• No results found

μ 4,4′ Bi­pyridine κ2N:N′ bis­[tri­aqua(4,4′ bi­pyridine κ2N,N′)[1,3 phenylene­di­(­oxy­acetato) κO]­cobalt(II)] 4,4′ bi­pyridine heptahydrate

N/A
N/A
Protected

Academic year: 2020

Share "μ 4,4′ Bi­pyridine κ2N:N′ bis­[tri­aqua(4,4′ bi­pyridine κ2N,N′)[1,3 phenylene­di­(­oxy­acetato) κO]­cobalt(II)] 4,4′ bi­pyridine heptahydrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1590

Gaoet al. [Co2(C10H8O6)2(C10H8N2)3(H2O)6] doi: 10.1107/S1600536804024535 Acta Cryst.(2004). E60, m1590±m1592 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

l

-4,4

000

-Bipyridine-

j

2

N

:

N

000

-bis[triaqua(4,4

000

-bipyridine-j

2

N

,

N

000

)[1,3-phenylenedi(oxyacetato)-

j

O

]cobalt(II)]

4,4

000

-bipyridine heptahydrate

Shan Gao,aJi-Wei Liu,aLi-Hua

Huo,aHui Zhaoaand

Seik Weng Ngb*

aCollege of Chemistry and Materials Science,

Heilongjiang University, Harbin 150080, People's Republic of China, andbDepartment of

Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.003 AÊ H-atom completeness 98% Disorder in solvent or counterion

Rfactor = 0.032

wRfactor = 0.078

Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The reaction of cobalt(II) diacetate, disodium 1,3-phenyldi-(oxyacetate) and 4,40-bipyridine in water at neutral pH affords

the title compound, [Co2(C10H8O6)2(C10H8N2)3(H2O)6]

-C10H8N27H2O. The dinuclear complex is generated from a

unique half-molecule by twofold symmetry; it contains a bridging 4,40-bipyridine molecule connected to two cobalt(II)

atoms, each of which is covalently bonded to a carboxylate unit, another 4,40-bipyridine molecule and three water

mol-ecules in octahedral geometry. The non-coordinated 4,40

-bipyridine molecule is stacked over the bridging 4,40

-bi-pyridine molecule at a separation of about 3.5 AÊ, and accepts hydrogen bonds at each N atom from coordinated water molecules.

Comment

The cobalt(II) derivative of 1,3-phenyldi(oxyacetic acid) exists as a tetraaqua tetrahydrate complex in which the metal atom is linked to four water molecules and two hydrogen 1,3-phenyldi(oxyacetate) monoanions (Liu, Huo, Gao, Zhao & Zhao, 2004b). The introduction of the 4,40-bipyridine spacer

ligand was expected to neutralize the carboxylic acid ÐCO2H

groups, but this reaction did not occur. Instead, the title

compound (I) (Fig. 1) arose, in which the ligand functions as a spacer between two cobalt centers, each of which is also coordinated by three water molecules and the carboxyl ÐCO2

(2)

end of a doubly deprotonated 1,3-phenyldi(oxyacetate) dianion. A second 4,40-bipyridine molecule uses only one N

atom to coordinate, the other accepting hydrogen bond interactions. Overall, the dinuclear complex is generated by twofold symmetry from the unique atoms. The dihedral angle between the two central pyridine rings containing C13 and C13i (i = ÿx, y, 1ÿz) is 31.4 (1). Seven non-coordinated

water molecules are present in (I) and help to consolidate the unit cell packing through hydrogen bonds (Table 2). A non-coordinated 4,40-bipyridine molecule is stacked over the

bridging spacer ligand, and is held in place at both ends of the

molecule by OÐH N hydrogen bonds from coordinated

water molecules (Fig. 2). The dihedral angle between the two pyridine rings containing C18 and C18iis 14.3 (1).

Experimental

An aqueous solution (10 ml) of cobalt(II) diacetate tetrahydrate (4.76 g, 20 mmol) and 4,40-bipyridine (3.12 g, 20 mmol) was added to

an aqueous solution (20 ml) of 1,3-phenyldi(oxyacetic acid) (4.52 g, 20 mmol). The pH of the solution was adjusted to approximately 7 by

the addition of 0.1M sodium hydroxide. The clear solution was ®ltered; pink crystals of (I) deposited from solution after several days. C, H & N analysis. Calc. for C60H74N8O25Co2(found, %): C 50.64

(50.56), H 5.10 (5.23) N 7.88 (7.86).

