3-Amino-1-(4-fluorophenyl)-8-methoxy-1
H
-benzo[
f
]chromene-2-carbonitrile
Ahmed M. El-Agrody,a,bMohamed A. Al-Omar,c,d Abd El-Galil E. Amr,d,e‡ Seik Weng Ngf,gand Edward R. T. Tiekinkf*
aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia,bChemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt,cPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,dDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,eApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt,fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, andgChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: [email protected]
Received 25 February 2013; accepted 25 February 2013
Key indicators: single-crystal X-ray study;T= 295 K; mean(C–C) = 0.003 A˚; Rfactor = 0.049;wRfactor = 0.138; data-to-parameter ratio = 16.0.
The title compound, C21H15FN2O2, features an approximately
planar 1H-benzo[f]chromene fused-ring system (r.m.s. devia-tion for the 14 non-H atoms = 0.052 A˚ ), with the fluoro-benzene ring being almost perpendicular to this [dihedral angle = 85.30 (7)]. The furan ring has a flattened half-chair
conformation, with the methine C atom deviating by 0.132 (2) A˚ from the plane of the remaining atoms (r.m.s. deviation = 0.0107 A˚ ). In the crystal, inversion dimers are formedviapairs of amine–cyano N—H N hydrogen bonds. The dimers are connected into a three-dimensional architec-ture by C—H N(cyano), C—H and–[intercentroid distance = 3.6671 (10) A˚ ] interactions.
Related literature
For background and various applications of benzo- and naphthopyran- derivatives, see: Bonsignore et al. (1993); Hafez et al. (1987). For background to the chemistry and biological activity of 4H-pyran derivatives, see: El-Agrodyet al.(2011); Sabryet al.(2011). For related structures, see: Wang
et al.(2008); Shekharet al.(2012); Amret al.(2013).
Experimental
Crystal data
C21H15FN2O2
Mr= 346.35 Triclinic,P1
a= 8.9672 (7) A˚
b= 10.4365 (8) A˚
c= 10.9058 (8) A˚
= 103.063 (7)
= 106.859 (7)
= 111.399 (8)
V= 844.01 (11) A˚3
Z= 2
MoKradiation
= 0.10 mm1
T= 295 K
0.300.200.10 mm
Data collection
Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)
Tmin= 0.722,Tmax= 1.000
7109 measured reflections 3902 independent reflections 2716 reflections withI> 2(I)
Rint= 0.023
Refinement
R[F2> 2(F2)] = 0.049
wR(F2) = 0.138
S= 1.05 3902 reflections 244 parameters
H atoms treated by a mixture of independent and constrained refinement
max= 0.20 e A˚ 3
[image:1.610.312.565.522.579.2]min=0.16 e A˚ 3
Table 1
Hydrogen-bond geometry (A˚ ,).
Cg1 is the centroid of the C1–C4,C9,C10 ring.
D—H A D—H H A D A D—H A
N1—H1 N2i
0.89 (2) 2.16 (2) 3.043 (2) 170.0 (18) C19—H19 N2ii
0.93 2.51 3.259 (3) 138
C11—H11 Cg1iii
0.98 2.90 3.7084 (17) 141 C14—H14C Cg1iv
0.96 2.92 3.772 (3) 148
Symmetry codes: (i) xþ2;yþ1;zþ2; (ii) xþ1;yþ1;zþ2; (iii)
xþ1;yþ1;zþ1; (iv)xþ1;yþ2;zþ1.
Data collection: CrysAlis PRO(Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97(Sheldrick, 2008); program(s) used to refine structure:SHELXL97(Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Bran-denburg, 2006); software used to prepare material for publication: publCIF(Westrip, 2010).
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia)
organic compounds
o476
El-Agrodyet al. doi:10.1107/S160053681300545X Acta Cryst.(2013). E69, o476–o477Acta Crystallographica Section E Structure Reports
Online
ISSN 1600-5368
Research scheme (UM.C/HIR-MOHE/SC/12).
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7047).
References
Agilent (2011).CrysAlis PRO. Agilent Technologies, Yarnton, England. Amr, A.-G. E., El-Agrody, A. M., Al-Omar, M. A., Ng, S. W. & Tiekink,
E. R. T. (2013).Acta Cryst.E69, o478–o479.
Bonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993).Eur. J. Med. Chem.
28, 517–520.
El-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011).J. Chem. Res.35, 77–83. Farrugia, L. J. (2012).J. Appl. Cryst.45, 849–854.
Hafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A. & El-Taweel, F. M. A. A. (1987).Heterocycles,26, 903–907.
Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011).Eur. J. Med. Chem.46, 765–772.
