• No results found

catena Poly[di­ethyl­enetriaminium [ferrate(III) tri μ sulfato κ6O:O′] monohydrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[di­ethyl­enetriaminium [ferrate(III) tri μ sulfato κ6O:O′] monohydrate]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m593–m595 doi:10.1107/S1600536805005349 Fuet al. (C

4H16N3)[Fe(SO4)3]H2O

m593

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena

-Poly[diethylenetriaminium

[ferrate(III)-tri-

l

-sulfato-

j

6

O

:

O

000

] monohydrate]

Yun-Long Fu,aZhi-Wei Xu,a

Jia-Lin Renaand Seik Weng Ngb*

a

School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People’s Republic of China, andbDepartment of

Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.044 wRfactor = 0.109

Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Ferric sulfate reacts with diethylenetriamine in the presence of acid under hydrothermal conditions to form the title compound, (C4H16N3)[Fe(SO4)3]H2O. The six-coordinate ferrate trianion entity exists as a tri-2-sulfate-bridged chain that propagates along the caxis of the monoclinic unit cell. The trication and uncoordinated water molecule connect the polyanionic chain into a three-dimensional network structure.

Comment

Iron(II) sulfate reacts with ethylenediamine to form ethyl-enediammonium tetraaquabissulfatoferrate(II) (Held, 2003). Under hydrothermal conditions, similar reactions yield ethylenediammonium(2+) trifluorosulfatoferrate(III) and ethylenediammonium(2+) bis[aquafluorosulfatoferrate(II)]. The polyanionic ferrate chains feature 3-bridging sulfate groups (Paul et al., 2003). Triethylenetetraamine affords the analogous ferrate(II) that also features such bridging sulfate groups (Paul et al., 2002). The F atom in the ferrates, which comes from other reagents used in the syntheses, also parti-cipates in bridging. Limited studies on the synthesis of anionic iron–sulfate frameworks have highlighted the influence of the amines, solvents and reaction conditions on the resulting product. The studies have also demonstrated how the fluoride anion functions as a mineralizing agent that is also incorpor-ated into the polyanionic chain. The present study uses iron(III) sulfate as reagent.

Iron(III) sulfate reacts with diethylenetriamine under hydrothermal conditions to yield the title compound, (I) (Fig. 1). The Fe atom is linked to the O atoms of six sulfate groups in an octahedral geometry; the three sulfate groups link two adjacent Fe atoms, giving rise to a chain that propa-gates along the c axis of the monoclinic unit cell (Fig. 2).

(2)

Compared with the reported fluoroferrates, the chain adopts a more regular motif as the bridging entities are all sulfate groups. The trication and uncoordinated water molecule connect the polyanionic chains into a three-dimensional network structure through hydrogen bonds (Table 2).

Experimental

Ferric sulfate nonahydrate (0.28 g, 0.5 mmol), diethylenetriamine (0.15 ml, 0.13 mmol), concentrated sulfuric acid (0.16 ml), water (6 ml), ethanol (5 ml) and glycol (7 ml) were placed in a Teflon-lined stainless steel bomb. The bomb was heated in an autoclave at 383 K for 4 d and then cooled to room temperature to furnish crystals of (I).

Crystal data

(C4H16N3)[Fe(SO4)3]H2O

Mr= 468.24

Monoclinic,P21=c

a= 9.1329 (8) A˚

b= 18.882 (2) A˚

c= 8.8856 (7) A˚

= 103.264 (1) V= 1491.4 (2) A˚3

Z= 4

Dx= 2.085 Mg m

3

MoKradiation Cell parameters from 2096

reflections

= 2.3–27.3 = 1.51 mm1

T= 295 (2) K Rod, yellow

0.270.100.08 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan

(SADABS; Bruker, 2002)

Tmin= 0.367,Tmax= 0.889

8930 measured reflections

3369 independent reflections 2680 reflections withI> 2(I)

Rint= 0.037

max= 27.5

h=11!11

k=13!24

l=11!11

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.109

S= 1.03 3369 reflections 225 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0532P)2

