• No results found

Bioprotection of Acacia mangium using Trichoderma in Malaysia

N/A
N/A
Protected

Academic year: 2020

Share "Bioprotection of Acacia mangium using Trichoderma in Malaysia"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Bioprotection of Acacia mangium using Trichoderma

in Malaysia

A.A. Hi111, A. Ambrose2, N.A. Sajali2, M. Yatim3, R.B. Valdez3, F. Agbayani3, J. Bungang3, R. Minchin1 and A. Stewart1

1 Bio-Protection Research Centre, PO Box 84, Lincoln University, Lincoln 7647, New Zealand

2Sarawak Forestry Corporation Sdn. Bhd. 93250 Kuching, Sarawak, Malaysia 3Grand Perfect Sdn. Bhd. 97000 Bintulu, Sarawak, Malaysia

Corresponding author: Robert.HiII@lincoln.ac.nz

Abstract

In Sarawak, Acacia mangium seedlings were inoculated with 50 different Trichoderma isolates obtained from a wide variety of healthy plants in the Planted Forest Zone. The best Trichoderma isolates were selected after 10 trials at the Samarakan Nursery between August 2008 and August 2009. Trichoderma inoculation increased seed germination and seedling establishment (by up to 36%), seedling height and stem diameter (by an average of 25%) and the proportion of healthy seedlings meeting specifications for planting out into the forest (by an average of 41 %), compared with untreated controls. Seedlings that received multiple fungicide sprays (standard nursery practice) generally performed slightly less well than the untreated controls. A new Trichoderma inoculum production facility has been built at Samarakan Nursery and Trichoderma inoculation of seedlings will replace the use of fungicide sprays. The economic benefit from increased productivity is estimated to be NZ $2.5 million per year.

Introduction

In New Zealand, forestry bioprotection research over the past 20 years using selected Trichoderma isolates (e.g. ArborGuard™) has resulted in improved health and vigour of radiata pine nursery stock by 10-20% and reduced losses from Armillaria disease by 25-50% in forestry plantations (Hill 2005). This success led to an invitation to Robert Hill to investigate the potential for Trichoderma bioprotection of Acacia mangium in the Planted Forest Zone (PFZ) of Sarawak, Malaysia near Bintulu, in partnership with Grand Perfect Sdn Bhd and Sarawak Planted Forests. The project involved isolating novel Trichoderma isolates from the locality and testing these in nursery trials with Acacia mangium seedlings to select the best performing isolates. After large-scale validation in the nursery, seedlings inoculated with the best Trichoderma treatments were tested in pilot-scale forestry trials versus Ganoderma disease. These trials were established in August 2009 and are still in progress.

(2)

-Microbial Products: Exploiting microbial diversity for sustainable plant production

Materials and methods

Root samples were taken from a wide variety of healthy plants, e.g. Hymenocallis littoraJis (Figure 1), in the locality of the Samarakan Nursery and the surrounding districts (Bintulu and Tatau). The root samples were placed in clean, labelled self-sealing bags and kept moist. In the laboratory, roots were thoroughly washed in tap water, then surface sterilised with either a 1 % sodium hypochlorite solution for 10 minutes or 1 % Vircon® solution for 10 minutes, followed by further rinsing in sterile distilled water. After treatment the root fragments were placed on clean paper towels in Petri dishes to absorb excess moisture for approximately 1 hour and then plated onto Tap Water Agar (TWA), 1% Malt Extract Agar (MEA) or Trichoderma Selective Medium (1% MEA and Rose Bengal)(TSM). Plated root fragments were

- incubated at ambient temperature on

Figure 1. White (Hymenocallis littoralis).

Figure 2. Trichoderma growing from surface-sterilised white lily roots.

the laboratory bench in the light for 4-7 days (Figure 2). Trichoderma isolates that grew from the root fragments were isolated into pure culture (Figure 3). These Trichoderma isolates were assigned a TS (TrichodermaiSamarakan) culture number. The subcultures are being kept at the Samarakan Nursery, at the Sarawak Forestry Corporation, Forest Research Centre, Kuching, and at the Bio-Protection Research Centre, Lincoln University, New Zealand.

treatment per were applied was sown in conditions (g watering, etc.).

and seedling assessed during 108 days after seedlings for planting out determined, nursery criteria, seedling height, : a visual

health. T,i"hnI'lOl untreated with any controls were the standard n

(3)

l Hymenocallis

the surrounding

n, labelled self-y washed in tap

solution for 10 rinsing in sterile )n clean paper 1 hour and then or Trichoderma

fragments were

temperature on in the light for

I. Trichoderma

from the root lted into pure

3). These

were assigned naiSamarakan) iubcultures are

3rakan Nursery,

ry Corporation,

ntre, Kuching,

~tion Research

liversity, New

treatment per block. Treatments were applied soon after the seed was sown in standard nursery

conditions (growing mixture,

watering, etc.). Seed germination and seedling establishment were assessed during the first month. At 108 days after sowing the number of seedlings meeting the specifications for planting out into the forest was

determined, using the standard

nursery criteria, which included

seedling height, stem diameter and

a visual assessment of seedling

health. Trichoderma treatments and

untreated controls were not sprayed

with any fungicides. Fungicide

controls were sprayed according to

the standard nursery regime.

Figure 3. Five individual Trichoderma isolates, each taken from one of the

following plant species: Turnera

subu/afa, Mimosa sp., Turnera

u/mifolia, Bambusa sp. and Piper

nigrum. These isolates were

subsequently combined into a

mixture called TS1.

Inoculum from about 50 different

Trichoderma isolates was grown on MEA plates for the Samarakan Nursery

trials with Acacia mangium seedlings.