Shekhar, A. C., Kumar, A. R., Sathaiah, G., Raju, K., Rao, P. S., Sridhar, M., Narsaiah, B., Srinivas, P. V. S. S. & Sridhar, B. (2012).Helv. Chim. Acta,95, 502–508.
Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.
Wang, X.-S., Yang, G.-S. & Zhao, G. (2008).Tetrahedron Asymmetry,19, 709– 714.
supporting information
sup-1
Acta Cryst. (2013). E69, o476–o477
supporting information
Acta Cryst. (2013). E69, o476–o477 [doi:10.1107/S160053681300545X]
3-Amino-1-(4-fluorophenyl)-8-methoxy-1
H
-benzo[
f
]chromene-2-carbonitrile
Ahmed M. El-Agrody, Mohamed A. Al-Omar, Abd El-Galil E. Amr, Seik Weng Ng and Edward R.
T. Tiekink
S1. Comment
Benzo- and naphthopyran-derivatives can possess biological and pharmacological activities, such as anti-coagulant, spasmolytic, diuretic, anti-cancer and anti-anaphylactin activities (Bonsignore et al., 1993). Some of these compounds can also be employed as cosmetics, pigments and as potential biodegradable agrochemicals (Hafez, et al., 1987). Derivatives of 4H-pyran are also known to exhibit biological activities (El-Agrody et al., 2011; Sabry et al., 2011), and form the focus of on-going studies of their chemistry. In this connection, herein, the crystal and molecular structure of the title compound, (I), is described.
In (I), Fig. 1, the 14 non-hydrogen atoms of the 1H-benzo[f]chromene fused-ring system are co-planar with a r.m.s. deviation of the fitted atoms = 0.052 Å. The maximum deviations are 0.136 (2) Å for the methine-C11 atom and -0.052 (2) Å for the aromatic-C7 atom. This implies that the furan ring is approximately planar as borne out by the observation that the methine-C11 atom lies only 0.132 (2) Å above the plane of the remaining atoms (r.m.s. deviation = 0.0107 Å), indicating a flattened half-chair conformation. The fluorobenzene ring is approximately perpendicular to the 1H
-benzo[f]chromene residue, forming a dihedral angle of 85.30 (7)°. The methoxy group is co-planar with the ring to which it is attached as seen in the value of the C14—O2—C6—C5 torsion angle of 0.5 (3)°. The structure described here resembles very closely those of the 4-bromo (Wang et al., 2008) and 2-CF3 (Shekhar et al., 2012) derivatives of the
parent compound, as well as that of the 7-methoxy analogue (Amr et al., 2013).
Hydrogen bonding features in the crystal packing whereby 12-membered {···HNC3N}2 synthons formed by
centrosymmetrically related molecules arise from the formation of amine-N—H···N(cyano) hydrogen bonds, Table 1. These are connected into a three-dimensional architecture by C—H···N2(cyano), C—H···π and π—π [inter-centroid distance for (O1,C1,C10–C13)···(C4–C9)i = 3.6671 (10) Å, inter-planar angle = 4.19 (8)° for i: 1 - x, 1 - y, 1 - z]
interactions, Fig. 2 and Table 1. The second amine-H2 atom does not participate in a significant intermolecular interaction.
S2. Experimental
A solution of 6-bromo-2-naphthol (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-fluorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred corresponding to a reaction time of 60 min. The solid product which formed was collected by filtration and recrystallized from ethanol to give the title compound, (I), in the form of light brown prisms; M.pt: 529–530 K.
S3. Refinement
The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
Figure 1
supporting information
sup-3
[image:5.610.135.475.72.521.2]Acta Cryst. (2013). E69, o476–o477
Figure 2
A view in projection down the b axis of the crystal packing in (I). The N—H···N, C—H···N, C—H···π and π–π
interactions are shown as blue, orange, purple and brown dashed lines, respectively.
