8-tetraone dimethylformamide disolvate

Crystal data

C25H11Cl2NO8·2C3H7NO

Mr = 670.44

Triclinic, P1

Hall symbol: -P 1

a = 11.549 (1) Å

b = 11.720 (1) Å

c = 12.458 (1) Å

α = 112.263 (2)°

β = 95.223 (2)°

γ = 91.974 (2)°

V = 1549.6 (3) Å3

Z = 2

F(000) = 692

Dx = 1.437 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 905 reflections

θ = 2.4–25.7°

µ = 0.27 mm−1

T = 295 K

Block, orange

0.31 × 0.22 × 0.16 mm

Data collection

Bruker SMART area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scan

13301 measured reflections 6683 independent reflections

3733 reflections with I > 2σ(I)

Rint = 0.027

θmax = 27.1°, θmin = 1.8°

h = −14→14

k = −14→14

l = −15→15

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.137

S = 1.00

6683 reflections 479 parameters 99 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0658P)2 + 0.1399P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.32 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, o1911–o1913

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cl1 0.11031 (7) 0.54702 (7) 0.84710 (6) 0.0756 (3)

Cl2 0.29896 (8) 0.40792 (8) 0.93813 (6) 0.0833 (3)

O1 0.0726 (1) 0.4680 (1) 0.6023 (1) 0.0474 (4)

O2 0.3972 (2) 0.2238 (2) 0.7489 (1) 0.0548 (5)

O3 0.2321 (2) 0.1979 (2) 0.3500 (2) 0.0514 (4)

O4 0.1188 (2) 0.1268 (2) 0.6520 (2) 0.0583 (5)

O5 0.1246 (1) −0.0591 (2) 0.5161 (2) 0.0495 (4)

O6 0.4150 (1) 0.0509 (1) 0.4014 (1) 0.0390 (4)

O7 0.5724 (1) 0.4043 (1) 0.5411 (1) 0.0470 (4)

O8 0.4459 (2) 0.4663 (2) 0.6690 (2) 0.0570 (5)

O9 0.3001 (2) 0.2024 (3) 0.1623 (2) 0.1012 (8)

O10 0.0011 (8) 0.1918 (6) 0.1526 (5) 0.083 (2) 0.721 (7)

O10′ 0.025 (2) 0.188 (2) 0.134 (2) 0.175 (15) 0.279 (7)

N1 0.1028 (2) 0.3439 (2) 0.3817 (2) 0.0541 (6)

N2 0.4559 (2) 0.2249 (2) 0.0769 (2) 0.0641 (6)

N3 −0.0456 (5) 0.1369 (7) −0.0444 (5) 0.068 (2) 0.721 (7)

N3′ −0.022 (1) 0.156 (1) −0.039 (1) 0.068 (6) 0.279 (7)

C1 0.1782 (2) 0.2866 (2) 0.4243 (2) 0.0386 (5)

C2 0.2069 (2) 0.3144 (2) 0.5448 (2) 0.0335 (5)

C3 0.1491 (2) 0.4061 (2) 0.6264 (2) 0.0376 (5)

C4 0.1825 (2) 0.4334 (2) 0.7534 (2) 0.0441 (6)

C5 0.2623 (2) 0.3755 (2) 0.7925 (2) 0.0469 (6)

C6 0.3258 (2) 0.2775 (2) 0.7131 (2) 0.0403 (5)

C7 0.3001 (2) 0.2420 (2) 0.5800 (2) 0.0334 (5)

C8 0.2646 (2) 0.1037 (2) 0.5271 (2) 0.0350 (5)

C9 0.1661 (2) 0.0626 (2) 0.5710 (2) 0.0429 (6)

C10 0.1778 (2) −0.1416 (2) 0.4276 (2) 0.0452 (6)

C11 0.1295 (2) −0.2628 (2) 0.3803 (3) 0.0616 (8)

C12 0.1814 (3) −0.3476 (2) 0.2933 (3) 0.0690 (9)

C13 0.2799 (3) −0.3157 (2) 0.2532 (3) 0.0655 (8)

C14 0.3275 (2) −0.1954 (2) 0.2997 (2) 0.0495 (6)

C15 0.2762 (2) −0.1068 (2) 0.3885 (2) 0.0398 (5)

