• No results found

 PHYTOCHEMICAL CONSTITUENTS OF PHYLLANTHUS SPECIES (EUPHORBIACEAE) FROM EASTERN GHATS OF ANDHRA PRADESH, INDIA

N/A
N/A
Protected

Academic year: 2020

Share " PHYTOCHEMICAL CONSTITUENTS OF PHYLLANTHUS SPECIES (EUPHORBIACEAE) FROM EASTERN GHATS OF ANDHRA PRADESH, INDIA"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)R.R.Venkata Raju et al. IRJP 2012, 3 (5). INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com. ISSN 2230 – 8407. Research Article PHYTOCHEMICAL CONSTITUENTS OF PHYLLANTHUS SPECIES (EUPHORBIACEAE) FROM EASTERN GHATS OF ANDHRA PRADESH, INDIA C. Lakshmi Narasimhudu and R.R.Venkata Raju* Phytomedicine Division, Department of Botany, Sri Krishnadevaraya University, Anantapur – 515 003, A.P., India Article Received on: 17/03/12 Revised on: 21/04/12 Approved for publication: 05/05/12. *Email: rrvenkataraju@yahoo.com, cnarasimhudu@gmail.com ABSTRACT The present paper deals with phytochemical constituents of Phyllanthus species (Euphorbiaceae). The petroleum ether, methanol and water extracts of different parts of 15 species of Phyllanthus were screened for phytochemical constituents. The presence of alkaloids, coumarins, flavonoids, phenols and steroids are common compounds in all test species. The distribution and richness of various constituents were analysed. KEYWORDS: Euphorbiaceae, Phyllanthus species, phytochemical constituents.. INTRODUCTION The Eastern Ghats, a long chain of broken hills pass mainly through three states, viz. Odisha, Andhra Pradesh and Tamilnadu 1 of India. In Andhra Pradesh the hilly tracts are situated between 13° 30' - 19° 07' N and 77° 28' - 84° 45' E longitudes 2. The altitudes range from 300 – 1000 m above mean sea level and the vegetation is broadly classified into tropical moist deciduous, tropical semi-evergreen, tropical dry deciduous, tropical thorn (scrub) and tropical dry evergreen types 3. The genus Phyllanthus member of the Euphorbiaceae (Spurge family), are mostly upright or prostrate herbs or shrubs, often with milky acrid juice. The Phyllanthus species commonly found around all tropical regions of Africa, Asia, America, Australia and Europe. Phyllanthus contains about 700 species in 20 sub genera4 and have long been used in traditional medicine to treat chronic liver diseases5. Phyllanthus appears to be promising in the treatment of patients with chronic hepatitis B virus (HBV) infection 6-7. Bioactive principles like alkaloids, tannins, flavonoids, lignans, phenols and terpenes have been isolated from various species of Phyllanthus and their compounds showed antinociceptive activity 8. Liu et al. 2001 reported the effectiveness and biosafety of genus Phyllanthus for chronic HBV infections 9. METHODOLOGY The extensive field forays were conducted in the forests, wastelands, cultivated fields, roadsides in Andhra Pradesh and the collected specimens were identified with the help of local / regional floras10-12 and the identification was confirmed by comparing with authentic specimens, housed in Sri Krishnadevaraya University Herbarium (SKU), Anantapur, Madras Herbarium (MH), Coimbatore and Central National Herbarium (CAL), Calcutta. The voucher specimens were deposited in Sri Krishnadevaraya University (SKU), Anantapur, Andhra Pradesh. India. The samples were collected in bulk quantities for conducting preliminary phytochemical screening. The samples were shade dried powdered (100 g) and successively extracted with petroleum ether, methanol and water using soxhlet apparatus for 6 hours. The extracts were filtered and concentrated under reduced pressure to dryness. The extracts. were subjected for preliminary phytochemical screening using standard procedures13-16. RESULTS AND DISCUSSION The present paper provides information on preliminary phytochemical evaluation of Phyllanthus species. The different parts (Leaf, Shoot, Stem bark, Root and Root bark) of Phyllanthus species were selected for chemical analysis. The qualitative phytochemical analysis, conducted on Phyllanthus crude drug samples, resulted positive reaction for various groups of chemical constituents (Table 1). For better separation three different (two polar and one non polar) solvents, viz., petroleum ether, methanol and water were used. The extracts obtained from the solvents were tested for different groups of constituents using standard methods and results were tabulated (Table 1). Among the three solvents, methanol extracts exhibited positive reaction for maximum number of constituents, followed by petroleum ether and water extracts. Statistical analysis of preliminary phytochemical compounds of 15 sp revealed 30 major groups of chemical compounds. The alkaloids, coumarins, flavonoids, flavones, phenols, saponins, steroids are the common compounds in all the test species (100 %), followed by anthocyanins, catecholic compounds, dihydrochalcones (14 sp each 93.33 %), while the emodins and iridoids were noticed in single species (6.66) (Table 2). Maximum number of phytochemical constituents were found in Phyllanthus narayanaswamii (22-73.33%), followed by P. amarus (19-63.33%), P. maderaspatensis (20-66.66%), P. reticulatus and P. emblica (19-63.33% each), while minimum no of phytochemical compounds were noticed in P. pinnatus (14-46.66) (Table 3). The comprehensive data was provided to indicate the distribution of various groups of phytochemical compounds in the respective solvent extracts. The part wise analysis revealed that the maximum number of chemical compounds are found in leaves (83.33 %), followed by stem bark, shoot (66.66 %), while the minimum compounds were found in root and root bark (56.6 %). Flavonoids, the major group of phenolic compounds reported for their antimicrobial17, antiviral18 and spasmolytic19, while coumarins for antibacterial20 and antifungal21 activities. The fractionation and characterization of active principle involved in healing property is being attempted in the laboratory. Page 184.

