• No results found

The archiving and dissemination of biological structure data

N/A
N/A
Protected

Academic year: 2021

Share "The archiving and dissemination of biological structure data"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

The

archiving

and

dissemination

of

biological

structure

data

Helen

M

Berman

1

,

Stephen

K

Burley

1,2

,

Gerard

J

Kleywegt

3

,

John

L

Markley

4

,

Haruki

Nakamura

5

and

Sameer

Velankar

3

TheglobalProteinDataBank(PDB)wasthefirstopen-access

digitalarchiveinbiology.ThehistoryandevolutionofthePDB

aredescribed,togetherwiththewaysinwhichmolecular

structuralbiologydataandinformationarecollected,curated,

validated,archived,anddisseminatedbythemembersofthe

WorldwideProteinDataBankorganization(wwPDB;http://

wwpdb.org).Particularemphasisisplacedontheroleof

communityinestablishingthestandardsandpoliciesbywhich

thePDBarchiveismanagedday-to-day.

Addresses 1

ResearchCollaboratoryforStructuralBioinformaticsProteinData Bank,DepartmentofChemistryandChemicalBiology,Centerfor IntegrativeProteomicsResearch,InstituteforQuantitativeBiomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA

2

ResearchCollaboratoryforStructuralBioinformaticsProteinData Bank,SkaggsSchoolofPharmacyandPharmaceuticalSciencesand SanDiegoSupercomputerCenter,UniversityofCaliforniaSanDiego, 9500 Gilman Drive, La Jolla, CA 92093, USA

3Protein Data Bank in Europe, European Molecular Biology Laboratory—EuropeanBioinformaticsInstitute,WellcomeGenome Campus,CambridgeCB101SD,UK

4BiologicalMagneticResonanceBank,DepartmentofBiochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA 5Protein Data Bank Japan, Institute for Protein Research, Osaka University,3-2Yamadaoka,Suita,Osaka,565-0871,Japan Correspondingauthor:Berman,HelenM(berman@rcsb.rutgers.edu)

CurrentOpinioninStructuralBiology2016, 40:17–22 This review comes from a themed issue on Biophysicaland molecularbiologicalmethods

Edited by PetraFrommeand AndrejSali

http://dx.doi.org/10.1016/j.sbi.2016.06.018

0959-440/#2016TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/)

Historical

background

Structural biologyis arelativelyyoung sciencethatcan

trace its roots to the first X-ray diffraction studies of

pepsin in 1935 by Dorothy Crowfoot (Hodgkin), who

at the time was a student of J.D. Bernal [1]. Twenty

years later, Kendrew determined thestructure of

myo-globin [2,3]; shortly thereafter, Perutz determined the

structureofhemoglobin[4,5].BothwonNobelprizesfor

theirachievements.Notlongafterthesestructureswere

published,thecrystallographiccommunitybegan

discus-sionsastohowtobestarchivethesedataandmakethem

available.Duringthisperiod,therewerenumerous

grass-rootsmeetings,one ofwhich resultedin apetition,and

manyexchangesofhandwrittendocuments.In1971,the

ColdSpring HarborLaboratoryhosted asymposium on

proteincrystallography,duringwhichleadersinthefield

presented theirseminal work[6].Walter Hamilton,an

attendee,offeredtoprovidethefirsthomeforwhatisnow

knownastheProteinDataBank(PDB)[7].ThePDBwas

launched at Brookhaven National Laboratory, on the

basisof theProteinStructure LibrarycreatedbyEdgar

Meyer[8].TheinitialPDBarchivecontainedfewerthan

ten structures, all of which were determined by X-ray

crystallography.Inthe1980s,structuresdeterminedusing

NMR methodsbegan to bedeposited, andin 1990 the

first structure determined by electron microscopy was

deposited. In 1982 the PDB reached 100 entries, in

1993 1000 entries, in 1999 10000, and in 2014

100000entries.Atthetimeofwriting,thePDBarchive

containsover117000structuresofproteins,nucleicacids,

and their complexes with one another and with small

molecule ligands.