C16 0.3179 (2) 0.0213 (2) 0.4439 (2) 0.0353 (5)

C17 0.4625 (2) 0.1703 (2) 0.4524 (2) 0.0342 (5)

C18 0.5674 (2) 0.1922 (2) 0.4074 (2) 0.0358 (5)

C19 0.6205 (2) 0.1010 (2) 0.3219 (2) 0.0440 (6)

C20 0.7211 (2) 0.1328 (2) 0.2846 (2) 0.0527 (7)

C21 0.7685 (2) 0.2534 (3) 0.3307 (2) 0.0580 (7)

C22 0.7176 (2) 0.3435 (2) 0.4149 (2) 0.0525 (7)

C23 0.6179 (2) 0.3119 (2) 0.4534 (2) 0.0404 (5)

C24 0.4749 (2) 0.3821 (2) 0.5875 (2) 0.0408 (5)

C25 0.4157 (2) 0.2600 (2) 0.5366 (2) 0.0334 (5)

C26 0.3957 (3) 0.2558 (3) 0.1656 (3) 0.0760 (9)

C27 0.4145 (3) 0.1235 (3) −0.0297 (3) 0.094 (1)

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, o1911–o1913

C29 0.0318 (5) 0.1819 (5) 0.0536 (5) 0.086 (2) 0.721 (7)

C30 −0.1604 (5) 0.1046 (5) −0.0381 (5) 0.107 (2) 0.721 (7)

C31 −0.0068 (6) 0.1217 (8) −0.1530 (5) 0.133 (3) 0.721 (7)

C29′ −0.057 (1) 0.1304 (11) 0.051 (1) 0.084 (5) 0.279 (7)

C30′ 0.072 (1) 0.2256 (15) −0.043 (2) 0.136 (7) 0.279 (7)

C31′ −0.100 (2) 0.094 (2) −0.156 (1) 0.16 (1) 0.279 (7)

H3o 0.232 (3) 0.200 (3) 0.283 (1) 0.08 (1)*

H1n1 0.075 (2) 0.317 (2) 0.311 (1) 0.07 (1)*

H1n2 0.062 (2) 0.394 (2) 0.428 (1) 0.05 (1)*

H11 0.0635 −0.2856 0.4072 0.074*

H12 0.1495 −0.4290 0.2602 0.083*

H13 0.3143 −0.3755 0.1946 0.079*

H14 0.3935 −0.1734 0.2722 0.059*

H19 0.5884 0.0197 0.2905 0.053*

H20 0.7571 0.0726 0.2280 0.063*

H21 0.8359 0.2739 0.3043 0.070*

H22 0.7497 0.4248 0.4456 0.063*

H26 0.4255 0.3207 0.2343 0.091*

H27a 0.3547 0.0737 −0.0154 0.141*

H27b 0.4779 0.0740 −0.0589 0.141*

H27c 0.3831 0.1547 −0.0864 0.141*

H28a 0.5817 0.3566 0.1561 0.168*

H28b 0.5548 0.3283 0.0225 0.168*

H28c 0.6246 0.2371 0.0639 0.168*

H29 0.1081 0.2058 0.0486 0.103* 0.721 (7)

H30a −0.1720 0.1221 0.0417 0.160* 0.721 (7)

H30b −0.1780 0.0180 −0.0835 0.160* 0.721 (7)

H30c −0.2109 0.1515 −0.0684 0.160* 0.721 (7)

H31a −0.0379 0.1829 −0.1790 0.200* 0.721 (7)

H31b −0.0331 0.0407 −0.2092 0.200* 0.721 (7)

H31c 0.0768 0.1311 −0.1445 0.200* 0.721 (7)

H29′ −0.1231 0.0839 0.0529 0.101* 0.279 (7)

H30d 0.1111 0.2684 0.0341 0.204* 0.279 (7)

H30e 0.0472 0.2846 −0.0752 0.204* 0.279 (7)

H30f 0.1246 0.1731 −0.0917 0.204* 0.279 (7)

H31d −0.0651 0.0224 −0.2053 0.241* 0.279 (7)

H31e −0.1086 0.1513 −0.1937 0.241* 0.279 (7)