3-Amino-1-(4-fluorophenyl)-8-methoxy-1H-benzo[f]chromene-2-carbonitrile
Crystal data
C21H15FN2O2
Mr = 346.35
Triclinic, P1 Hall symbol: -P 1
a = 8.9672 (7) Å
b = 10.4365 (8) Å
c = 10.9058 (8) Å
α = 103.063 (7)°
β = 106.859 (7)°
γ = 111.399 (8)°
V = 844.01 (11) Å3
Z = 2
F(000) = 360
Dx = 1.363 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2078 reflections
θ = 3.2–27.5°
Prism, light-brown
Data collection
Agilent SuperNova Dual
diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray
Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm-1
ω scan
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)
Tmin = 0.722, Tmax = 1.000
7109 measured reflections 3902 independent reflections 2716 reflections with I > 2σ(I)
Rint = 0.023
θmax = 27.6°, θmin = 3.2°
h = −11→11
k = −13→12
l = −14→13
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.049
wR(F2) = 0.138
S = 1.05 3902 reflections 244 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.0568P)2 + 0.1033P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001
Δρmax = 0.20 e Å−3
Δρmin = −0.16 e Å−3
Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient: 0.031 (4)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
F1 0.65107 (18) 1.02622 (15) 1.19074 (13) 0.0888 (4) O1 0.93475 (14) 0.70759 (13) 0.65915 (12) 0.0489 (3) O2 0.08769 (17) 0.77609 (16) 0.33736 (14) 0.0685 (4) N1 1.0769 (2) 0.62403 (19) 0.79544 (18) 0.0538 (4) N2 0.8096 (2) 0.4809 (2) 0.97164 (18) 0.0655 (5) C1 0.7901 (2) 0.72705 (17) 0.59527 (16) 0.0416 (4) C2 0.8067 (2) 0.7931 (2) 0.49837 (18) 0.0511 (4)
H2A 0.9069 0.8184 0.4806 0.061*
C3 0.6756 (2) 0.8201 (2) 0.43063 (18) 0.0518 (4)
H3 0.6879 0.8664 0.3681 0.062*
supporting information
sup-5
Acta Cryst. (2013). E69, o476–o477
H5 0.3935 0.8522 0.3199 0.059*
C6 0.2310 (2) 0.75979 (19) 0.40231 (17) 0.0493 (4) C7 0.2135 (2) 0.6892 (2) 0.49622 (17) 0.0503 (4)
H7 0.1100 0.6585 0.5094 0.060*
C8 0.3452 (2) 0.66482 (18) 0.56843 (16) 0.0444 (4)
H8 0.3307 0.6182 0.6305 0.053*
C9 0.50492 (19) 0.70961 (16) 0.55037 (15) 0.0391 (4) C10 0.64573 (19) 0.68629 (16) 0.62547 (15) 0.0370 (3) C11 0.63936 (18) 0.62664 (16) 0.73856 (15) 0.0370 (3)
H11 0.5315 0.5327 0.7006 0.044*
C12 0.79503 (19) 0.59719 (16) 0.78873 (15) 0.0396 (4) C13 0.93049 (19) 0.63973 (17) 0.75081 (16) 0.0411 (4) C14 0.0952 (3) 0.8443 (3) 0.2389 (2) 0.0773 (6) H14A −0.0123 0.8498 0.2013 0.116*
H14B 0.1107 0.7867 0.1661 0.116*
H14C 0.1921 0.9424 0.2829 0.116*
C15 0.63823 (18) 0.73347 (16) 0.85967 (15) 0.0376 (3) C16 0.7538 (2) 0.88289 (19) 0.91135 (18) 0.0509 (4)
H16 0.8299 0.9174 0.8704 0.061*
C17 0.7591 (3) 0.9820 (2) 1.0222 (2) 0.0614 (5)
H17 0.8370 1.0825 1.0558 0.074*
C18 0.6474 (2) 0.9291 (2) 1.08140 (18) 0.0567 (5) C19 0.5336 (2) 0.7830 (2) 1.03607 (19) 0.0614 (5)
H19 0.4600 0.7495 1.0792 0.074*
C20 0.5293 (2) 0.6848 (2) 0.92405 (17) 0.0507 (4)
H20 0.4517 0.5844 0.8918 0.061*
C21 0.80450 (19) 0.53183 (18) 0.88874 (17) 0.0453 (4) H1 1.096 (3) 0.588 (2) 0.861 (2) 0.065 (6)* H2 1.158 (3) 0.672 (2) 0.772 (2) 0.063 (6)*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