The

PDB

as

a

community

data

resource

Fromitsinception,thePDBhasbeenacommunityeffort

that hasevolved with changesin scientificculture.For

example,whenthePDBwasfirst created,data

submis-sionwas voluntary.However,inthe1980s, membersof

the community became outspoken about the need to

enforce mandatory datadeposition. Various committees

weresetup todefinewhatdatashould berequiredand

when to disseminate the data. These guidelines were

publishedin1989,andovertime,adoptedbyvirtuallyall

of the scientificjournals thatnow requirePDB

deposi-tion(s) as a prerequisite for publication of structural

studies [9].In 2008, further shifts in community

senti-ment ledto mandatory deposition of experimentaldata

togetherwithatomiccoordinates.Inthecurrentdecade,

theimportanceof reproducibility hasbeen highlighted.

The PDB convened method-specific Validation Task

Forces and Workshops [10,11,12,13] to define

whatdatashould becollected and how best to validate

thestructuralmodels,theexperimentaldata,andthefitof

themodelstothedata.NoweverystructureinthePDB

(2)

authorsarestronglyencouragedtoincludethesereports

withtheirmanuscriptsubmissionstojournals.

Theimportanceofglobal participationindataarchiving

wasunderstoodearlyinthecreationofthePDB.Indeed,

the announcement of the PDB in 1971 described the

collaborationwiththeCambridgeCrystallographic

Data-baseCentre[7].In2003,aMemorandumof

Understand-ing (MOU) among partners in the US (RCSB Protein

Data Bank; http://www.rcsb.org), Japan (Protein Data

BankJapan orPDBj; http://www.pdbj.org),and Europe

(ProteinDataBankinEuropeorPDBe;http://pdbe.org)

establishedtheWorldwideProteinDataBank(wwPDB)

partnership, which is responsible for formalizing the

proceduresinvolvedincollecting,standardizing,

annotat-ing and disseminating the data [14]. Subsequently, a

globalNMR specialistdatarepositoryBioMagResBank,

composedof deposition sites in theUS(BMRB;http://

www.bmrb.wisc.edu) and Japan (PDBj-BMRB; http:// bmrbdep.pdbj.org),joinedthewwPDB.

TheX-raycrystallographycommunityhasledthe

biolog-ical sciences in the area of data sharing. While the

sociological/anthropologicalunderpinningsofthis

leader-shiprolehavenotbeenfullyexplored,muchofwhathas

transpiredin thecreationandevolutionof thePDBcan

be traced to J.D. Bernal, who, in addition to being a

brilliant scientificinnovator,was a prominent social

ac-tivist,whosebeliefswereconsistentwiththeconductof

thePDB[15].

Content

of

the

PDB

archive

ThePDBarchivecontainsinformationaboutstructural

models that have been derived from experimental

methods,includingX-ray/neutron/electron

crystallogra-phy, NMR spectroscopy, and 3D electron microscopy

(3DEM).Inadditiontothe3Dcoordinates,thedetails

ofthe chemistry ofthe polymers and small molecules

arearchived,asaremetadatadescribingthe

experimen-tal conditions, data-processing statistics and structural

featuressuchasthesecondaryandquaternarystructure.

Thestructure-factoramplitudes(orintensities)usedto

determine X-ray structures, and chemical shifts and

restraintsusedindeterminingNMRstructuresare also

archived. The electron density maps used to derive

3DEM models are archived in EMDB [16], and the

experimentaldata underpinningthemcan bearchived

in EMPIAR [17]. In collaboration with community

experts, pertinent data items are defined for each

experimental field, with requirements evolving over

time. The PDB data dictionary, originally developed

to describe macromolecular crystallography, contains

more than 4400 data items. The dictionary combines

dataitemscommontoallmethodsaswellasthosethat

are method specific. For example, the current

dictio-narycontains 250NMR-specificdataand1200

3DEM-specific data definitions.

Over time, the holdings of the PDB have increased

dramaticallyashasthecomplexityofthestructuresbeing

archived(Figure1).

Aworkshopheldin2005ledtothepolicythatpurelyinsilico

modelsshouldnotbepartofthePDB[18],and,instead,a

modelingportalshouldbecreatedforthesemodels.The

ProteinModelingPortalwasestablishedin2007[19].