H31f −0.1757 0.0689 −0.1421 0.241* 0.279 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0842 (5) 0.0705 (5) 0.0629 (5) 0.0342 (4) 0.0277 (4) 0.0085 (4)

Cl2 0.1135 (7) 0.0960 (6) 0.0367 (4) 0.0358 (5) 0.0131 (4) 0.0180 (4)

O1 0.040 (1) 0.045 (1) 0.063 (1) 0.011 (1) 0.009 (1) 0.025 (1)

O2 0.056 (1) 0.070 (1) 0.047 (1) 0.024 (1) 0.007 (1) 0.029 (1)

O3 0.064 (1) 0.053 (1) 0.038 (1) 0.012 (1) 0.010 (1) 0.017 (1)

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, o1911–o1913

O5 0.041 (1) 0.047 (1) 0.065 (1) −0.002 (1) 0.012 (1) 0.025 (1)

O6 0.036 (1) 0.031 (1) 0.047 (1) −0.001 (1) 0.013 (1) 0.010 (1)

O7 0.043 (1) 0.036 (1) 0.059 (1) −0.002 (1) 0.015 (1) 0.013 (1)

O8 0.058 (1) 0.039 (1) 0.058 (1) 0.000 (1) 0.019 (1) −0.001 (1)

O9 0.102 (2) 0.135 (2) 0.062 (1) −0.020 (2) 0.011 (1) 0.035 (2)

O10 0.112 (3) 0.093 (4) 0.036 (2) 0.020 (2) 0.010 (3) 0.014 (2)

O10′ 0.24 (3) 0.18 (2) 0.10 (2) 0.02 (1) 0.08 (1) 0.02 (1)

N1 0.053 (1) 0.060 (2) 0.051 (2) 0.011 (1) −0.003 (1) 0.025 (1)

N2 0.073 (2) 0.069 (2) 0.047 (1) −0.001 (1) 0.011 (1) 0.018 (1)

N3 0.068 (4) 0.085 (4) 0.054 (4) 0.005 (3) 0.014 (3) 0.030 (3)

N3′ 0.063 (9) 0.09 (1) 0.04 (1) 0.003 (7) −0.011 (7) 0.014 (7)

C1 0.039 (1) 0.036 (1) 0.043 (1) 0.000 (1) 0.004 (1) 0.018 (1)

C2 0.031 (1) 0.033 (1) 0.039 (1) 0.002 (1) 0.005 (1) 0.016 (1)

C3 0.033 (1) 0.033 (1) 0.049 (1) −0.001 (1) 0.007 (1) 0.017 (1)

C4 0.045 (1) 0.039 (1) 0.046 (1) 0.004 (1) 0.015 (1) 0.010 (1)

C5 0.053 (2) 0.052 (2) 0.035 (1) 0.006 (1) 0.011 (1) 0.014 (1)

C6 0.039 (1) 0.046 (1) 0.039 (1) 0.004 (1) 0.007 (1) 0.019 (1)

C7 0.031 (1) 0.035 (1) 0.037 (1) 0.005 (1) 0.009 (1) 0.015 (1)

C8 0.032 (1) 0.035 (1) 0.041 (1) 0.002 (1) 0.005 (1) 0.018 (1)

C9 0.038 (1) 0.046 (1) 0.053 (2) 0.003 (1) 0.008 (1) 0.027 (1)

C10 0.036 (1) 0.043 (1) 0.060 (2) −0.002 (1) −0.002 (1) 0.025 (1)

C11 0.049 (2) 0.047 (2) 0.090 (2) −0.011 (1) −0.002 (2) 0.031 (2)

C12 0.062 (2) 0.037 (2) 0.094 (2) −0.013 (1) −0.010 (2) 0.016 (2)

C13 0.066 (2) 0.039 (2) 0.073 (2) 0.000 (1) −0.002 (2) 0.004 (1)

C14 0.045 (1) 0.041 (1) 0.056 (2) 0.001 (1) 0.002 (1) 0.011 (1)

C15 0.035 (1) 0.035 (1) 0.048 (1) 0.001 (1) −0.001 (1) 0.017 (1)

C16 0.031 (1) 0.038 (3) 0.041 (1) 0.001 (1) 0.004 (1) 0.019 (1)