+ 0.8094P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.58 e A˚

3

min=0.44 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Fe1—O1 2.010 (2) Fe1—O4i

1.978 (2) Fe1—O5 2.001 (2)

Fe1—O8i

2.024 (2) Fe1—O9 1.978 (2) Fe1—O12ii 1.978 (2) O1—Fe1—O4i

90.7 (1) O1—Fe1—O5 92.8 (1) O1—Fe1—O8i

86.2 (1) O1—Fe1—O9 175.9 (1) O1—Fe1—O12ii 88.5 (1) O4i

—Fe1—O5 89.8 (1) O4i

—Fe1—O8i

89.9 (1) O4i

—Fe1—O9 92.2 (1) O4i

—Fe1—O12ii

179.0 (1) O5—Fe1—O8i 178.9 (1) O5—Fe1—O9 90.2 (1) O5—Fe1—O12ii

90.7 (1) O8i—Fe1—O9 90.8 (1) O8i

—Fe1—O12ii

89.6 (1) O9—Fe1—O12ii

88.7 (1)

Symmetry codes: (i)x;yþ1 2;z

1

2; (ii)x;yþ 1 2;zþ

[image:2.610.45.293.72.230.2]

1 2.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 O3 0.85 (1) 2.06 (1) 2.904 (4) 176 (4) O1w—H1w2 O7ii 0.85 (1) 2.00 (2) 2.815 (4) 161 (6) N1—H1n1 O1w 0.86 2.19 2.909 (4) 141 N1—H1n2 O11iii

0.86 1.99 2.779 (4) 152 N1—H1n3 O8iv

0.86 2.13 2.971 (4) 166 N2—H2n2 O2v

0.86 2.15 2.850 (4) 138 N2—H2n1 O6vi

0.86 2.07 2.867 (4) 154 N3—H3n3 O3vii

0.86 2.04 2.881 (4) 166 N3—H3n2 O6ii 0.86 2.07 2.902 (4) 162 N3—H3n1 O10viii

0.86 2.06 2.816 (4) 146

Symmetry codes: (ii)x;yþ1 2;zþ

1

2; (iii)x;y 1 2;zþ

1

2; (iv)xþ1;y 1 2;zþ

3 2; (v)xþ1;y;zþ2; (vi)x;y1

2;zþ 3

2; (vii)x;y;zþ1; (viii)x;yþ 1 2;zþ

3 2.

The C- and N-bound H atoms were placed at calculated positions (C—H = 0.97 A˚ and N—H = 0.86 A˚) and were included in the refinement in the riding model approximation, with Uiso(H) =

1.2Ueq(C,N). The water H atoms were located and refined

isotropi-metal-organic papers

m594

Fuet al. (C

[image:2.610.44.296.292.545.2]

4H16N3)[Fe(SO4)3]H2O Acta Cryst.(2005). E61, m593–m595

Figure 2

ORTEPII(Johnson, 1976) plot of the polycationic [Fe(SO4)3] chain.

Figure 1

ORTEPII(Johnson, 1976) plot illustrating the coordination geometry of the Fe atom in [C4H16N3][Fe(SO4)3]H2O. Displacement ellipsoids are

[image:2.610.315.564.557.665.2]
(3)

cally with distance restraints of O—H = 0.85 (1) A˚ and H H = 1.39 (1) A˚ .

Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2002).SADABS,SAINTandSMART. Bruker AXS Inc., Madison, Winsonsin, USA.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Held, P. (2003).Acta Cryst.E59, m197–m198.

Paul, G., Choudhury, A. & Rao, C. N. R. (2002).Chem. Commun.pp. 1904– 1905.

