• No results found

Bis(3,5 di­methyl 1,2,4 triazolato κN4)bis­­(pivalic acid κO)copper(II) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis(3,5 di­methyl 1,2,4 triazolato κN4)bis­­(pivalic acid κO)copper(II) dihydrate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1889±m1891 doi: 10.1107/S1600536804028697 Zhouet al. [Cu(C4H6N3)2(C5H10O2)2]2H2O

m1889

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(3,5-dimethyl-1,2,4-triazolato-

j

N

4

)bis(pivalic

acid-

j

O

)copper(II) dihydrate

Jian-Hao Zhou, Yi-Zhi Li, Bin Huang and Xue-Tai Chen*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.008 AÊ

Rfactor = 0.062

wRfactor = 0.164

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The molecule of the title complex, [Cu(C4H6N3)2(C5H10O2)2]

-2H2O, is situated about a site of symmetry 2/mand shows a

trans-N2O2square-planar coordination geometry for the CuII

centre. The crystal structure exhibits a two-dimensional layer arrangement mediated by intermolecular hydrogen bonds.

Comment

Molecular materials exhibiting interesting magnetic and luminescent properties have received increasing attention in recent years (Kahn et al., 1992; Kahn, 1993; Haasnoot, 2000; Thompson, 2002). 1,2,4-Triazole and its derivatives are able to provide several bridging coordination modes to link metal(II) ions, an important consideration for molecular materials. Indeed, many structures of coordination complexes have been reported, showing a variety of coordination modes (Haasnoot, 2000). Rare examples of structures containing the bridging 3,5-dimethyl-1,2,4-triazole ligand includeN1,N2bridging (Yiet

al., 2004) andN1,N2,N4bridging (Drewet al., 1985; Zhanget

al., 2004). Here, we report the title copper(II) complex, (I), with the 3,5-dimethyl-1,2,4-triazole ligand exhibiting a monodentateN4coordination mode.

The molecule of (I) is disposed about a site of symmetry 2/m

(Fig. 1 and Table 1). The CuIIatom is coordinated by twoN4

atoms from two 3,5-dimethyl-1,2,4-triazole anions in a trans

con®guration. The CuÐN4bond distances [mean 1.994 (5) AÊ]

are in the range of those reported for catena-[[3

-3,5-dimethyl-1,2,4-triazolato-3N,N0,N00]copper(I)] [1.963 (1)±

2.016 (1) AÊ; Zhang et al., 2004]. The two remaining coordi-nation sites in the square-planar geometry are occupied by O atoms from two pivalic acid molecules.

The crystal structure of (I) features intermolecular hydrogen bonds, as shown in Fig. 2; geometric details are given in Table 2. The hydroxyl group of (I) forms a hydrogen bond with the O atom of the solvent water molecule (O1Ð H1B O3). The water molecule, in turn, links two N2 atoms, so that a two-dimensional layer structure results.

(2)

Experimental

3,5-Dimethyl-1,2,4-triazole (0.068 g, 0.7 mmol) was added to an ethanol solution (10 ml) of [Cu(Me3CCOO)2]2(0.15 g, 0.28 mmol) with stirring. The resulting solution was stirred at 276 K for 24 h and then ®ltered. Uncharacterized blue compounds, which formed on slow evaporation of the mother liquor, were ®ltered off several times, before red crystals of (I) suitable for X-ray diffraction analysis were obtained from the mother liquor (18% yield). Analysis calculated for C18H36Cu1N6O6: C 43.58, H 7.32, N 16.94%; found: C 43.83, H 7.61, N 16.74%; IR (KBr,, cmÿ1): 3375 (br), 3053 (w), 2966 (m), 2935 (w), 2720 (w), 1596 (m), 1553 (vs), 1484 (m), 1439 (w), 1418 (s), 1378 (m),

1364 (m), 1322 (w), 1225 (m), 1146 (w), 1087 (w), 1051 (w), 902 (w), 754 (w), 619 (m).