C17 0.032 (1) 0.032 (1) 0.039 (1) 0.000 (1) 0.004 (1) 0.015 (1)

C18 0.031 (1) 0.039 (1) 0.041 (1) 0.001 (1) 0.006 (1) 0.018 (1)

C19 0.044 (1) 0.047 (1) 0.041 (1) 0.003 (1) 0.013 (1) 0.015 (1)

C20 0.048 (2) 0.059 (2) 0.050 (2) 0.009 (1) 0.021 (1) 0.017 (1)

C21 0.043 (2) 0.072 (2) 0.065 (2) −0.002 (1) 0.019 (1) 0.031 (2)

C22 0.043 (1) 0.052 (2) 0.066 (2) −0.005 (1) 0.013 (1) 0.027 (1)

C23 0.036 (1) 0.039 (1) 0.047 (1) 0.003 (1) 0.008 (1) 0.018 (1)

C24 0.037 (1) 0.039 (1) 0.045 (1) 0.004 (1) 0.006 (1) 0.015 (1)

C25 0.032 (1) 0.032 (1) 0.037 (1) 0.003 (1) 0.005 (1) 0.013 (1)

C26 0.071 (2) 0.095 (2) 0.050 (2) −0.014 (1) 0.006 (2) 0.017 (2)

C27 0.137 (3) 0.084 (2) 0.051 (2) 0.006 (2) 0.008 (2) 0.014 (2)

C28 0.088 (3) 0.120 (3) 0.106 (3) −0.019 (2) 0.035 (2) 0.016 (3)

C29 0.093 (4) 0.098 (4) 0.075 (4) 0.013 (3) 0.015 (3) 0.041 (4)

C30 0.087 (4) 0.126 (5) 0.097 (4) −0.010 (3) 0.014 (3) 0.033 (4)

C31 0.123 (6) 0.223 (9) 0.068 (4) 0.028 (6) 0.024 (4) 0.069 (5)

C29′ 0.09 (1) 0.069 (8) 0.09 (1) 0.020 (7) 0.018 (9) 0.030 (8)

C30′ 0.11 (1) 0.13 (1) 0.16 (2) −0.03 (1) 0.02 (1) 0.05 (1)

(8)

supporting information

sup-5 Acta Cryst. (2004). E60, o1911–o1913

Geometric parameters (Å, º)

Cl1—C4 1.705 (2) C15—C16 1.438 (3)

Cl2—C5 1.716 (2) C17—C18 1.435 (3)

O1—C3 1.248 (2) C17—C25 1.343 (3)

O2—C6 1.206 (3) C18—C19 1.398 (3)

O3—C1 1.321 (3) C18—C23 1.382 (3)

O4—C9 1.199 (3) C19—C20 1.380 (3)

O5—C9 1.372 (3) C20—C21 1.379 (4)

O5—C10 1.373 (3) C21—C22 1.370 (3)

O6—C16 1.370 (2) C22—C23 1.377 (3)

O6—C17 1.368 (2) C24—C25 1.443 (3)

O7—C23 1.375 (3) O3—H3o 0.84 (1)

O7—C24 1.372 (3) N1—H1n1 0.84 (1)

O8—C24 1.201 (3) N1—H1n2 0.85 (1)