Paul, G., Choudhury, A. & Rao, C. N. R. (2003).Chem. Mater.15, 1174– 1180.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

Acta Cryst.(2005). E61, m593–m595 Fuet al. (C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m593–m595

supporting information

Acta Cryst. (2005). E61, m593–m595 [https://doi.org/10.1107/S1600536805005349]

catena

-Poly[diethylenetriaminium [ferrate(III)-tri-

µ

-sulfato-

κ

6

O

:

O

]

monohydrate]

Yun-Long Fu, Zhi-Wei Xu, Jia-Lin Ren and Seik Weng Ng

catena-Poly[diethylenetriaminium [ferrate(III)-tri-µ-sulfato-κ6O:O] monohydrate]

Crystal data

(C4H16N3)[Fe(SO4)3]·H2O

Mr = 468.24

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.1329 (8) Å

b = 18.882 (2) Å

c = 8.8856 (7) Å

β = 103.264 (1)°

V = 1491.4 (2) Å3

Z = 4

F(000) = 964

Dx = 2.085 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2096 reflections

θ = 2.3–27.3°

µ = 1.51 mm−1

T = 295 K Rod, yellow

0.27 × 0.10 × 0.08 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.367, Tmax = 0.889

8930 measured reflections 3369 independent reflections 2680 reflections with I > 2σ(I)

Rint = 0.037

θmax = 27.5°, θmin = 2.2°

h = −11→11

k = −13→24

l = −11→11

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.109

S = 1.03 3369 reflections 225 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0532P)2 + 0.8094P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.58 e Å−3

Δρmin = −0.44 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m593–m595

S1 0.44676 (9) 0.18027 (4) 0.51862 (9) 0.0132 (2)

S3 −0.01914 (9) 0.30920 (4) −0.09294 (9) 0.0131 (2)

S2 0.21261 (9) 0.37685 (4) 0.47439 (9) 0.0138 (2)

O1 0.3986 (2) 0.2320 (1) 0.3896 (2) 0.0156 (5)

O2 0.5946 (3) 0.2002 (1) 0.6052 (3) 0.0310 (6)

O3 0.4441 (3) 0.1084 (1) 0.4567 (3) 0.0247 (6)

O4 0.3380 (3) 0.1816 (1) 0.6212 (3) 0.0192 (5)

O5 0.1545 (3) 0.3343 (1) 0.3329 (2) 0.0183 (5)

O6 0.0837 (3) 0.4118 (1) 0.5136 (3) 0.0250 (6)

O7 0.3259 (3) 0.4265 (1) 0.4506 (3) 0.0282 (6)

O8 0.2858 (3) 0.3294 (1) 0.6053 (2) 0.0165 (5)

O9 0.0373 (3) 0.2660 (1) 0.0487 (3) 0.0184 (5)

O10 −0.0504 (3) 0.3813 (1) −0.0540 (3) 0.0263 (6)

O11 −0.1519 (3) 0.2741 (1) −0.1847 (3) 0.0214 (5)

O12 0.1009 (2) 0.3135 (1) −0.1827 (2) 0.0151 (5)

O1w 0.3600 (4) 0.0102 (2) 0.6739 (4) 0.0459 (9)

N1 0.3903 (3) −0.1339 (2) 0.7928 (3) 0.0230 (7)

N2 0.2150 (3) −0.1308 (1) 1.1382 (3) 0.0215 (7)

N3 0.1613 (4) 0.0392 (2) 1.3315 (4) 0.0348 (8)

C1 0.3147 (4) −0.1027 (2) 0.9079 (4) 0.0223 (8)

C2 0.3114 (4) −0.1561 (2) 1.0324 (4) 0.0249 (8)

C3 0.2499 (4) −0.0584 (2) 1.1980 (5) 0.0271 (8)

C4 0.1582 (5) −0.0375 (2) 1.3091 (5) 0.033 (1)