Crystal data

[Co2(C10H8O6)2(C10H8N2)3

-(H2O)6]C10H8N27H2O

Mr= 1425.13

Monoclinic,C2 a= 34.738 (4) AÊ b= 7.450 (2) AÊ c= 12.929 (4) AÊ = 106.23 (2)

V= 3213 (1) AÊ3

Z= 2

Dx= 1.473 Mg mÿ3

MoKradiation

Cell parameters from 13866 re¯ections

= 3.2±28.0

= 0.61 mmÿ1

T= 295 (2) K Prism, pink

0.380.240.19 mm

Data collection Rigaku RAXIS RAPID

diffractometer !scans

Absorption correction: multi-scan ABSCOR(Higashi, 1995) Tmin= 0.607,Tmax= 0.894

14697 measured re¯ections

6280 independent re¯ections 5750 re¯ections withI> 2(I) Rint= 0.023

max= 27.5

h=ÿ44!44 k=ÿ9!8 l=ÿ16!16

metal-organic papers

Acta Cryst.(2004). E60, m1590±m1592 Gaoet al. [Co2(C10H8O6)2(C10H8N2)3(H2O)6]

m1591

Figure 2

Detail of (I), showing the stacking of the non-coordinated 4,40-bipyridine over the bridging 4,40-bipyridine unit of the [(C10H8N2)3(C10H8O6)2(H2O)6Co2]

molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Figure 1

View of the [(C10H8N2)3(C10H8O6)2(H2O)6Co2] molecule in (I) with displacement ellipsoids drawn at the 50% probability level and H atoms shown as

spheres of arbitrary radii. The dinuclear molecule lies on a twofold rotation axis that passes mid-way between the pyridyl rings of the bridging 4,40

(3)

Refinement Re®nement onF2

R[F2> 2(F2)] = 0.032

wR(F2) = 0.078

S= 1.02 6280 re¯ections 475 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0496P)2

+ 0.6741P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.56 e AÊÿ3

min=ÿ0.19 e AÊÿ3

Absolute structure: Flack (1983) parameter; 2337 Friedel pairs Flack parameter = 0.02 (1)

Table 1

Selected bond lengths (AÊ).

Co1ÐO1 2.180 (2)

Co1ÐO1w 2.053 (2)

Co1ÐO2w 2.146 (2)

Co1ÐO3w 2.097 (2)

Co1ÐN1 2.167 (2)

Co1ÐN3 2.145 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1wÐH1w1 O2 0.85 (1) 1.80 (1) 2.625 (2) 163 (2) O1wÐH1w2 O4w 0.85 (1) 1.79 (1) 2.642 (3) 175 (2) O2wÐH2w1 O6w 0.85 (1) 1.80 (1) 2.632 (4) 169 (4) O2wÐH2w2 N4 0.85 (1) 2.04 (1) 2.850 (3) 159 (4) O3wÐH3w2 O4wii 0.85 (1) 1.91 (1) 2.730 (3) 161 (3)

O3wÐH3w1 O7wii 0.85 (1) 1.92 (1) 2.762 (3) 170 (3)

O4wÐH4w2 O1iii 0.85 (1) 2.02 (3) 2.745 (3) 143 (4)

O4wÐH4w1 N2iv 0.85 (1) 1.91 (1) 2.755 (2) 172 (4)

O5wÐH5w2 O6v 0.85 (1) 2.02 (1) 2.851 (3) 166 (4)

O5wÐH5w1 O7w 0.85 (1) 2.06 (2) 2.817 (3) 147 (4) O6wÐH6w1 O5i 0.86 (1) 2.01 (2) 2.801 (5) 152 (3)

O7wÐH7w1 O5vi 0.85 (1) 1.85 (2) 2.680 (3) 164 (4) Symmetry codes: (i)ÿx;y;1ÿz; (ii)x;1‡y;z; (iii)x;yÿ1;z; (iv)1

2ÿx;yÿ12;ÿz; (v)

x;y;zÿ1; (vi)x;yÿ1;zÿ1.

The carbon-bound H atoms were placed in calculated positions [CÐHaromatic0.93 AÊ and CÐHaliphatic0.96 AÊ;U(H) = 1.2Ueq(C)], and

they were included in the re®nement in the riding model approx-imation. For the water molecules occupying general positions, their H atoms were located in difference maps and re®ned with distance restraints of OÐH 0.85 (1) and H H 1.39 (1) AÊ;U(H) = 1.2Ueq(O).

One water molecule O atom (O6w) is disordered over two positions about the twofold axis [d(O O) = 1.07 AÊ] and its occupation factor was ®xed at 0.5 for each site.

The atom O7wwas re®ned as a water molecule O atom so that overall charge balance would confer a +2 oxidation state for the

cobalt atoms. However, when this atom was re®ned with two H atoms (with distance restraints), one of them was 2 AÊ from the symmetry-related atom. Consequently, O7wwas re®ned with only one H atom as the other could neither be located nor be placed at any chemically sensible position. The O7wwater molecule could conceivably be part of a hydroxide ion; however, as two other syntheses with the related 1,4-phenyldi(oxyacetic acid) (Gaoet al., 2004; Liu, Huo,Gao & Ng, 2004) did not lead to oxidation of the cobalt(II) reagent, it is not likely that the oxidation state of the metal atom is +3 in the pink title complex. The structural literature on cobalt complexes occasionally mentions the formation of cobalt(III) hydroxides through oxidation of the starting cobalt(II) reagent, e.g., bis(2,20

-bipyridine)-nitratocobalt(III) nitrate hydroxide, but the product is a deep red compound (Reimannet al., 1971).