Crystal data

[Cu(C4H6N3)2(C5H10O2)2]2H2O Mr= 496.07

Monoclinic, C2=m a= 13.270 (3) AÊ

b= 12.861 (3) AÊ

c= 8.770 (2) AÊ = 115.791 (4)

V= 1347.6 (5) AÊ3 Z= 2

Dx= 1.222 Mg mÿ3

MoKradiation Cell parameters from 709

re¯ections = 2.9±22.9 = 0.85 mmÿ1 T= 293 (2) K Block, red

0.330.280.23 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.767,Tmax= 0.829

3525 measured re¯ections

1311 independent re¯ections 1141 re¯ections withI> 2(I)

Rint= 0.053

max= 25.5 h=ÿ16!15

k=ÿ15!15

l=ÿ10!9

Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.062 wR(F2) = 0.164 S= 1.09 1311 re¯ections 84 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.09P)2

+ 1.95P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.38 e AÊÿ3 min=ÿ0.50 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO2 1.974 (4) Cu1ÐN1 1.994 (5) C1ÐC2 1.488 (6) C2ÐN2 1.306 (6) C2ÐN1 1.337 (5) C3ÐO1 1.251 (7)

C3ÐO2 1.253 (8) C3ÐC4 1.480 (7) C4ÐC5 1.501 (7) C4ÐC6 1.503 (10) N2ÐN2i 1.399 (8)

O1ÐC3ÐO2 120.7 (5)

O1ÐC3ÐC4 120.8 (6) Cu1ÐN1ÐC2Cu1ÐO2ÐC3 127.6 (3)103.3 (3)

O1ÐC3ÐC4ÐC6 180 O2ÐC3ÐC4ÐC6 0 N2ÐC2ÐN1ÐCu1 179.6 (3)

C1ÐC2ÐN1ÐCu1 1.1 (6) O2ÐCu1ÐN1ÐC2 120.2 (3) O2iiÐCu1ÐN1ÐC2 ÿ59.8 (3)

Symmetry codes: (i) 1ÿx;y;2ÿz; (ii) 1ÿx;ÿy;2ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1ÐH1B O3 0.85 1.86 2.637 (6) 151 O3ÐH3A N2i 0.85 2.07 2.748 (5) 137

Symmetry code: (i)1

2ÿx;12ÿy;2ÿz.

Atoms H1Band H3Awere found in a difference Fourier map and not re®ned. All other H atoms were positioned geometrically and re®ned in the riding-model approximation, with CÐH = 0.96 AÊ and

Uiso(H) = 1.2 (1.5 for methyl H) timesUeq(parent atom).

Data collection:SMART(Bruker, 2000); cell re®nement:SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

metal-organic papers

m1890

Zhouet al. [Cu(C4H6N3)2(C5H10O2)2]2H2O Acta Cryst.(2004). E60, m1889±m1891 Figure 2

The two-dimensional layer structure of (I) [symmetry code: (i) 1 2ÿx, 1

2ÿy, 2ÿz]. Dashed lines indicate hydrogen bonds. Figure 1

(3)

This work was supported by a Measurement Grant of Nanjing University (grant No. 0205001333).

References

Bruker (2000).SMART(Version 5.625),SAINT(Version 6.01),SHELXTL

(Version 6.10) andSADABS(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Drew, M. G. B., Yates, P. C., Trocha-Grimshaw, J., McKillop, K. P. & Nelson, S. M. (1985).J. Chem. Soc. Chem. Commun.pp. 262±263.

Haasnoot, J. G. (2000).Coord. Chem. Rev.200±202, 131±185. Kahn, O. (1993).Molecular Magnetism. New York: VCH. Kahn, O., KroÈber, J. & Jay, C. (1992).Adv. Mater.4, 718±728. Thompson, L. K. (2002).Coord. Chem. Rev.233±234, 193±206.

Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004).

Inorg. Chem.43, 33±43.

Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004).Angew. Chem. Int. Ed. Engl.43, 206±209.

metal-organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m1889–m1891

supporting information

Acta Cryst. (2004). E60, m1889–m1891 [https://doi.org/10.1107/S1600536804028697]

Bis(3,5-dimethyl-1,2,4-triazolato-

κ

N

4

)bis(pivalic acid-

κ

O

)copper(II) dihydrate

Jian-Hao Zhou, Yi-Zhi Li, Bin Huang and Xue-Tai Chen

Bis(3,5-dimethyl-1,2,4-triazolato-κN4)bis(pivalic acid-κO)copper(II) dihydrate

Crystal data

[Cu(C4H6N3)2(C5H10O2)2]·2H2O

Mr = 496.07

Monoclinic, C2/m

Hall symbol: -C 2y

a = 13.270 (3) Å

b = 12.861 (3) Å

c = 8.770 (2) Å

β = 115.791 (4)°

V = 1347.6 (5) Å3

Z = 2

F(000) = 526

Dx = 1.222 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 709 reflections

θ = 2.9–22.9°

µ = 0.85 mm−1

T = 293 K Block, red

0.33 × 0.28 × 0.23 mm

Data collection

Bruker SMART Apex CCD area detector diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.767, Tmax = 0.829

3525 measured reflections 1311 independent reflections 1141 reflections with I > 2σ(I)

Rint = 0.053

θmax = 25.5°, θmin = 2.3°

h = −16→15

k = −15→15

l = −10→9

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.062

wR(F2) = 0.164

S = 1.09 1311 reflections 84 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.09P)2 + 1.95P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.38 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1889–m1891

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 13.2662 (0.0031) x - 0.0000 (0.0001) y - 4.0044 (0.0172) z = 2.6286 (0.0175)

* 0.0000 (0.0000) Cu1 * 0.0000 (0.0000) O2 * 0.0000 (0.0000) O2_$1 * 0.0000 (0.0000) N1 * 0.0000 (0.0000) N1_$1 Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.5000 0.0000 1.0000 0.0312 (3) C1 0.3898 (4) 0.1839 (4) 1.1669 (6) 0.0540 (12) H1D 0.3643 0.2436 1.2059 0.081* H1E 0.4382 0.1430 1.2623 0.081* H1F 0.3266 0.1427 1.0949 0.081* C2 0.4522 (4) 0.2185 (4) 1.0702 (6) 0.0467 (10) C3 0.3227 (6) 0.0000 0.7173 (6) 0.0542 (17) C4 0.2394 (4) 0.0000 0.5375 (6) 0.0540 (17) C5 0.1606 (4) 0.0904 (4) 0.4994 (7) 0.0623 (14) H5A 0.1247 0.0885 0.5737 0.093* H5B 0.1050 0.0862 0.3840 0.093* H5C 0.2017 0.1541 0.5162 0.093* C6 0.2913 (6) 0.0000 0.4155 (9) 0.0616 (19) H6A 0.2348 0.0000 0.3005 0.092* H6B 0.3370 0.0610 0.4353 0.092* N1 0.5000 0.1551 (4) 1.0000 0.0449 (12) N2 0.4691 (4) 0.3161 (3) 1.0473 (6) 0.0575 (11) O1 0.2924 (4) 0.0000 0.8337 (5) 0.0418 (10) H1B 0.2247 0.0000 0.8191 0.050* O2 0.4246 (4) 0.0000 0.7501 (5) 0.0468 (11) O3 0.1184 (5) 0.0000 0.9043 (8) 0.0671 (15) H3A 0.0793 0.0540 0.8626 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m1889–m1891

C6 0.064 (5) 0.064 (5) 0.069 (5) 0.000 0.040 (4) 0.000 N1 0.056 (3) 0.036 (3) 0.052 (3) 0.000 0.033 (3) 0.000 N2 0.066 (3) 0.044 (2) 0.075 (3) 0.0006 (19) 0.043 (2) −0.003 (2) O1 0.052 (2) 0.050 (3) 0.042 (2) 0.000 0.038 (2) 0.000 O2 0.057 (3) 0.047 (3) 0.045 (2) 0.000 0.031 (2) 0.000 O3 0.079 (4) 0.052 (3) 0.094 (4) 0.000 0.060 (3) 0.000

Geometric parameters (Å, º)

Cu1—O2 1.974 (4) C4—C5ii 1.501 (7)

Cu1—O2i 1.974 (4) C4—C5 1.501 (7)

Cu1—N1i 1.994 (5) C4—C6 1.503 (10)

Cu1—N1 1.994 (5) C5—H5A 0.9600

C1—C2 1.488 (6) C5—H5B 0.9600

C1—H1D 0.9600 C5—H5C 0.9600

C1—H1E 0.9600 C6—H6A 0.9599

C1—H1F 0.9600 C6—H6B 0.9600

C2—N2 1.306 (6) N1—C2iii 1.337 (5)