H1w1 0.385 (6) 0.041 (2) 0.614 (4) 0.07 (2)*

H1w2 0.330 (6) 0.032 (2) 0.745 (4) 0.08 (2)*

H1n1 0.3924 −0.1033 0.7216 0.028*

H1n2 0.3416 −0.1708 0.7522 0.028*

H1n3 0.4807 −0.1457 0.8376 0.028*

H2n1 0.1223 −0.1323 1.0889 0.026*

H2n2 0.2258 −0.1594 1.2151 0.026*

H3n1 0.1079 0.0502 1.3963 0.042*

H3n2 0.1252 0.0598 1.2445 0.042*

H3n3 0.2525 0.0528 1.3669 0.042*

H1a 0.2128 −0.0890 0.8577 0.027*

H1b 0.3684 −0.0607 0.9529 0.027*

H2a 0.4130 −0.1643 1.0921 0.030*

H2b 0.2722 −0.2006 0.9854 0.030*

H3a 0.2313 −0.0253 1.1121 0.033*

H3b 0.3557 −0.0555 1.2489 0.033*

H4a 0.0551 −0.0529 1.2703 0.040*

H4b 0.1972 −0.0607 1.4075 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m593–m595

S2 0.0180 (4) 0.0126 (4) 0.0109 (4) 0.0009 (3) 0.0034 (3) −0.0004 (3) O1 0.015 (1) 0.020 (1) 0.010 (1) −0.001 (1) 0.000 (1) 0.003 (1) O2 0.022 (1) 0.039 (2) 0.026 (1) −0.009 (1) −0.008 (1) 0.015 (1) O3 0.037 (2) 0.018 (1) 0.024 (1) 0.004 (1) 0.017 (1) −0.002 (1) O4 0.027 (1) 0.018 (1) 0.016 (1) 0.003 (1) 0.013 (1) 0.001 (1) O5 0.023 (1) 0.020 (1) 0.011 (1) 0.003 (1) 0.001 (1) −0.002 (1) O6 0.027 (1) 0.026 (1) 0.022 (1) 0.011 (1) 0.004 (1) −0.007 (1) O7 0.034 (2) 0.025 (2) 0.024 (1) −0.010 (1) 0.003 (1) 0.007 (1) O8 0.021 (1) 0.016 (1) 0.012 (1) 0.000 (1) 0.002 (1) 0.004 (1) O9 0.019 (1) 0.026 (1) 0.010 (1) 0.000 (1) 0.001 (1) 0.006 (1) O10 0.034 (2) 0.020 (1) 0.031 (2) 0.004 (1) 0.021 (1) −0.004 (1) O11 0.017 (1) 0.025 (1) 0.020 (1) −0.004 (1) −0.001 (1) 0.005 (1) O12 0.020 (1) 0.015 (1) 0.012 (1) 0.001 (1) 0.007 (1) −0.001 (1) O1w 0.084 (3) 0.025 (2) 0.036 (2) 0.000 (2) 0.026 (2) 0.003 (1) N1 0.023 (2) 0.025 (2) 0.022 (2) −0.003 (1) 0.008 (1) −0.001 (1) N2 0.029 (2) 0.017 (2) 0.020 (2) 0.000 (1) 0.009 (1) 0.001 (1) N3 0.034 (2) 0.028 (2) 0.042 (2) 0.003 (2) 0.009 (2) −0.007 (2) C1 0.026 (2) 0.021 (2) 0.022 (2) 0.001 (1) 0.009 (2) −0.002 (1) C2 0.033 (2) 0.020 (2) 0.024 (2) 0.004 (2) 0.010 (2) 0.000 (2) C3 0.028 (2) 0.015 (2) 0.038 (2) −0.004 (2) 0.006 (2) −0.007 (2) C4 0.058 (3) 0.020 (2) 0.030 (2) −0.011 (2) 0.026 (2) −0.006 (2)

Geometric parameters (Å, º)

Fe1—O1 2.010 (2) N3—C4 1.461 (4)

Fe1—O4i 1.978 (2) C1—C2 1.502 (5)

Fe1—O5 2.001 (2) C3—C4 1.487 (5)

Fe1—O8i 2.024 (2) O1W—H1w1 0.85 (1)

Fe1—O9 1.978 (2) O1W—H1w2 0.85 (1)