(2) R.R.Venkata Raju et al. IRJP 2012, 3 (5) ACKNOWLEDGEMENT The authors are thankful to the University Grants Commission (UGC), New Delhi for financial assistance and the forest officers, Government of Andhra Pradesh for help during field trips. REFERENCES 1. Legris & Meher – Homji VM. The Eastern Ghats: Vegetation and Bioclimatic aspects, P. Seminar on Resources development and environment in Eastern Ghats, Andhra University, Waltair, 1982, 1-7. 2. Reddy CS, Reddy KN, Murthy EN & Raju VS. Tree wealth of Eastern Ghats of Andhra Pradesh, India: An updated checklist, Check List, 5 (2) (2009) 173-194. 3. Champion HG & Seth SK. The Revised Forest types of India, Government of India, New Delhi, 1968. 4. Balakrishnan NP, Chakrabarty T. The family Euphorbiaceae in India, Bishen singh Mahendra Pal Sing, Dehradun, 2007: 336-396. 5. Radha K, Dhiman MD, Mams Facg DM, Yogesh K, Chawla MD, Fams Facg DM. Herbal Medicines for Liver Diseases. Digestive Diseases and Sciences 2005; 50(10): 1807-1812. 6. Thyagarajan SP, Subramanian S, Thirunaksundari T, Venkateswaran PS, Blumberg BS. Effects of Phyllanthus amarus on chronic carriers of hepatitis B virus. Lancet 1988; 2:764-766. 7. Thyagrajan SP, Jayaram S, Valliammae T, Madangopalan N, Pal VG, Jayaraman K. Phyllanthus amarus and hepatitis B. Lancet 1990; 336:949- 950. 8. Cechinel Filho V, Santos ARS, Campos ROP, Miguel OG, Yunes RA, Ferrari F, Messana J, Calixto JB. Chemical and pharmacological studies of Phyllanthus caroliniensis in mice. Journal of Pharmaceutical Pharmacology 1996; 48:1231-1236.. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.. Liu J, Lin H, McIntosh H. Genus Phyllanthus for chronic hepatitis B virus infection: a systematic review. J Viral Hepat 2001; 8:358-366. Gamble JS. Flora of Presidency of Madras. Vol. 2 Botanical survey of India, Calcutta, India1935; 1286-1290. Venkata Raju, RR. and Pullaiah T. Flora of Kurnool. Bishen Singh Mahendra Pal Singh. Dehra Dun 1995; 422-428. Pullaiah, T. and Chennaiah E. Flora of Andhra Pradesh. Vol-II. Scientific Publishers Jodhpur, India 1997; 878-884. Amarasingham, PP, Bisset NG, Millard PH and Woods MC. Phytochemical survey of Malaya part III. Alkaloids and Saponins. Economic Taxonomic Botany 1964; 18:270-278. Das AK. and Bhattacharjee AK.. A systematic approach to phytochemical screening. Tropical Science 1970; 12: 54-58. Gibbs RD. Chemotaxonomy of flowering plants, I-IV. Montreal and London 1974. Harborne JB. Phytochemical methods. Chapman and Hall, London 1991. Toda M, Okubo S, Ohnishi R and Shimamura T. Antibacterial and bactericidal activity of Japanese green tea. Japanese Journal of Bacteriology 1989; 45: 561-566. Bernard DL, Huffman JH, Meyerson LR and Sidwell RW. Mode of inhibition of respiratory syncytial virus by a plant flavonoids. Chemotherapy, 1993; 39: 212-227. Amor EC, Villasenor IM, Ghayar MN, Gialni AH and Choudhary MI. Spasmolytic Flavonoids from Syzygium samarangense (Blume) Merr. & LM. Perr. Z. Naturforsch (C). 2005; 60: 67-71. Fernandez MA, Garcia MD and Saenz MT. Antibacterial activity of the Phenolic acids fraction of Scrophularia frutescens and S. sambusifolia. Journal of Ethnopharmacology. 1996; 53: 11-14. Houet JRS and Paya M. Pharmacological and biochemical actions simple Coumarins: natural products with therapeutic potential. General Pharmacology. 1996; 27: 713-722.. Table 1: Distribution of chemical constituents in Phyllanthus species crude drugs-a preliminary analysis Phyllanthus amarus Shoot. Leaf. Root. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. 1. Alkaloids. +. +. +. +. +. +. T. +. +. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. +. 14. Flavonols. +. +. 15. Flavonones. 16. Flavones. +. +. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. +. +. T. T. + + +. +. +. +. +. +. +. +. T. +. + +. +. T. +. +. +. T. + T. +. +. +. +. +. +. Page 185.