O9—C26 1.239 (3) C11—H11 0.93

O10—C29 1.28 (1) C12—H12 0.93

O10′—C29′ 1.29 (1) C13—H13 0.93

N1—C1 1.310 (3) C14—H14 0.93

N2—C26 1.299 (4) C19—H19 0.93

N2—C27 1.434 (4) C20—H20 0.93

N2—C28 1.435 (4) C21—H21 0.93

N3—C29 1.359 (6) C22—H22 0.93

N3—C30 1.384 (6) C26—H26 0.93

N3—C31 1.413 (6) C27—H27a 0.96

N3′—C29′ 1.350 (8) C27—H27b 0.96

N3′—C30′ 1.361 (8) C27—H27c 0.96

N3′—C31′ 1.54 (2) C28—H28a 0.96

C1—C2 1.414 (3) C28—H28b 0.96

C2—C3 1.407 (3) C28—H28c 0.96

C2—C7 1.526 (3) C29—H29 0.93

C3—C4 1.500 (3) C30—H30a 0.96

C4—C5 1.326 (3) C30—H30b 0.96

C5—C6 1.471 (3) C30—H30c 0.96

C6—C7 1.545 (3) C31—H31a 0.96

C7—C25 1.523 (3) C31—H31b 0.96

C7—C8 1.524 (3) C31—H31c 0.96

C8—C9 1.450 (3) C29′—H29′ 0.93

C8—C16 1.336 (3) C30′—H30d 0.96

C10—C11 1.388 (3) C30′—H30e 0.96

C10—C15 1.384 (3) C30′—H30f 0.96

C11—C12 1.366 (4) C31′—H31d 0.96

C12—C13 1.378 (4) C31′—H31e 0.96

C13—C14 1.377 (3) C31′—H31f 0.96

C14—C15 1.394 (3)

C9—O5—C10 121.9 (2) C21—C22—C23 118.9 (2)

(9)

supporting information

sup-6 Acta Cryst. (2004). E60, o1911–o1913

C23—O7—C24 121.6 (2) O7—C23—C22 116.9 (2)

C26—N2—C27 120.4 (3) C18—C23—C22 121.5 (2)

C26—N2—C28 121.9 (3) O7—C24—O8 117.0 (2)

C27—N2—C28 117.6 (3) O7—C24—C25 118.2 (2)

C29—N3—C30 120.5 (5) O8—C24—C25 124.8 (2)

C29—N3—C31 119.2 (6) C7—C25—C17 123.6 (2)

C30—N3—C31 120.4 (6) C7—C25—C24 117.1 (2)

C29′—N3′—C30′ 130 (2) C24—C25—C17 119.3 (2)

C29′—N3′—C31′ 116 (1) O9—C26—N2 122.7 (3)

C30′—N3′—C31′ 114 (1) O10′—C29′—N3′ 102 (2)

O3—C1—N1 117.9 (2) C1—O3—H3o 115 (2)

O3—C1—C2 117.7 (2) C1—N1—H1n1 124 (2)

N1—C1—C2 124.4 (2) C1—N1—H1n2 118 (2)

C1—C2—C3 119.3 (2) H1n1—N1—H1n2 114 (2)

C1—C2—C7 117.8 (2) C12—C11—H11 120.9

C3—C2—C7 123.0 (2) C10—C11—H11 120.9

O1—C3—C2 125.5 (2) C11—C12—H12 119.2

O1—C3—C4 116.8 (2) C13—C12—H12 119.2

C2—C3—C4 117.7 (2) C14—C13—H13 120.0

C3—C4—C5 123.8 (2) C12—C13—H13 120.0

Cl1—C4—C3 115.0 (2) C13—C14—H14 120.2

Cl1—C4—C5 121.2 (2) C15—C14—H14 120.2

C4—C5—C6 122.0 (2) C20—C19—H19 120.4

Cl2—C5—C4 123.0 (2) C18—C19—H19 120.4

Cl2—C5—C6 115.0 (2) C21—C20—H20 119.8

O2—C6—C5 121.9 (2) C19—C20—H20 119.8

O2—C6—C7 119.1 (2) C22—C21—H21 119.6

C5—C6—C7 119.1 (2) C20—C21—H21 119.6

C2—C7—C8 111.0 (2) C21—C22—H22 120.5

C2—C7—C25 111.2 (2) C23—C22—H22 120.5

C8—C7—C25 106.9 (2) O9—C26—H26 118.7

C6—C7—C25 106.5 (2) N2—C26—H26 118.7

C2—C7—C6 114.5 (2) N2—C27—H27a 109.5

C6—C7—C8 106.4 (2) N2—C27—H27b 109.5

C7—C8—C9 116.4 (2) H27a—C27—H27b 109.5

C7—C8—C16 124.0 (2) N2—C27—H27c 109.5

C9—C8—C16 119.6 (2) H27a—C27—H27c 109.5

O4—C9—O5 117.7 (2) H27b—C27—H27c 109.5

O4—C9—C8 124.8 (2) N2—C28—H28a 109.5

O5—C9—C8 117.5 (2) N2—C28—H28b 109.5

O5—C10—C11 116.8 (2) H28a—C28—H28b 109.5

O5—C10—C15 121.9 (2) N2—C28—H28c 109.5

C11—C10—C15 121.3 (2) H28a—C28—H28c 109.5

C10—C11—C12 118.3 (3) H28b—C28—H28c 109.5

C11—C12—C13 121.6 (3) O10—C29—N3 120.9 (7)