Fe1—O12ii 1.978 (2) N1—H1n1 0.86

S1—O2 1.442 (3) N1—H1n2 0.86

S1—O3 1.462 (2) N1—H1n3 0.86

S1—O1 1.494 (2) N2—H2n1 0.86

S1—O4 1.494 (2) N2—H2n2 0.86

S3—O10 1.449 (2) N3—H3n1 0.86

S3—O11 1.456 (2) N3—H3n2 0.86

S3—O9 1.489 (2) N3—H3n3 0.86

S3—O12 1.499 (2) C1—H1a 0.97

S2—O7 1.447 (3) C1—H1b 0.97

S2—O6 1.460 (2) C2—H2a 0.97

S2—O5 1.483 (2) C2—H2b 0.97

S2—O8 1.499 (2) C3—H3a 0.97

N1—C1 1.481 (4) C3—H3b 0.97

N2—C3 1.475 (4) C4—H4a 0.97

N2—C2 1.505 (4) C4—H4b 0.97

O1—Fe1—O4i 90.7 (1) N2—C3—C4 112.2 (3)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m593–m595

O1—Fe1—O8i 86.2 (1) H1W1—O1W—H1W2 109 (2)

O1—Fe1—O9 175.9 (1) C1—N1—H1n1 109.5

O1—Fe1—O12ii 88.5 (1) C1—N1—H1n2 109.5

O4i—Fe1—O5 89.8 (1) H1n1—N1—H1n2 109.5

O4i—Fe1—O8i 89.9 (1) C1—N1—H1n3 109.5

O4i—Fe1—O9 92.2 (1) H1n1—N1—H1n3 109.5

O4i—Fe1—O12ii 179.0 (1) H1n2—N1—H1n3 109.5

O5—Fe1—O8i 178.9 (1) C3—N2—H2n1 108.7

O5—Fe1—O9 90.2 (1) C2—N2—H2n1 108.7

O5—Fe1—O12ii 90.7 (1) C3—N2—H2n2 108.7

O8i—Fe1—O9 90.8 (1) C2—N2—H2n2 108.7

O8i—Fe1—O12ii 89.6 (1) H2n1—N2—H2n2 107.6

O9—Fe1—O12ii 88.7 (1) C4—N3—H3n1 109.5

O2—S1—O3 112.0 (2) C4—N3—H3n2 109.5

O2—S1—O1 108.3 (1) H3n1—N3—H3n2 109.5

O3—S1—O1 110.0 (1) C4—N3—H3n3 109.5

O2—S1—O4 110.0 (2) H3n1—N3—H3n3 109.5

O3—S1—O4 106.8 (1) H3n2—N3—H3n3 109.5

O1—S1—O4 109.7 (1) N1—C1—H1a 109.8

O10—S3—O11 112.2 (2) C2—C1—H1a 109.8

O10—S3—O9 111.2 (1) N1—C1—H1b 109.8

O11—S3—O9 107.8 (1) C2—C1—H1b 109.8

O10—S3—O12 106.6 (1) H1a—C1—H1b 108.2

O11—S3—O12 110.1 (1) C1—C2—H2a 109.4

O9—S3—O12 109.0 (1) N2—C2—H2a 109.4

O7—S2—O6 112.6 (2) C1—C2—H2b 109.4

O7—S2—O5 110.9 (1) N2—C2—H2b 109.4

O6—S2—O5 107.2 (1) H2a—C2—H2b 108.0

O7—S2—O8 107.1 (1) N2—C3—C4 112.2 (3)

O6—S2—O8 109.0 (1) N2—C3—H3a 109.2

O5—S2—O8 110.1 (1) C4—C3—H3a 109.2

S1—O1—Fe1 139.0 (1) N2—C3—H3b 109.2

S1—O4—Fe1ii 142.2 (2) C4—C3—H3b 109.2

S2—O5—Fe1 139.3 (2) H3a—C3—H3b 107.9

S2—O8—Fe1ii 135.4 (1) N3—C4—C3 110.9 (3)