Representation

of

PDB

data

ThefirstdataformatusedbythePDBwasestablishedin

theearly 1970s and was onthe basis of the 80-column

Hollerith format used for punched cards. The atom

recordsincludedatomname,residuenameandsequence

number. A ‘header record’ contained some metadata.

Thisformatwasreadily acceptedbecauseitwas simple

andbothhuman-andmachine-readable.However,ithad

manyseriousdrawbacksinthatthesizeofthestructural

modelswaslimitedto99999atomsandthatrelationships

among the data items were implicit. These inherent

weaknesses meant that significant domain knowledge

wasnecessaryinordertowritesoftwareusingthisformat.

Inthe1990s,theIUCrcharteredacommitteetocreatea

more formaldata model.This committee proposedthe

Macromolecular Crystallographic Information File

(mmCIF)[20].mmCIFisaself-definingformatinwhich

every data item has attributes describing its features

includingrelationshipstootherdataitems.Most

impor-tantly,mmCIFhasnolimitationswithrespecttothesize

ofthearchivedstructuralmodel.Thedictionaryandthe

datafiles are completely machine-readable,and no

do-mainknowledge is required to read thefiles. The first

dictionarycontainedover3000dataitemsrelevantto

X-ray crystallography. Over time, terms specific to NMR

and3DEMwereadded,andthedictionarywasrenamed

PDBx/mmCIF.In2007,itwasdecidedthatPDBxwould

betheMasterFormatfordatacollectedbythePDB.In

2011,majorX-raystructuredeterminationsoftware

devel-opersagreedto adoptthis datamodelso thatalloutput

from theirprograms wouldbe in PDBx. In 2015,large

structures archivedin the PDBthat had formerly been

split into multiple entries were combined into single

entries and mmCIF formatted files. Other structural

biology communities are in the process of building on

the PDBx/mmCIF framework to establish their own

controlledvocabularyandspecialist dataitems[19,21].

PDBML,anXMLformatonthebasisofPDBx/mmCIF

[22], and its RDF (Resource Description Framework)

conversionweredevelopedtofacilitatetheintegrationof

structure data with other life sciences data resources

couldbefacilitated [23].

The

data

pipeline

Everydataresourcehasasetofproceduresfordeposition,

(3)

ThepipelinecurrentlyusedbythewwPDBtopopulate

thePDBarchiveisillustratedschematicallyinFigure2.

In the very early days of the PDB, structures were

deposited toBNL onmagnetictapescontainingatomic

coordinateswithpaperformslistingotherdataitems,all

sentfirstbymailandthenviaAweb-basedsystem,called

AutoDep,wascreatedinthe1990s[24].Thissystemwas

latermodifiedandusedbyPDBe[25]untilveryrecently.

TheRCSBPDBandPDBjcollecteddatausingasystem

onthebasisofmmCIFcalledADIT[26],andtheBMRB

in the US and its affiliate in Japan adopted a similar

systemcalledADIT-NMR[27].Althoughthesesystems

were distinct, since 2003, the wwPDB partners have

determined jointly what data should be collected and

whichproceduresandalgorithmsshouldbeusedfordata

processing.In2007,itwasagreedwithinthewwPDBto

createasingledeposition,Structuresaremadeavailable

to the public either immediately after they have been

fullycuratedor-inmostcases-whentheyarepublishedin

ajournal.Usually,eithertheauthororthejournalinforms

wwPDBthatthepaperdescribingthestructureisaboutto

be published. PDB data are released in a two-stage

process. Every Saturday at 03:00 UTC the polymer

sequences, ligand SMILES strings, and crystallization

pH for new structures designated for release are made

public(http://wwpdb.org/download/downloads)asa

cour-tesytotheproteinstructuremodelingandcomputational

chemistrycommunitiestoenableweeklyblinded

predic-tion challenge efforts (e.g., CAMEO [19] and D3R

CELPP [28]). Every Wednesday at 00:00 UTC, all

new structuresdesignatedfor releasearemadepublicly

available through the wwPDB FTP sites. On average

about200structuresarereleasedeveryweek.Asevidence

Figure1 120000 (a) (b) (c) (d) 100000 80000 60000 40000 20000 0 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 Year Number of Entr ies Yearly Total 90000 60000 X-ray entries NMR entries EM entries 30000 0 12000 8000 4000 1000 500 0 0 1980 1985 1990 1995 2000 2005 2010 2015 1980 1975 1985 1990 1995 2000 2005 2010 2015 1980 1975 1985 1990 1995 2000 2005 2010 2015

Current Opinion in Structural Biology

GrowthofthePDBarchive.(a)Numberofentriesdepositedannually(darkgray)andavailableattheendofeachyear(lightgray);(b)numberof X-ray crystal structures; (c)NMR structures, and D) 3DEM structures available each year.