C12—C13—C14 120.1 (3) O10—C29—H29 119.6

C13—C14—C15 119.5 (2) N3—C29—H29 119.6

(10)

supporting information

sup-7 Acta Cryst. (2004). E60, o1911–o1913

C10—C15—C16 116.2 (2) N3′—C29′—H29′ 128.9

C14—C15—C16 124.6 (2) N3′—C30′—H30d 109.5

O6—C16—C8 123.6 (2) N3′—C30′—H30e 109.5

O6—C16—C15 113.8 (2) H30d—C30′—H30e 109.5

C8—C16—C15 122.6 (2) N3′—C30′—H30f 109.5

O6—C17—C18 114.0 (2) H30d—C30′—H30f 109.5

O6—C17—C25 123.6 (2) H30e—C30′—H30f 109.5

C18—C17—C25 122.4 (2) N3′—C31′—H31d 109.5

C17—C18—C19 124.3 (2) N3′—C31′—H31e 109.5

C17—C18—C23 116.7 (2) H31d—C31′—H31e 109.5

C19—C18—C23 119.0 (2) N3′—C31′—H31f 109.5

C18—C19—C20 119.3 (2) H31d—C31′—H31f 109.5

C19—C20—C21 120.4 (2) H31e—C31′—H31f 109.5

C20—C21—C22 120.9 (2)

N1—C1—C2—C3 2.5 (3) C11—C10—C15—C16 179.8 (2)

O3—C1—C2—C3 −178.3 (2) C13—C14—C15—C10 −0.3 (4)

N1—C1—C2—C7 −177.8 (2) C13—C14—C15—C16 179.9 (2)

O3—C1—C2—C7 1.5 (3) C9—C8—C16—O6 −176.6 (2)

C1—C2—C3—O1 −0.4 (3) C7—C8—C16—O6 3.9 (3)

C7—C2—C3—O1 179.8 (2) C9—C8—C16—C15 5.0 (3)

C1—C2—C3—C4 −179.6 (2) C7—C8—C16—C15 −174.4 (2)

C7—C2—C3—C4 0.6 (3) C17—O6—C16—C8 3.7 (3)

O1—C3—C4—C5 −179.9 (2) C17—O6—C16—C15 −177.8 (2)

C2—C3—C4—C5 −0.6 (3) C10—C15—C16—C8 −1.2 (3)

O1—C3—C4—Cl1 −0.2 (3) C14—C15—C16—C8 178.6 (2)

C2—C3—C4—Cl1 179.1 (2) C10—C15—C16—O6 −179.7 (2)

C3—C4—C5—C6 −0.1 (4) C14—C15—C16—O6 0.1 (3)

Cl1—C4—C5—C6 −179.8 (2) C16—O6—C17—C25 −3.6 (3)

C3—C4—C5—Cl2 −179.9 (2) C16—O6—C17—C18 176.8 (2)

Cl1—C4—C5—Cl2 0.4 (3) C25—C17—C18—C23 −1.2 (3)

C4—C5—C6—O2 −179.0 (2) O6—C17—C18—C23 178.4 (2)

Cl2—C5—C6—O2 0.8 (3) C25—C17—C18—C19 178.4 (2)

C4—C5—C6—C7 0.8 (3) O6—C17—C18—C19 −1.9 (3)

Cl2—C5—C6—C7 −179.4 (2) C23—C18—C19—C20 −0.8 (3)

C3—C2—C7—C25 −120.7 (2) C17—C18—C19—C20 179.6 (2)

C1—C2—C7—C25 59.5 (2) C18—C19—C20—C21 −0.3 (4)

C3—C2—C7—C8 120.5 (2) C19—C20—C21—C22 0.6 (4)

C1—C2—C7—C8 −59.3 (2) C20—C21—C22—C23 0.2 (4)

C3—C2—C7—C6 0.0 (3) C24—O7—C23—C22 −178.5 (2)