S3—O9—Fe1 141.2 (2) N3—C4—H4a 109.5

S3—O12—Fe1i 137.5 (1) C3—C4—H4a 109.5

C3—N2—C2 114.2 (3) N3—C4—H4b 109.5

N1—C1—C2 109.5 (3) C3—C4—H4b 109.5

C1—C2—N2 111.1 (3) H4a—C4—H4b 108.0

O2—S1—O1—Fe1 −176.4 (2) O7—S2—O8—Fe1ii 179.4 (2)

O3—S1—O1—Fe1 60.9 (2) O6—S2—O8—Fe1ii 57.3 (2)

O4—S1—O1—Fe1 −56.4 (2) O5—S2—O8—Fe1ii −60.0 (2)

O12ii—Fe1—O1—S1 12.0 (2) O10—S3—O9—Fe1 −72.9 (3)

O4i—Fe1—O1—S1 −167.5 (2) O11—S3—O9—Fe1 163.7 (2)

O5—Fe1—O1—S1 102.7 (2) O12—S3—O9—Fe1 44.2 (3)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m593–m595

O2—S1—O4—Fe1ii 77.9 (3) O4i—Fe1—O9—S3 −7.0 (2)

O3—S1—O4—Fe1ii −160.3 (2) O5—Fe1—O9—S3 82.8 (2)

O1—S1—O4—Fe1ii −41.1 (3) O8i—Fe1—O9—S3 −97.0 (2)

O7—S2—O5—Fe1 76.1 (3) O10—S3—O12—Fe1i 179.0 (2)

O6—S2—O5—Fe1 −160.6 (2) O11—S3—O12—Fe1i −59.1 (2)

O8—S2—O5—Fe1 −42.2 (3) O9—S3—O12—Fe1i 58.9 (2)

O12ii—Fe1—O5—S2 97.2 (2) N1—C1—C2—N2 −171.2 (3)

O9—Fe1—O5—S2 −174.1 (2) C3—N2—C2—C1 −50.3 (4)

O4i—Fe1—O5—S2 −81.9 (2) C2—N2—C3—C4 −176.5 (3)

O1—Fe1—O5—S2 8.7 (2) N2—C3—C4—N3 −163.4 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O3 0.85 (1) 2.06 (1) 2.904 (4) 176 (4)

O1w—H1w2···O7ii 0.85 (1) 2.00 (2) 2.815 (4) 161 (6)

N1—H1n1···O1w 0.86 2.19 2.909 (4) 141

N1—H1n2···O11iii 0.86 1.99 2.779 (4) 152

N1—H1n3···O8iv 0.86 2.13 2.971 (4) 166

N2—H2n2···O2v 0.86 2.15 2.850 (4) 138

N2—H2n1···O6vi 0.86 2.07 2.867 (4) 154

N3—H3n3···O3vii 0.86 2.04 2.881 (4) 166

N3—H3n2···O6ii 0.86 2.07 2.902 (4) 162

N3—H3n1···O10viii 0.86 2.06 2.816 (4) 146

Figure

Table 2

References

Related documents

We have proposed that an intervention using motor learning principles with an implicit learning task could improve the adaptive abilities of obese individuals during movement

Four multiple linear regression models with vegetation lifeforms (trees, shrubs, lianas and grass) abundance as dependent variables and termite mounds physi- ography (basal

developed a noninvasive way to assess airway dysfunction in asthma by measuring mucus accumulation using multidetector computed tomography (MDCT) and found that mucus plugging

Our data suggest that ERAD of nascent POMC proteins, presumably in the misfolded confor- mation, is a prerequisite for maturation and exit of other POMC molecules from the ER,

The method of extracting trigger word based on machine learning mainly has the following several steps: at first, do sentence segmentation and mark POS by using segmentation

The results of the study showed that physical fitness components i.e., lower limb strength, agility, dynamic balance and hand eye coordination showed significant

Additionally, a positive long-run response of stock market development to all three forms of liberalization in all the markets considered suggested that greater focus should

За разлику од тога, крива која показује конкретну ситуацију на тржишту, чак и ако је испуњен услов потпуне конкуренције (тј. ако индекси Линда константно опадају),