(4)

for the importance of this archive, in 2015, more than

500millionsetsofatomiccoordinatesweredownloaded

fromthewwPDB FTPsites.

Value-added

resources

ThewwPDB FTPsitesprovidethecoredataformany

databases,services,andwebsites,includingthoserunby

theindividualwwPDBpartners.IntheoriginalwwPDB

MOU,itwasagreedthattobest servescience,wwPDB

partner websites would compete with one another and

wouldoffermanydifferentkindsofservicesandfeatures.

The RCSB PDB has extensive search and reporting

capabilities as well as an education portal called

PDB-101 [26,29]. PDBe has multiple search and browse

facilities as well as analysis and bioinformatics tools

[30,31].PDBjprovidesavarietyofservicesandviewers

and supports browsing in multiple Asian languages

[23,32].BMRBhasmanycapabilitiesdesignedtoserve

theNMRcommunity[33].

CATH[34]andSCOP[35,36]usethedatainthePDBto

classifythestructuraldomainsofproteinswithanattempt

to relate them to function. More recently, these two

databaseshave agreed to worktogether and with other

resourcesintheUK toprovidepredictedstructural

fea-turesunder aunifiedsystemcalled Genome3D[37].

Additional specialty databases provide information on

particular classes of macromolecules such as nucleic

acids[38].

TheProteinStructureInitiative(PSI)StructuralBiology

Knowledgebase (SBKB)[39]was an ambitiouseffort to

unifyinformationaboutproteinsequence, structureand

function. Unfortunately, the decision to discontinue

fundingthe PSI meansthat this resource will cease to

exist.

Challenges

going

forward

A review of the holdings of the PDB shows a steady

growth(10,000new structuresannually).More

signifi-cantly,thecomplexityofthestructuralmodelscontinues

to increase with more and more large heterogeneous

assemblies entering the archive. Fortunately, there are

nolongertechnicalrestrictionsto receiving,annotating,

validating,anddisseminatingtheseverylargestructures.

Historically,moststructuresweredeterminedexclusively

with the aid of a single experimental method: X-ray

crystallography, NMRor 3DEM. Inrecentyears, these

traditional techniques are being combined with other

methods to yield improved models. For example, it is

nowcommonpracticetoadddatafromsmall-angle

scat-tering measurements to NMR-derived restraints to

de-terminesolutionstructures[40,41].Similarly,NMRor

X-raydatacanbecombinedwithcryoEMdatainintegrative

modeling approaches [42]. Such integrative methods

makeitpossibletocombinedatafromdifferent

biophys-ical techniques with computational methods to create

models of very large macromolecular machines [43].

However, hybrid approaches also present a variety of

challenges including how to validate these structures

andthen howto archivethem. Asin thepast, withthe

help and advice of an expert Task Force [44], this

integrativechallengewillbemetbythewwPDBpartners.

Figure2

Deposition Pipeline

Format conversion

and data harvesting Validation Ligand Lite Communication

Workflow-Automation System Release Processing Deposition Interface: Annotation Pipeline X-ray-specific a. EM-specific b. NMR-specific c. Communication Report generation/ Status Tracking Validation Added Annotations Sequence Processing Ligand Processing

Current Opinion in Structural Biology

(5)

Acknowledgements

RCSBPDBissupportedbyNSF[DBI-1338415],NIH,DOE;PDBeby EMBL-EBI,WellcomeTrust[104948],BBSRC[BB/J007471/1,BB/ K016970/1,BB/K020013/1,BB/M013146/1,BB/M011674/1,BB/M020347/1, BB/M020428/1],NIGMS[1RO1GM079429-01A1],EU[284209,675858] andMRC[MR/L007835/1];PDBjbyJST-NBDCandBMRBbyNIGMS [1R01GM109046].