C12 0.0442 (8) 0.0377 (8) 0.0383 (8) 0.0195 (6) 0.0159 (6) 0.0168 (7) C13 0.0443 (8) 0.0390 (8) 0.0399 (8) 0.0205 (7) 0.0150 (7) 0.0156 (7) C14 0.0899 (15) 0.0878 (16) 0.0666 (13) 0.0557 (13) 0.0184 (11) 0.0427 (12) C15 0.0386 (8) 0.0412 (8) 0.0351 (8) 0.0187 (6) 0.0145 (6) 0.0181 (6) C16 0.0589 (10) 0.0453 (10) 0.0502 (10) 0.0188 (8) 0.0305 (8) 0.0192 (8) C17 0.0745 (12) 0.0440 (10) 0.0576 (11) 0.0199 (9) 0.0313 (10) 0.0123 (9) C18 0.0660 (11) 0.0633 (12) 0.0422 (9) 0.0335 (9) 0.0254 (8) 0.0117 (9) C19 0.0593 (11) 0.0734 (13) 0.0491 (10) 0.0220 (9) 0.0328 (9) 0.0195 (9) C20 0.0501 (9) 0.0492 (10) 0.0450 (9) 0.0129 (7) 0.0224 (7) 0.0172 (8) C21 0.0399 (8) 0.0488 (9) 0.0491 (9) 0.0212 (7) 0.0159 (7) 0.0234 (8)
Geometric parameters (Å, º)
F1—C18 1.362 (2) C8—C9 1.423 (2)
O1—C13 1.3508 (19) C8—H8 0.9300
O1—C1 1.3933 (18) C9—C10 1.428 (2)
O2—C6 1.3665 (19) C10—C11 1.508 (2)
O2—C14 1.419 (2) C11—C12 1.513 (2)
N1—C13 1.345 (2) C11—C15 1.529 (2)
N1—H1 0.89 (2) C11—H11 0.9800
N1—H2 0.87 (2) C12—C13 1.351 (2)
N2—C21 1.146 (2) C12—C21 1.410 (2)
C1—C10 1.369 (2) C14—H14A 0.9600
C1—C2 1.400 (2) C14—H14B 0.9600
C2—C3 1.356 (2) C14—H14C 0.9600
C2—H2A 0.9300 C15—C20 1.379 (2)
C3—C4 1.416 (2) C15—C16 1.381 (2)
C3—H3 0.9300 C16—C17 1.379 (2)
C4—C9 1.415 (2) C16—H16 0.9300
C4—C5 1.418 (2) C17—C18 1.363 (3)
C5—C6 1.364 (2) C17—H17 0.9300
C5—H5 0.9300 C18—C19 1.357 (3)
C6—C7 1.402 (2) C19—C20 1.387 (2)
C7—C8 1.361 (2) C19—H19 0.9300
C7—H7 0.9300 C20—H20 0.9300
supporting information
sup-7
Acta Cryst. (2013). E69, o476–o477
C2—C3—C4 120.94 (16) O2—C14—H14A 109.5
C2—C3—H3 119.5 O2—C14—H14B 109.5
C4—C3—H3 119.5 H14A—C14—H14B 109.5
C9—C4—C5 120.25 (15) O2—C14—H14C 109.5 C9—C4—C3 118.64 (15) H14A—C14—H14C 109.5 C5—C4—C3 121.11 (16) H14B—C14—H14C 109.5 C6—C5—C4 120.17 (16) C20—C15—C16 118.03 (15) C6—C5—H5 119.9 C20—C15—C11 121.98 (14) C4—C5—H5 119.9 C16—C15—C11 119.93 (13) O2—C6—C5 125.58 (17) C17—C16—C15 121.56 (16) O2—C6—C7 114.43 (15) C17—C16—H16 119.2 C5—C6—C7 119.99 (15) C15—C16—H16 119.2 C8—C7—C6 121.13 (16) C18—C17—C16 118.34 (17)
C8—C7—H7 119.4 C18—C17—H17 120.8
C6—C7—H7 119.4 C16—C17—H17 120.8
C7—C8—C9 120.94 (16) C19—C18—F1 118.80 (17) C7—C8—H8 119.5 C19—C18—C17 122.38 (16)
C9—C8—H8 119.5 F1—C18—C17 118.82 (17)
C4—C9—C10 120.40 (14) C18—C19—C20 118.59 (16) C4—C9—C8 117.51 (14) C18—C19—H19 120.7 C10—C9—C8 122.09 (15) C20—C19—H19 120.7 C1—C10—C9 117.30 (14) C15—C20—C19 121.09 (16) C1—C10—C11 121.40 (14) C15—C20—H20 119.5 C9—C10—C11 121.23 (13) C19—C20—H20 119.5 C10—C11—C12 109.72 (12) N2—C21—C12 177.89 (18)
C2—C1—C10—C9 1.8 (2) C16—C17—C18—F1 −179.78 (17) O1—C1—C10—C11 4.4 (2) F1—C18—C19—C20 179.49 (17) C2—C1—C10—C11 −175.07 (14) C17—C18—C19—C20 −1.1 (3) C4—C9—C10—C1 −2.9 (2) C16—C15—C20—C19 1.0 (3) C8—C9—C10—C1 176.87 (14) C11—C15—C20—C19 178.28 (16) C4—C9—C10—C11 174.03 (13) C18—C19—C20—C15 0.2 (3)
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the C1–C4,C9,C10 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.89 (2) 2.16 (2) 3.043 (2) 170.0 (18)
C19—H19···N2ii 0.93 2.51 3.259 (3) 138
C11—H11···Cg1iii 0.98 2.90 3.7084 (17) 141
C14—H14C···Cg1iv 0.96 2.92 3.772 (3) 148