C2—N1 1.337 (5) N2—N2iii 1.399 (8)

C3—O1 1.251 (7) O1—H1B 0.8501

C3—O2 1.253 (8) O3—H3A 0.8482

C3—C4 1.480 (7)

O2—Cu1—O2i 180.000 (1) C5ii—C4—C5 101.5 (5)

O2—Cu1—N1i 90.000 (1) C3—C4—C6 113.4 (5)

O2i—Cu1—N1i 90.000 (1) C5ii—C4—C6 109.4 (3)

O2—Cu1—N1 90.00 (1) C5—C4—C6 109.4 (3) O2i—Cu1—N1 90.000 (1) C4—C5—H5A 109.5

N1i—Cu1—N1 180.000 (1) C4—C5—H5B 109.5

C2—C1—H1D 109.5 H5A—C5—H5B 109.5

C2—C1—H1E 109.5 C4—C5—H5C 109.5

H1D—C1—H1E 109.5 H5A—C5—H5C 109.5

C2—C1—H1F 109.5 H5B—C5—H5C 109.5

H1D—C1—H1F 109.5 C4—C6—H6A 110.9

H1E—C1—H1F 109.5 C4—C6—H6B 108.7

N2—C2—N1 111.6 (4) H6A—C6—H6B 109.5 N2—C2—C1 123.4 (4) C2—N1—C2iii 104.8 (5)

N1—C2—C1 125.0 (4) Cu1—N1—C2 127.6 (3) O1—C3—O2 120.7 (5) Cu1iii—N1—C2 127.6 (3)

O1—C3—C4 120.8 (6) C2—N2—N2iii 106.0 (3)

O2—C3—C4 118.4 (5) C3—O1—H1B 124.8 C3—C4—C5ii 111.2 (4) Cu1—O2—C3 103.3 (3)

C3—C4—C5 111.2 (4)

O1—C3—C4—C5ii −56.2 (3) O2—Cu1—N1—C2 120.2 (3)

O2—C3—C4—C5ii 123.8 (3) O2i—Cu1—N1—C2 −59.8 (3)

O1—C3—C4—C5 56.2 (3) O2—Cu1—N1—C2iii −59.8 (3)

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1889–m1891

O1—C3—C4—C6 180.000 (2) N1—C2—N2—N2iii 1.1 (7)

O2—C3—C4—C6 0.000 (2) C1—C2—N2—N2iii 179.5 (5)

N2—C2—N1—C2iii −0.4 (3) O1—C3—O2—Cu1 0.000 (1)

C1—C2—N1—C2iii −178.9 (6) C4—C3—O2—Cu1 180.000 (1)

N2—C2—N1—Cu1 179.6 (3) N1i—Cu1—O2—C3 90.00 (1)

C1—C2—N1—Cu1 1.1 (6) N1—Cu1—O2—C3 −90.00 (2)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, −y, z; (iii) −x+1, y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1B···O3 0.85 1.86 2.637 (6) 151 O3—H3A···N2iv 0.85 2.07 2.748 (5) 137

References

Related documents

The field type de- termines the way we expect the field value to be rendered in words: integer fields can be numeri- cally perturbed, string fields can be spliced, and

The main challenge for the training algorithm is that it must produce rules that accurately lemma- tize OOV words. This requirement translates to two opposing tendencies

The aim of the present study was to determine the post-traumatic interval of the early subdural haematomas based on computed tomography attenuation numbers.. In this

3.2 Conversion from dependency graph A typed dependency representation of a sentence contains a root – that is, a dependency relation in which neither the governor nor the

We show two ways to derive the D rules: one based on unary composition and the other based on a logical characterization of CCG’s rule base (Baldridge, 2002).. We also show how

We actually report results on full morphological disambiguation for Hebrew, a task similar but more challenging than POS tagging: we deal with a tagset much larger than English

However, our analysis is limited to the deviation of market prices from theoretical prices and does not consider the interplay between difference factors such as signalling

The speed and accuracy of the decoder is important for the perceptron learning algorithm, but the system faces a very large search space of com- bined candidates.. Given the