Data collection:RAPID-AUTO(Rigaku Corporation, 1998); cell re®nement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee Foundation of Heilongjiang Province and the University of Malaya for generously supporting this study.

References

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004).Acta Cryst.E60, m1242±m1244.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Liu, J.-W., Huo,L.-H., Gao, S. & Ng, S. W. (2004).Acta Cryst.E60, m439±m440. Liu, J.-W., Huo, L.-H., Gao, S., Zhao, H. & Zhao, J.-G. (2004).Chin. J. Struct.

Chem.In the press.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Reimann, C. W., Zocchi, M., Mighell, A. D. & Santoro, A. (1971).Acta Cryst. B27, 2211±2218.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

metal-organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m1590–m1592

supporting information

Acta Cryst. (2004). E60, m1590–m1592 [https://doi.org/10.1107/S1600536804024535]

µ

-4,4

-Bipyridine-

κ

2

N

:

N

-bis[triaqua(4,4

-bipyridine-

κ

2

N

,

N

)[1,3-phenyl-enedi(oxyacetato)-

κ

O

]cobalt(II)] 4,4

-bipyridine heptahydrate

Shan Gao, Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Seik Weng Ng

(I)

Crystal data

3C10H8N2·2C10H8O6·6H2O·2Co·C10H8N2·7H2O

Mr = 1425.13 Monoclinic, C2 Hall symbol: C 2y

a = 34.738 (4) Å

b = 7.450 (2) Å

c = 12.929 (4) Å

β = 106.23 (2)°

V = 3213 (1) Å3

Z = 2

F(000) = 1488

Dx = 1.473 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 13866 reflections

θ = 3.2–28.0°

µ = 0.61 mm−1

T = 295 K Prism, pink

0.38 × 0.24 × 0.19 mm

Data collection

Rigaku RAPID-RAXIS diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scan

Absorption correction: multi-scan ABSCOR (Higashi, 1995)

Tmin = 0.607, Tmax = 0.894

14697 measured reflections 6280 independent reflections 5750 reflections with I > 2σ(I)

Rint = 0.023

θmax = 27.5°, θmin = 3.2°

h = −44→44

k = −9→8

l = −16→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.078

S = 1.02 6280 reflections 475 parameters 19 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0496P)2 + 0.6741P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.56 e Å−3

Δρmin = −0.19 e Å−3

Absolute structure: Flack (1983) parameter; 2337 Friedel pairs

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1590–m1592

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Co1 0.121893 (7) 0.50000 (4) 0.284207 (18) 0.02858 (7) O1 0.16370 (5) 0.6630 (2) 0.40492 (12) 0.0348 (4) O2 0.20211 (5) 0.4578 (2) 0.51266 (13) 0.0447 (4) O3 0.20032 (5) 0.9299 (2) 0.55410 (13) 0.0435 (4) O4 0.12071 (5) 0.6800 (3) 0.76627 (13) 0.0431 (4) O5 0.04932 (6) 0.5487 (3) 0.90235 (15) 0.0535 (5) O6 0.08562 (6) 0.3870 (3) 0.82125 (16) 0.0519 (5) O1w 0.14540 (5) 0.2786 (2) 0.37430 (13) 0.0376 (4)

H1w1 0.1667 (5) 0.320 (3) 0.4166 (19) 0.050 (6)*

H1w2 0.1508 (7) 0.181 (2) 0.347 (2) 0.050 (6)*

O2w 0.08269 (5) 0.3186 (3) 0.17482 (14) 0.0419 (4)

H2w1 0.0614 (7) 0.344 (6) 0.126 (2) 0.113 (12)*

H2w2 0.0782 (11) 0.230 (4) 0.211 (3) 0.113 (12)*

O3w 0.09848 (6) 0.7306 (3) 0.19601 (15) 0.0445 (4)

H3w1 0.0800 (7) 0.752 (4) 0.1386 (16) 0.072 (8)*

H3w2 0.1140 (8) 0.820 (3) 0.212 (2) 0.072 (8)*

O4w 0.15753 (5) −0.0281 (3) 0.28573 (13) 0.0431 (4)

H4w1 0.1747 (7) −0.026 (6) 0.250 (2) 0.088 (8)*

H4w2 0.1670 (9) −0.091 (5) 0.3419 (19) 0.088 (8)* O5w 0.09063 (7) 0.1294 (3) −0.01240 (18) 0.0628 (5)

H5w1 0.0690 (7) 0.078 (5) −0.010 (3) 0.117 (12)*

H5w2 0.0851 (11) 0.209 (5) −0.062 (3) 0.117 (12)*

O6w 0.01174 (12) 0.3684 (8) 0.0371 (3) 0.0648 (12) 0.50

H6w1 −0.0116 (6) 0.408 (4) 0.0356 (15) 0.062 (10)* O7w 0.04108 (6) −0.1567 (3) 0.01328 (16) 0.0579 (5) H7w1 0.0435 (10) −0.236 (4) −0.032 (2) 0.072 (11)* N1 0.16420 (5) 0.4881 (4) 0.18894 (12) 0.0344 (4) N2 0.29244 (6) 0.4650 (3) −0.15385 (16) 0.0483 (6) N3 0.07732 (5) 0.5263 (3) 0.36936 (13) 0.0325 (4) N4 0.04939 (8) 0.0724 (4) 0.29504 (19) 0.0592 (6) C1 0.20375 (6) 0.4682 (4) 0.22911 (15) 0.0409 (6)