Each individual Trichoderma isolate was

tested by itself, and some isolates were tested together as a mixture of several

different isolates. Treatments were

applied as an aqueous suspension of

conidia, sprayed onto the growing mix in

the 96-cell standard trays used by the nursery (Figure 4). Ten nursery trials were conducted between August 2008 and August 2009. Each of the first 10 trials had 12 treatments replicated at

random in five blocks, with two trays per

Figure 4. Application of Trichoderma treatments in Samarakan Nursery trials.

(4)

-Microbial Products: Exploiting microbial diversity for sustainable plant production

Results and discussion

The best performing Trichoderma isolates tested in 10 replicated trials between August 2008 and 2009 had been isolated from the roots of the following plants:

Piper nigrum (black pepper), Turnera subulata (white morning glory), Turnera

ulmifolia (yellow morning glory), Mimosa pudica (mimosa), 8ambusa spp.

(bamboos) (Figure 3), Helianthus sp. (sunflower), Hymenocallis littoralis (white lily)

(Figure 1), Musa sp. (banana), Crytostachys renda (red palm), Koompassia

excelsa (Tualang, bee tree) and several others. Table 1 shows a summary of the

results from the first 10 trials.

Figure 5. Acacia mangium seedllings that had been Inoculated with

Trichoderma TS mixture 1 (right) and the untreated control (left).

The increase in healthy tree production for Trichoderma versus untreated controls was 41.4% (Figure 5) and for Trichoderma versus fungicide controls was 57.7%.

Three sites (site 1, T2 D007; site 2, T1 C006; site 3, T1 A063) were selected for

pilot-scale forest plantation trials in areas affected with Ganoderma disease (Lee 2000). The best performing 6 Trichoderma treatments from all trials were planted, which included two Trichoderma mixes (5 isolates in each) and 4 single

Trichoderma isola

were included as

mortality from Ga

Table 1. Over~1 planting out Into from the first 10 twice first to 72

Treatment

Untreated contr

Fungicide contr.

Trichoderma-in

Trichoderma isol

given a substanti

compared with b

Trichoderma inoc

expected that no

Trichoderma Irea

roots of the Acacl

A Trichoderma in·

Nursery needs (a

control procedur

with other

mlcro-system for the nlll

Hill RA 2005. Be

Summary

Council.

1

4

Lee SS 2000. The

J, Bridge

F.

(5)

trials between lIowing plants: Ilory), Turnera

lambusa spp.

-alis (white lily)

, Koompassia

Jmmary of the

culated with

eated controls

Nas 57.7%.

·e selected for

! disease (Lee

were planted, and 4 single

Trichoderma isolate treatments. Fungicide treated as well as untreated seedlings

were included as controls. Seedlings will be monitored for tree health, growth and mortality from Ganoderma root disease.

Table 1. Overall mean number of seedlings meeting specifications for planting out into the forest and seedling height at 108 days after seed sowing from the first 10 trials. Each tray had 96 seeds sown. Trays were thinned twice, first to 72, then to 50 seedlings per tray for final harvest.

Treatment Number of seedlings/tray Height (cm)

Untreated control 29 30.6

FungiCide control 26 27.8

Trichoderma-inoculated 41 38.3

Conclusions and future priorities

Trichoderma isolates, both individual, single isolates and selected mixtures, have

given a substantial increase in healthy tree production at the Samarakan Nursery, compared with both untreated and fungicide (standard nursery practice) controls.

Trichoderma inoculation is only required once at the time of seed-sowing and it is

expected that no further treatment is needed during the life of the crop. The best

Trichoderma treatments appear to be rhizosphere competent and penetrate the

roots of the Acacia mangium seedlings, growing with the developing tree.

A Trichoderma inoculum production facility has been built to supply the Samarakan Nursery needs (approximately 200,000 Acacia seedlings per day). Stringent quality control procedures will ensure inoculum production that is free from contamination with other micro-organisms. Further work is also needed to optimise the application system for the nursery and for Trichoderma production.

References

Hill RA 2005. Beneficial organisms to enhance tree health. FBRC Annual Report. A Summary of Research Findings 2004/2005. Forest Biosecurity Research Council. 14 pp.

Lee SS 2000. The current status of root disease in Acacia mangium Willd. In: Flood

J,

Bridge PO, Holderness M (eds). Ganoderma diseases of perennial crops.

CABI Publishing, Wallingford, UK. Pp. 71-79.

Figure

Figure (Hymenocallis littoralis).
Figure 3. Five individual Trichoderma isolates, each taken from one of the
Figure 5. Acacia mangium seedllings that had been Inoculated with Trichoderma TS mixture 1 (right) and the untreated control (left)

References

Related documents

(g) trading business only service business only both cost of sales √ (1) gross profit √ (1) discount allowed √ (1). profit for the year

bottom view (right) A) Trichoderma species T-GL3, B) Trichoderma species T-GL7 C) Trichoderma species T-GL15, D) Trichoderma specie T-GL17 and E) Trichoderma species T-GL23... Table

At America International, we offer you many distinct programs: we manage athletic and academic scholarships; we organize visits to the best universities in the United States; we

of the standard reports that are available are upcoming training for crews; completed training for a class; transcript for an employee; an employee’s development plan;

crowdfunding and has been involved in working with Crowd Valley's pioneering customers across the financial services sector, as well as advising global institutions such as the

Zurite u simbol sve dok ne osetite da očni mišići počinju da se opuštaju, onda skrenite pogled na belo platno (poster ili karton) na zidu hrama i istovremeno isključite svetlost.

The second piece of information in the table below concerns assessments by OSCE election observers of the quality of voting and counting procedures during the undemocratic elections

Batavia, an allusion to the Dutch republic’s legendary ancestors, was assigned to the colonial city by the VOC Governor-General, Jan Pieterszoon Coen, and has