C1—C2—C7—C6 −179.7 (2) C24—O7—C23—C18 0.3 (3)

O2—C6—C7—C25 −57.6 (3) C21—C22—C23—O7 177.6 (2)

C5—C6—C7—C25 122.6 (2) C21—C22—C23—C18 −1.2 (4)

O2—C6—C7—C8 56.1 (3) C19—C18—C23—O7 −177.2 (2)

C5—C6—C7—C8 −123.7 (2) C17—C18—C23—O7 2.4 (3)

O2—C6—C7—C2 179.1 (2) C19—C18—C23—C22 1.5 (3)

C5—C6—C7—C2 −0.8 (3) C17—C18—C23—C22 −178.8 (2)

(11)

supporting information

sup-8 Acta Cryst. (2004). E60, o1911–o1913

C2—C7—C8—C16 111.4 (2) C23—O7—C24—C25 −4.2 (3)

C6—C7—C8—C16 −123.4 (2) O6—C17—C25—C24 177.8 (2)

C25—C7—C8—C9 170.6 (2) C18—C17—C25—C24 −2.6 (3)

C2—C7—C8—C9 −68.0 (2) O6—C17—C25—C7 −4.1 (3)

C6—C7—C8—C9 57.1 (2) C18—C17—C25—C7 175.5 (2)

C10—O5—C9—O4 −175.6 (2) O8—C24—C25—C17 −174.1 (2)

C10—O5—C9—C8 4.0 (3) O7—C24—C25—C17 5.3 (3)

C16—C8—C9—O4 173.2 (2) O8—C24—C25—C7 7.7 (3)

C7—C8—C9—O4 −7.3 (3) O7—C24—C25—C7 −172.9 (2)

C16—C8—C9—O5 −6.3 (3) C8—C7—C25—C17 10.0 (3)

C7—C8—C9—O5 173.1 (2) C2—C7—C25—C17 −111.2 (2)

C9—O5—C10—C15 −0.2 (3) C6—C7—C25—C17 123.4 (2)

C9—O5—C10—C11 178.7 (2) C8—C7—C25—C24 −171.9 (2)

O5—C10—C11—C12 −179.1 (2) C2—C7—C25—C24 66.9 (2)

C15—C10—C11—C12 −0.2 (4) C6—C7—C25—C24 −58.5 (2)

C10—C11—C12—C13 0.6 (4) C27—N2—C26—O9 −1.5 (5)

C11—C12—C13—C14 −1.0 (5) C28—N2—C26—O9 176.4 (3)

C12—C13—C14—C15 0.8 (4) C30—N3—C29—O10 2.1 (9)

O5—C10—C15—C14 178.8 (2) C31—N3—C29—O10 −176.9 (6)

C11—C10—C15—C14 0.0 (4) C30′—N3′—C29′—O10′ −2 (2)

O5—C10—C15—C16 −1.4 (3) C31′—N3′—C29′—O10′ 177 (1)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H3o···O9 0.84 (1) 1.77 (2) 2.553 (3) 154 (3)

N1—H1n1···O10 0.84 (1) 2.05 (1) 2.845 (5) 158 (3)

N1—H1n1···O10′ 0.84 (1) 2.17 (2) 2.96 (2) 159 (3)

N1—H1n2···O1i 0.85 (1) 2.39 (2) 3.008 (3) 130 (2)

References

Related documents

18 th Sunday in Ordinary Time Saint Rose of Lima Parish Parroquia Santa Rosa de Lima.. August

The Seckford Education Trust and our schools should be environments in which pupils and students or their parents/carers can feel comfortable and confident

In addition, this example, of a university President celebrating the building of ‘a very strong network of alumni in China and Hong Kong', highlighted the significance for

Although theoretically the likelihood of finding evidence that dumped imports have in- jured the domestic industry should fall as the industry increases its output, the results from

Most algorithms for large item sets are related to the Apri- ori algorithm that will be discussed in Chapter IV-A2. All algorithms and methods are usually based on the same

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

Using a nationwide database of hospital admissions, we established that diverticulitis patients admitted to hospitals that encounter a low volume of diverticulitis cases have

The unit I teach, the site of this research, involves students exercising self- determination in a collaborative, creative mode; a phenomenon Meill and Littleton (2004:18) describe