(3) R.R.Venkata Raju et al. IRJP 2012, 3 (5) 20. Iridoids. 21. Lignans. +. 22. Phenols. +. 23. Proteins. +. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. +. +. +. T. +. + +. +. T. +. Phyllanthus debilis Leaf. Shoot. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. 1. Alkaloids. +. +. +. +. +. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. T. 11. Dihydrochalcones. T. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. 20. Iridoids. 21. Lignans. Root Water. Pet.ether. Methonol. Water. +. +. +. T. T. +. T. +. T +. +. +. +. +. +. T. +. +. T. +. +. T. Page 186.

(4) R.R.Venkata Raju et al. IRJP 2012, 3 (5) 22. Phenols. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. T. +. +. T. T T. T. T. +. +. T. +. +. Phyllanthus emblica Leaf. Stem bark. Root bark. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. 1. Alkaloids. +. +. +. +. +. +. +. +. +. 2. Anthocyanins. +. T. +. +. 3. Anthocyanidins. 4. Anthraceneglycosides. +. +. +. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. +. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. T. +. T. +. +. +. T. T. +. +. +. +. +. +. +. T. +. +. T. +. T. + +. +. +. +. +. +. +. +. Page 187.

(5) R.R.Venkata Raju et al. IRJP 2012, 3 (5) 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. T. T +. T +. +. +. T. +. +. +. + +. T. Phyllanthus indofischeri Stem bark. Leaf S. No. Compounds. 1. Pet.ether. Methonol. Water. Alkaloids. +. T. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. +. 14. Flavonols. +. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. 20. Iridoids. 21. Lignans. 22. Pet.ether. Root bark. Methonol. Water. T. +. +. T. T. Pet.ether. Methonol. Water. T. +. +. T. +. T. + T. +. T. +. T. +. T. +. +. +. +. +. +. +. Phenols. +. +. +. 23. Proteins. T. 24. Polyoses. 25. Reducing compounds. +. +. +. Page 188.

(6) R.R.Venkata Raju et al. IRJP 2012, 3 (5) 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. +. T. +. +. +. +. +. Phyllanthus kozhikodianus Shoot. Leaf. Root. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. 1. Alkaloids. +. +. T. +. +. +. +. +. +. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. +. 14. Flavonols. +. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. 24. Polyoses. +. 25. Reducing compounds. T. 26. Saponins. 27. Steroids. +. +. T. + T. +. + +. T. +. T. +. +. + +. T. +. +. +. +. +. +. +. + T. T +. +. T. +. Page 189.

(7) R.R.Venkata Raju et al. IRJP 2012, 3 (5) 28. Tannins. 29. Triterpenoids. 30. Volatile oils. T. T. +. +. T. Phyllanthus maderaspatensis Leaf S. No. Compounds. Pet.ether. Methonol. 1. Alkaloids. T. +. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. +. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. Shoot Water. Root. Pet.ether. Methonol. Water. +. +. +. +. Pet.ether. +. Methonol. Water. +. +. +. +. ++. + +. ++. +. +. +. +. +. T. T. ++. +. T. T. T. +. +. + +. +. +. +. +. +. +. T. +. T. +. T. +. +. T T. T +. +. T. T. +. +. Page 190.