H1 0.2142 0.4582 0.3034 0.049*

C2 0.22986 (7) 0.4617 (4) 0.16644 (16) 0.0422 (7)

H2 0.2572 0.4475 0.1987 0.051*

C3 0.21554 (6) 0.4765 (3) 0.05514 (15) 0.0319 (5) C4 0.24256 (6) 0.4725 (4) −0.01655 (16) 0.0342 (5) C5 0.28356 (6) 0.4990 (5) 0.02230 (17) 0.0437 (5)

H5 0.2952 0.5194 0.0953 0.052*

C6 0.30698 (7) 0.4950 (6) −0.04822 (19) 0.0506 (6)

H6 0.3344 0.5143 −0.0206 0.061*

C7 0.25325 (8) 0.4385 (4) −0.19056 (19) 0.0494 (7)

H7 0.2426 0.4162 −0.2638 0.059*

C8 0.22736 (8) 0.4421 (4) −0.12691 (18) 0.0465 (6)

H8 0.2000 0.4244 −0.1573 0.056*

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m1590–m1592

H9 0.1633 0.5070 −0.0604 0.054*

C10 0.15042 (6) 0.5017 (6) 0.08200 (15) 0.0427 (5)

H10 0.1229 0.5153 0.0519 0.051*

C11 0.03951 (6) 0.5725 (4) 0.31675 (16) 0.0362 (5)

H11 0.0337 0.6027 0.2442 0.043*

C12 0.00895 (6) 0.5771 (4) 0.36527 (17) 0.0368 (5)

H12 −0.0168 0.6084 0.3252 0.044*

C13 0.01643 (6) 0.5352 (3) 0.47358 (15) 0.0303 (5) C14 0.05567 (6) 0.4917 (4) 0.52905 (14) 0.0356 (4)

H14 0.0623 0.4641 0.6021 0.043*

C15 0.08474 (6) 0.4898 (4) 0.47445 (15) 0.0357 (4)

H15 0.1109 0.4615 0.5130 0.043*

C16 0.01032 (10) 0.1094 (5) 0.2759 (2) 0.0587 (8)

H16 −0.0036 0.1483 0.2073 0.070*

C17 −0.01032 (8) 0.0931 (4) 0.3521 (2) 0.0488 (6)

H17 −0.0377 0.1174 0.3342 0.059*

C18 0.01015 (7) 0.0400 (3) 0.45617 (18) 0.0386 (5) C19 0.05041 (7) −0.0016 (5) 0.47553 (17) 0.0448 (5)

H19 0.0651 −0.0408 0.5434 0.054*

C20 0.06873 (8) 0.0153 (5) 0.3941 (2) 0.0540 (6)

H20 0.0957 −0.0144 0.4086 0.065*

C21 0.19222 (6) 0.6157 (3) 0.48386 (17) 0.0318 (5) C22 0.21882 (7) 0.7607 (4) 0.55125 (18) 0.0396 (5)

H22a 0.2288 0.7169 0.6245 0.048*

H22b 0.2418 0.7783 0.5236 0.048*

C23 0.17512 (7) 0.9454 (3) 0.61946 (16) 0.0355 (5) C24 0.16575 (8) 1.1203 (4) 0.64097 (19) 0.0394 (6)

H24 0.1760 1.2167 0.6115 0.047*

C25 0.14104 (8) 1.1498 (4) 0.7064 (2) 0.0418 (6)

H25 0.1346 1.2668 0.7204 0.050*

C26 0.12557 (6) 1.0070 (4) 0.75172 (15) 0.0378 (4)

H26 0.1093 1.0278 0.7966 0.045*

C27 0.13496 (7) 0.8325 (4) 0.72846 (18) 0.0345 (5) C28 0.15987 (7) 0.8012 (3) 0.66234 (17) 0.0357 (5)

H28 0.1661 0.6844 0.6473 0.043*

C29 0.09204 (7) 0.7058 (4) 0.82536 (19) 0.0388 (5)

H29a 0.0705 0.7815 0.7840 0.047*

H29b 0.1048 0.7671 0.8924 0.047*

C30 0.07453 (6) 0.5282 (4) 0.85020 (15) 0.0372 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1590–m1592