(8) R.R.Venkata Raju et al. IRJP 2012, 3 (5) 30. Volatile oils. Phyllanthus narayanaswamii Shoot. Leaf S. No. Compounds. 1. Pet.ether. Root. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Alkaloids. +. +. +. +. +. 2. Anthocyanins. +. 3. Anthocyanidins. +. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. +. 15. Flavonones. +. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. 20. Iridoids. 21. Lignans. +. 22. Phenols. +. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. +. Methonol. Water. +. T. +. T. + + +. +. +. +. +. ++. +. ++. +. +. T. +. +. T. +. +. +. +. + T. +. +. T. T. +. +. +. +. +. +. +. T + + +. + +. ++. +. +. +. +. T. Page 191.

(9) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus pinnatus Leaf S. No. Compounds. 1. Alkaloids. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. Pet.ether. Stem bark. Root bark. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. +. +. T. +. T. T. +. +. T. +. T +. +. +. +. +. +. +. +. +. +. T. +. +. + T. T. T +. T. +. + T. +. T. + +. Page 192.

(10) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus polyphyllus Leaf. Stem bark. S. No. Compounds. Pet.ether. Methonol. Water. 1. Alkaloids. T. +. +. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. +. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. Pet.ether. T. Methonol. Root Water. Pet.ether. Methonol. Water. T. T. +. +. ++. +. +. +. T. +. T. +. T. +. +. +. ++. +. +. +. T. +. +. +. +. +. +. +. +. +. T. T. +. +. T. T +. +. +. +. T. ++. T. +. ++. +. +. Page 193.

(11) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus reticulatus Leaf. Stem bark. S. No. Compounds. Pet.ether. Methonol. Water. 1. Alkaloids. +. +. 2. Anthocyanins. +. 3. Anthocyanidins. +. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. +. T. +. 11. Dihydrochalcones. +. +. +. 12. Emodins. +. 13. Flavonoids. +. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. 20. Iridoids. 21. Lignans. +. 22. Phenols. +. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. Pet.ether. Root bark. Methonol. Water. T. +. T. T. ++. Pet.ether. Methonol. Water. +. +. ++. T. T. +. +. + +. T. + +. +. +. +. +. +. T. +. +. T. +. +. +. +. +. +. +. ++. +. ++. ++. +. +. +. ++. +. Page 194.

(12) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus rheedii Leaf. Shoot. Root. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. 1. Alkaloids. T. +. +. T. +. +. +. +. T. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. +. 14. Flavonols. +. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. 20. Iridoids. 21. Lignans. 22. +. +. T. + +. +. +. +. T. T. +. Phenols. +. +. T. 23. Proteins. +. +. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. T. T. T. +. T. +. Page 195.

(13) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus rotundifolius Leaf. Stem bark. Root bark. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. 1. Alkaloids. +. +. +. +. +. +. +. +. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. +. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. +. +. Water. +. T. + T. T +. +. T. +. +. T. +. ++. +. +. +. +. +. T. T. + +. T. +. +. +. + +. +. T +. +. +. +. +. +. +. +. +. Page 196.

(14) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus tenellus Leaf. Shoot. Root. S. No. Compounds. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. 1. Alkaloids. T. +. +. T. +. +. T. +. +. 2. Anthocyanins. +. T. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. +. +. 10. Coumarins. T. T. 11. Dihydrochalcones. +. 12. Emodins. 13. Flavonoids. +. +. 14. Flavonols. +. ++. 15. Flavonones. 16. Flavones. +. +. 17. Fattyacids. 18. Gallic tannins. 19. Glycosides. +. +. 20. Iridoids. 21. Lignans. 22. Phenols. +. 23. Proteins. T. 24. Polyoses. 25. Reducing compounds. T. T. 26. Saponins. +. +. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. +. +. T T. T. +. +. + T. +. ++. ++. T. Page 197.

(15) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus urinaria Leaf. Shoot. S. No. Compounds. 1. Alkaloids. 2. Anthocyanins. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. +. +. 11. Dihydrochalcones. +. +. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. +. 20. Iridoids. 21. Lignans. +. 22. Phenols. +. 23. Proteins. 24. Polyoses. 25. Reducing compounds. T. 26. Saponins. ++. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. Pet.ether. Root. Methonol. Water. Pet.ether. Methonol. Water. Pet.ether. Methonol. Water. +. +. T. +. +. +. +. +. T. ++. T. +. +. T. + +. +. +. +. + +. +. T. +. +. +. +. +. + T. T. +. +. +. +. +. T. Page 198.

(16) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Phyllanthus virgatus Leaf. Shoot. S. No. Compounds. Pet.ether. Methonol. Water. 1. Alkaloids. +. +. 2. Anthocyanins. +. 3. Anthocyanidins. 4. Anthraceneglycosides. 5. Anthroquinones. 6. Aucubins. 7. Carbohydrates. 8. Carotenoids. 9. Catacholic cmpounds. 10. Coumarins. 11. Dihydrochalcones. 12. Emodins. 13. Flavonoids. 14. Flavonols. 15. Flavonones. 16. Flavones. 17. Fattyacids. 18. Gallic tannins. +. 19. Glycosides. +. 20. Iridoids. 21. Lignans. 22. Phenols. 23. Proteins. 24. Polyoses. 25. Reducing compounds. 26. Saponins. 27. Steroids. 28. Tannins. 29. Triterpenoids. 30. Volatile oils. T. +. Pet.ether. Root. Methonol. Water. Pet.ether. Methonol. Water. T. +. +. +. +. +. T. ++. ++. +. +. + +. +. ++. +. +. +. +. +. +. +. ++. +. +. +. +. ++. +. T. T. +. T. +. +. T + +. +. +. ++. T. ++. T. +: Compound present, T: Compound in trace. Page 199.

(17) R.R.Venkata Raju et al. IRJP 2012, 3 (5) Table 2: List of phytochemical compounds with their frequency of distribution in Phyllanthus species S. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30. Compound Alkaloids Anthocyanins Anthocyanidins Anthraceneglycosides Anthroqunones Aucubins Carbohydrates Carotenoids Catecholic compounds Coumarins Dihydrochalcones Emodins Flavonoids Flavonols Flavonones Flavones Fatty acids Gallic tannins Glycosides Iridoids Lignans Phenols Proteins Polyoses Polyuronoids Reducing compounds Saponins Steroids Triterpenoids Volatile oils. S. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. No. of Species. % of richness. 15 14 2 9 0 0 3 4 14 15 14 1 15 15 12 2 0 10 15 1 4 15 13 6 0 11 15 15 15 3. 100 93.33 13.33 60.0 0 0 20 26.66 93.33 100 93.33 6.66 100 100 80.0 13.33 0 66.66 100 6.66 26.66 100 86.66 40.0 0 73.33 100 100 100 20. Table 3: Statistical analysis of Phytochemical richness in Phyllanthus species No. of Compounds Plant Name % of richness Phyllanthus amarus Phyllanthus debilis Phyllanthus emblica Phyllanthus indofischeri Phyllanthus kozhikodianus Phyllanthus maderaspatensis Phyllanthus narayanaswamii Phyllanthus pinnatus Phyllanthus polyphyllus Phyllanthus reticulatus Phyllanthus rheedii Phyllanthus rotundifolius Phyllanthus tenellus Phyllanthus urinaria Phyllanthus virgatus. 19 17 18 15 16 20 22 14 17 19 16 17 15 16 15. 63.33 56.66 60.00 50.00 53.33 66.66 73.33 46.66 56.66 63.33 53.33 56.66 50.00 53.33 50.00. Source of support: Nil, Conflict of interest: None Declared. Page 200.

(18)

Figure

Table 1: Distribution of chemical constituents in Phyllanthus species crude drugs-a preliminary analysis
Table 3: Statistical analysis of Phytochemical richness in Phyllanthus species

References

Related documents

In particular, the second patient was diagnosed with PICA dissection because an intimal flap was observed on the 3D curved MPR image, even though the routine HR vw-MRI revealed

This results obtained from this study showed that the methanol extracts of Phyllanthus urinaria and Phyllanthus amarus species contain saponin, flavonoid,

Drawing on fi eldwork conducted among South Sudanese refugees in Uganda and returnees in South Sudan, I exam- ine ways in which gender shapes local realities of confl ict,

To address the gap alluded to in the previous sections, the study draws from three purposively selected theories (frameworks) to explore the potential impacts

The present study monitored the effects of garlic in com- parison with the standard antidiabetic agent, metformin, on glycemic profile, lipid profile, S hs-CRP and S ADA

The crystal structure is extensively hydrogen-bonded with interactions involv- ing anions, acridine substituents and water

A similar analysis for other angles of attack and different distances from the trailing edge has shown that vortex position obtained using CSL-method correspond

“kks/klkj %&xka/kh th us orZeku ik”pkR;] ;wjksih; lH;rk] laLd`fr rFkk fopkj/kkjk dks cMs djhc ls ns[kk] le>k vkSj mldk lR;] vfgalk] uSfrdrk ,oa U;k; ds vk/kkjHkwr ekin.Mksa