O5 0.0551 (11) 0.0549 (14) 0.0610 (10) −0.0068 (8) 0.0337 (9) −0.0018 (9) O6 0.0621 (12) 0.0432 (11) 0.0570 (11) −0.0008 (9) 0.0277 (9) −0.0001 (9) O1w 0.0423 (10) 0.0308 (8) 0.0377 (8) 0.0032 (7) 0.0078 (7) −0.0035 (7) O2w 0.0388 (10) 0.0531 (12) 0.0343 (8) −0.0097 (8) 0.0109 (7) −0.0025 (8) O3w 0.0427 (11) 0.0400 (10) 0.0483 (10) 0.0044 (8) 0.0086 (8) 0.0078 (8) O4w 0.0533 (9) 0.0357 (11) 0.0470 (8) 0.0024 (8) 0.0252 (7) 0.0013 (8) O5w 0.0668 (13) 0.0561 (14) 0.0731 (14) −0.0004 (10) 0.0323 (11) 0.0099 (11) O6w 0.044 (2) 0.092 (4) 0.060 (2) 0.015 (2) 0.0169 (17) 0.022 (2) O7w 0.0580 (12) 0.0583 (13) 0.0572 (11) −0.0049 (10) 0.0157 (9) −0.0028 (10) N1 0.0294 (8) 0.0434 (10) 0.0313 (7) 0.0010 (10) 0.0097 (6) 0.0005 (11) N2 0.0512 (12) 0.0495 (16) 0.0536 (11) 0.0004 (10) 0.0305 (9) 0.0010 (11) N3 0.0307 (8) 0.0359 (13) 0.0325 (7) 0.0001 (8) 0.0112 (6) 0.0006 (8) N4 0.0646 (16) 0.0641 (16) 0.0563 (13) −0.0191 (12) 0.0291 (12) −0.0050 (12) C1 0.0353 (11) 0.0592 (18) 0.0275 (9) 0.0075 (11) 0.0077 (8) 0.0042 (11) C2 0.0276 (10) 0.066 (2) 0.0319 (9) 0.0078 (10) 0.0061 (8) 0.0028 (11) C3 0.0297 (9) 0.0345 (13) 0.0323 (9) −0.0004 (10) 0.0100 (7) −0.0010 (10) C4 0.0333 (10) 0.0376 (15) 0.0346 (9) 0.0006 (10) 0.0141 (8) 0.0018 (10) C5 0.0326 (10) 0.0582 (14) 0.0422 (10) −0.0007 (15) 0.0134 (8) −0.0052 (16) C6 0.0369 (11) 0.0632 (16) 0.0565 (13) 0.0030 (16) 0.0208 (10) 0.0020 (19) C7 0.0527 (15) 0.0634 (19) 0.0374 (11) −0.0014 (12) 0.0213 (11) −0.0022 (11) C8 0.0391 (12) 0.0657 (19) 0.0354 (10) −0.0073 (11) 0.0118 (9) −0.0036 (11) C9 0.0305 (10) 0.0779 (17) 0.0260 (8) 0.0043 (16) 0.0060 (7) 0.0012 (15) C10 0.0258 (9) 0.0713 (16) 0.0307 (9) 0.0019 (14) 0.0073 (7) 0.0020 (15) C11 0.0317 (11) 0.0500 (14) 0.0276 (9) 0.0001 (9) 0.0095 (8) 0.0029 (9) C12 0.0264 (10) 0.0510 (14) 0.0311 (10) 0.0006 (9) 0.0051 (8) 0.0017 (10) C13 0.0296 (10) 0.0307 (13) 0.0323 (9) −0.0008 (8) 0.0115 (8) −0.0028 (8) C14 0.0314 (9) 0.0463 (12) 0.0306 (8) 0.0047 (13) 0.0110 (7) 0.0028 (13) C15 0.0287 (9) 0.0459 (12) 0.0335 (9) 0.0036 (12) 0.0101 (7) 0.0003 (13) C16 0.069 (2) 0.0631 (19) 0.0434 (14) −0.0111 (15) 0.0144 (13) 0.0067 (14) C17 0.0467 (14) 0.0512 (16) 0.0472 (13) −0.0039 (12) 0.0109 (11) 0.0021 (12) C18 0.0433 (12) 0.0296 (14) 0.0436 (11) −0.0048 (9) 0.0132 (10) −0.0026 (9) C19 0.0418 (11) 0.0447 (12) 0.0472 (11) 0.0002 (15) 0.0112 (9) −0.0013 (16) C20 0.0493 (13) 0.0581 (18) 0.0592 (14) −0.0128 (16) 0.0225 (11) −0.0035 (17) C21 0.0316 (11) 0.0363 (12) 0.0304 (10) −0.0024 (9) 0.0136 (9) −0.0013 (9) C22 0.0370 (12) 0.0446 (14) 0.0389 (11) −0.0104 (10) 0.0135 (10) −0.0071 (10) C23 0.0396 (12) 0.0386 (14) 0.0275 (9) −0.0069 (9) 0.0083 (8) −0.0035 (9) C24 0.0485 (14) 0.0317 (13) 0.0379 (12) −0.0058 (10) 0.0118 (10) 0.0013 (11) C25 0.0477 (15) 0.0323 (13) 0.0423 (13) 0.0037 (10) 0.0072 (11) −0.0051 (11) C26 0.0371 (10) 0.0425 (12) 0.0334 (9) 0.0026 (12) 0.0093 (7) −0.0048 (13) C27 0.0326 (12) 0.0401 (13) 0.0300 (10) −0.0025 (9) 0.0075 (9) −0.0005 (10) C28 0.0396 (12) 0.0338 (13) 0.0347 (11) −0.0024 (10) 0.0122 (9) −0.0025 (10) C29 0.0367 (12) 0.0429 (14) 0.0391 (12) −0.0015 (10) 0.0141 (10) −0.0007 (11) C30 0.0310 (10) 0.0510 (17) 0.0276 (9) −0.0002 (10) 0.0051 (7) 0.0012 (11)

Geometric parameters (Å, º)

Co1—O1 2.180 (2) C5—H5 0.9300

(8)

supporting information

sup-5 Acta Cryst. (2004). E60, m1590–m1592

Co1—O2w 2.146 (2) C7—C8 1.379 (3)

Co1—O3w 2.097 (2) C7—H7 0.9300

Co1—N1 2.167 (2) C8—H8 0.9300

Co1—N3 2.145 (2) C9—C10 1.379 (3)

O1—C21 1.258 (3) C9—H9 0.9300

O2—C21 1.253 (3) C10—H10 0.9300

O3—C23 1.381 (3) C11—C12 1.376 (3)

O3—C22 1.420 (3) C11—H11 0.9300

O4—C27 1.382 (3) C12—C13 1.386 (3)

O4—C29 1.428 (3) C12—H12 0.9300

O5—C30 1.255 (3) C13—C14 1.390 (3)

O6—C30 1.215 (3) C13—C13i 1.485 (4)

O1w—H1w1 0.85 (1) C14—C15 1.384 (3)

O1w—H1w2 0.85 (1) C14—H14 0.9300

O2w—H2w1 0.85 (1) C15—H15 0.9300

O2w—H2w2 0.85 (1) C16—C17 1.377 (4)

O3w—H3w1 0.85 (1) C16—H16 0.9300

O3w—H3w2 0.85 (1) C17—C18 1.392 (3)

O4w—H4w1 0.85 (1) C17—H17 0.9300

O4w—H4w2 0.85 (1) C18—C19 1.385 (3)

O5w—H5w1 0.85 (1) C18—C18i 1.493 (4)

O5w—H5w2 0.85 (1) C19—C20 1.380 (3)

O6w—H6w1 0.86 (1) C19—H19 0.9300

O7w—H7w1 0.85 (1) C20—H20 0.9300

N1—C10 1.335 (2) C21—C22 1.526 (3)

N1—C1 1.334 (3) C22—H22a 0.9700

N2—C7 1.325 (3) C22—H22b 0.9700

N2—C6 1.336 (3) C23—C28 1.381 (3)

N3—C15 1.338 (2) C23—C24 1.389 (4)

N3—C11 1.344 (3) C24—C25 1.381 (4)

N4—C16 1.338 (4) C24—H24 0.9300

N4—C20 1.338 (4) C25—C26 1.392 (4)

C1—C2 1.375 (3) C25—H25 0.9300

C1—H1 0.9300 C26—C27 1.394 (4)

C2—C3 1.389 (3) C26—H26 0.9300

C2—H2 0.9300 C27—C28 1.396 (3)

C3—C9 1.382 (3) C28—H28 0.9300

C3—C4 1.492 (3) C29—C30 1.527 (4)

C4—C5 1.386 (3) C29—H29a 0.9700

C4—C8 1.394 (3) C29—H29b 0.9700

C5—C6 1.382 (3)

O1—Co1—O1w 87.80 (7) N3—C11—C12 123.02 (19)

O1—Co1—O2w 174.70 (7) N3—C11—H11 118.5

O1—Co1—O3w 90.72 (7) C12—C11—H11 118.5

O1—Co1—N1 90.45 (7) C11—C12—C13 120.3 (2)

O1—Co1—N3 90.78 (7) C11—C12—H12 119.9

(9)

supporting information

sup-6 Acta Cryst. (2004). E60, m1590–m1592

O1w—Co1—O3w 178.41 (8) C12—C13—C14 116.96 (18)

O1w—Co1—N1 93.68 (8) C12—C13—C13i 120.9 (2)

O1w—Co1—N3 90.68 (7) C14—C13—C13i 122.1 (2)

O2w—Co1—O3w 94.56 (9) C15—C14—C13 119.30 (18)

O2w—Co1—N1 90.33 (7) C15—C14—H14 120.4

O2w—Co1—N3 88.84 (7) C13—C14—H14 120.4

O3w—Co1—N1 86.90 (9) N3—C15—C14 123.69 (18)

O3w—Co1—N3 88.76 (8) N3—C15—H15 118.2

N1—Co1—N3 175.51 (8) C14—C15—H15 118.2

C21—O1—Co1 129.89 (15) N4—C16—C17 123.6 (3)

C23—O3—C22 117.32 (18) N4—C16—H16 118.2

C27—O4—C29 116.82 (19) C17—C16—H16 118.2

Co1—O1w—H1w1 102 (2) C16—C17—C18 119.3 (3)

Co1—O1w—H1w2 123 (2) C16—C17—H17 120.3

H1w1—O1w—H1w2 109 (2) C18—C17—H17 120.3

Co1—O2w—H2w1 128 (3) C19—C18—C17 117.1 (2)

Co1—O2w—H2w2 108 (3) C19—C18—C18i 122.0 (3)

H2w1—O2w—H2w2 109 (2) C17—C18—C18i 120.8 (3)

Co1—O3w—H3w1 135 (2) C18—C19—C20 120.0 (2)

Co1—O3w—H3w2 113 (2) C18—C19—H19 120.0

H3w1—O3w—H3w2 110 (2) C20—C19—H19 120.0

H4w1—O4w—H4w2 108 (2) N4—C20—C19 122.9 (3)

H5w1—O5w—H5w2 109 (2) N4—C20—H20 118.5

C10—N1—C1 116.34 (17) C19—C20—H20 118.5

C10—N1—Co1 118.82 (13) O2—C21—O1 126.3 (2)

C1—N1—Co1 124.85 (13) O2—C21—C22 115.02 (19)

C7—N2—C6 116.62 (19) O1—C21—C22 118.6 (2)

C15—N3—C11 116.71 (17) O3—C22—C21 115.91 (19)

C15—N3—Co1 122.73 (14) O3—C22—H22a 108.3

C11—N3—Co1 120.47 (13) C21—C22—H22a 108.3

C16—N4—C20 117.0 (2) O3—C22—H22b 108.3

N1—C1—C2 123.46 (18) C21—C22—H22b 108.3

N1—C1—H1 118.3 H22a—C22—H22b 107.4

C2—C1—H1 118.3 O3—C23—C28 124.1 (2)

C1—C2—C3 120.22 (19) O3—C23—C24 115.2 (2)

C1—C2—H2 119.9 C28—C23—C24 120.8 (2)

C3—C2—H2 119.9 C25—C24—C23 119.5 (2)

C9—C3—C2 116.26 (18) C25—C24—H24 120.2

C9—C3—C4 121.28 (17) C23—C24—H24 120.2

C2—C3—C4 122.45 (18) C24—C25—C26 121.0 (2)

C5—C4—C8 116.79 (19) C24—C25—H25 119.5

C5—C4—C3 122.22 (17) C26—C25—H25 119.5

C8—C4—C3 120.99 (19) C25—C26—C27 118.7 (2)

C6—C5—C4 119.54 (19) C25—C26—H26 120.6

C6—C5—H5 120.2 C27—C26—H26 120.6

C4—C5—H5 120.2 O4—C27—C28 115.1 (2)

N2—C6—C5 123.6 (2) O4—C27—C26 124.2 (2)

(10)

supporting information

sup-7 Acta Cryst. (2004). E60, m1590–m1592

C5—C6—H6 118.2 C23—C28—C27 119.3 (2)

N2—C7—C8 124.0 (2) C23—C28—H28 120.4

N2—C7—H7 118.0 C27—C28—H28 120.4

C8—C7—H7 118.0 O4—C29—C30 112.0 (2)

C7—C8—C4 119.4 (2) O4—C29—H29a 109.2

C7—C8—H8 120.3 C30—C29—H29a 109.2

C4—C8—H8 120.3 O4—C29—H29b 109.2

C10—C9—C3 119.94 (17) C30—C29—H29b 109.2

C10—C9—H9 120.0 H29a—C29—H29b 107.9

C3—C9—H9 120.0 O6—C30—O5 126.9 (2)

N1—C10—C9 123.78 (18) O6—C30—C29 120.40 (19)

N1—C10—H10 118.1 O5—C30—C29 112.7 (2)

C9—C10—H10 118.1

O1w—Co1—O1—C21 8.21 (19) C1—N1—C10—C9 −0.2 (6)

O3w—Co1—O1—C21 −172.37 (19) Co1—N1—C10—C9 179.7 (3)

N3—Co1—O1—C21 98.86 (19) C3—C9—C10—N1 0.1 (6)

O2w—Co1—O1—C21 13.0 (9) C15—N3—C11—C12 −2.2 (4)

N1—Co1—O1—C21 −85.5 (2) Co1—N3—C11—C12 174.5 (2)

O1w—Co1—N1—C10 132.3 (3) N3—C11—C12—C13 0.8 (4)

O3w—Co1—N1—C10 −49.2 (3) C11—C12—C13—C14 0.8 (4)

N3—Co1—N1—C10 −33.9 (13) C11—C12—C13—C13i −178.48 (18)

O2w—Co1—N1—C10 45.4 (3) C12—C13—C14—C15 −0.8 (4)

O1—Co1—N1—C10 −139.9 (3) C13i—C13—C14—C15 178.4 (2)

O1w—Co1—N1—C1 −47.8 (3) C11—N3—C15—C14 2.2 (4)

O3w—Co1—N1—C1 130.7 (3) Co1—N3—C15—C14 −174.5 (2)

N3—Co1—N1—C1 145.9 (10) C13—C14—C15—N3 −0.7 (5)

O2w—Co1—N1—C1 −134.8 (3) C20—N4—C16—C17 0.6 (5)

O1—Co1—N1—C1 40.0 (3) N4—C16—C17—C18 1.8 (5)

O1w—Co1—N3—C15 36.1 (2) C16—C17—C18—C19 −2.8 (4)

O3w—Co1—N3—C15 −142.4 (2) C16—C17—C18—C18i 173.3 (2)

O2w—Co1—N3—C15 123.1 (2) C17—C18—C19—C20 1.7 (4)

N1—Co1—N3—C15 −157.6 (11) C18i—C18—C19—C20 −174.4 (2)

O1—Co1—N3—C15 −51.7 (2) C16—N4—C20—C19 −1.7 (5)

O1w—Co1—N3—C11 −140.42 (19) C18—C19—C20—N4 0.6 (5)

O3w—Co1—N3—C11 41.1 (2) Co1—O1—C21—O2 −2.6 (4)

O2w—Co1—N3—C11 −53.5 (2) Co1—O1—C21—C22 175.54 (14)

N1—Co1—N3—C11 25.8 (13) C23—O3—C22—C21 77.1 (2)

O1—Co1—N3—C11 131.77 (19) O2—C21—C22—O3 −153.5 (2)

C10—N1—C1—C2 0.1 (5) O1—C21—C22—O3 28.1 (3)

Co1—N1—C1—C2 −179.8 (2) C22—O3—C23—C28 −15.1 (3)

N1—C1—C2—C3 0.1 (5) C22—O3—C23—C24 164.6 (2)

C1—C2—C3—C9 −0.2 (4) O3—C23—C24—C25 −179.4 (2)

C1—C2—C3—C4 179.3 (3) C28—C23—C24—C25 0.3 (4)

C9—C3—C4—C5 162.9 (3) C23—C24—C25—C26 0.4 (4)

C2—C3—C4—C5 −16.6 (4) C24—C25—C26—C27 −1.0 (3)

C9—C3—C4—C8 −16.9 (4) C29—O4—C27—C28 −174.01 (19)

(11)

supporting information

sup-8 Acta Cryst. (2004). E60, m1590–m1592

C8—C4—C5—C6 0.2 (5) C25—C26—C27—O4 −178.4 (2)

C3—C4—C5—C6 −179.5 (3) C25—C26—C27—C28 0.9 (3)

C7—N2—C6—C5 0.2 (6) O3—C23—C28—C27 179.3 (2)

C4—C5—C6—N2 −0.6 (6) C24—C23—C28—C27 −0.4 (3)

C6—N2—C7—C8 0.6 (5) O4—C27—C28—C23 179.1 (2)

N2—C7—C8—C4 −1.0 (4) C26—C27—C28—C23 −0.3 (3)

C5—C4—C8—C7 0.5 (4) C27—O4—C29—C30 172.60 (18)

C3—C4—C8—C7 −179.7 (3) O4—C29—C30—O6 0.7 (3)

C2—C3—C9—C10 0.1 (5) O4—C29—C30—O5 179.86 (18)

C4—C3—C9—C10 −179.4 (3)

Symmetry code: (i) −x, y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O2 0.85 (1) 1.80 (1) 2.625 (2) 163 (2)

O1w—H1w2···O4w 0.85 (1) 1.79 (1) 2.642 (3) 175 (2)

O2w—H2w1···O6w 0.85 (1) 1.80 (1) 2.632 (4) 169 (4)

O2w—H2w2···N4 0.85 (1) 2.04 (1) 2.850 (3) 159 (4)

O3w—H3w2···O4wii 0.85 (1) 1.91 (1) 2.730 (3) 161 (3)

O3w—H3w1···O7wii 0.85 (1) 1.92 (1) 2.762 (3) 170 (3)

O4w—H4w2···O1iii 0.85 (1) 2.02 (3) 2.745 (3) 143 (4)

O4w—H4w1···N2iv 0.85 (1) 1.91 (1) 2.755 (2) 172 (4)

O5w—H5w2···O6v 0.85 (1) 2.02 (1) 2.851 (3) 166 (4)

O5w—H5w1···O7w 0.85 (1) 2.06 (2) 2.817 (3) 147 (4)

O6w—H6w1···O5i 0.86 (1) 2.01 (2) 2.801 (5) 152 (3)

O7w—H7w1···O5vi 0.85 (1) 1.85 (2) 2.680 (3) 164 (4)

References

Related documents

We also deal with the question whether the inferiority of the polluter pays principle in comparison to the cheapest cost avoider principle can be compensated

Meets expectations -- student demonstrates sufficient knowledge, skills, and abilities or does what is expected of students in collegiate business programs.. Does not meet

The Popcorn Hour C-200 Networked Media Tank (NMT) allows you to stream digital video, audio and photos from various sources for your enjoyment on your HDTV or Home Theater setup.. You

Handling and cleaning the screen surface/ cabinet of the TV set Be sure to unplug the mains lead connected to the TV set from mains socket before cleaning. To avoid

A metadata volume contains information specific to a VPLEX Cluster such as virtual-to-physical mapping information, data about the devices and virtual volumes, system

The targeted real estate ads reminded consumers to check state licenses before hiring a real estate professional and provided the Department’s website for consumers and licensed real

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

During the thesis work, I measured six different parameters: the number of emergency processes, hash table entry number, caching replacement policy, cache entry