References

and

recommended

reading

Papers of particular interest, published within the period of review, havebeenhighlightedas:

ofspecialinterest ofoutstandinginterest

1. BernalJD,CrowfootDM:X-rayphotographsofcrystalline pepsin.Nature1934,133:794-795.

2. KendrewJC,BodoG,DintzisHM,ParrishRG,WyckoffH, PhillipsDC:Athree-dimensionalmodelofthemyoglobin moleculeobtainedbyX-rayanalysis.Nature1958,181:662-666.

3. KendrewJC,DickersonRE,StrandbergBE,HartRG,DaviesDR, PhillipsDC,ShoreVC:Structureofmyoglobin:a three-dimensionalFouriersynthesisat2Aresolution.Nature1960,

185:422-427.

4. PerutzMF,RossmannMG,CullisAF,MuirheadH,WillG, NorthACT:Structureofhaemoglobin:athree-dimensional Fouriersynthesisat5.5A˚ resolution,obtainedbyX-ray analysis.Nature1960,185:416-422.

5. BoltonW,PerutzMF:Threedimensionalfouriersynthesisof horsedeoxyhaemoglobinat2.8A˚ ngstromunitsresolution. Nature1970,228:551-552.

6.

ColdSpringHarborSymposiaonQuantitativeBiology.Cold SpringLaboratoryPress;1972.

This seminal meeting highlighted the key structures that had been determinedandbroughttogethertheleadingfiguresinstructuralbiology. ToquoteDavidPhillipsitwasa‘Comingofage.’

7. ProteinDataBank:ProteinDataBank.NatureNewBiol.1971,

233:223.

8. Meyer EFJr,MorimotoCN,VillarrealJ,BermanHM,CarrellHL, StodolaRK,KoetzleTF,AndrewsLC,BernsteinFC,BernsteinHJ etal.:CRYSNET,acrystallographiccomputingnetworkwith interactivegraphicsdisplay.FedProc1974,33:2402-2405.

9. InternationalUnionofCrystallography:Policyonpublicationand thedepositionofdatafromcrystallographicstudiesof biologicalmacromolecules.ActaCryst1989,A45:658.

10.

ReadRJ,AdamsPD,Arendall WB3rd,BrungerAT,EmsleyP, JoostenRP,KleywegtGJ,KrissinelEB,LuttekeT,OtwinowskiZ etal.:Anewgenerationofcrystallographicvalidationtoolsfor theproteindatabank.Structure2011,19:1395-1412.

Thispapercontainedathroughanalysisofmethodsthatcouldbeusedfor validationofstructuresdeterminedbyX-raycrystallography.The recom-mendationswereusedtocreatethevalidationtoolsusedbythewwPDB. 11.

HendersonR,SaliA,BakerML,CarragherB,DevkotaB, DowningKH,EgelmanEH,FengZ,FrankJ,GrigorieffNetal.:

Outcomeofthefirstelectronmicroscopyvalidationtaskforce meeting.Structure2012,20:205-214.

Thispaperwasthefirstonetoanalyzewhatisneededtovalidate3DEM mapsandmodels.Itisthebasisforcurrentresearchinthisfield. 12.

MontelioneGT,NilgesM,BaxA,GuntertP,HerrmannT, RichardsonJS,SchwietersCD,VrankenWF,VuisterGW, WishartDSetal.:RecommendationsofthewwPDBNMR validationtaskforce.Structure2013,21:1563-1570.

This paper made recommendations for how to validate structures deter-mined by NMR, and is the basis for current ongoing research. 13.

AdamsPD,AertgeertsK,BauerC,BellJA,BermanHM,BhatTN, BlaneyJM,BoltonE,BricogneG,BrownDetal.:Outcomeofthe firstwwPDB/CCDC/D3Rligandvalidationworkshop.Structure 2016,24:502-508.

The criteria for judging the quality of ligands in protein complexes are laid outandwillformthebasisforimprovedvalidationofthesemolecules.

14.

BermanHM,HenrickK,NakamuraH:Announcingtheworldwide ProteinDataBank.NatStructBiol2003,10:980.

ThisistheformalannouncementforhowtheProteinDataBankwillbe managedbyaninternationalconsortium.

15. BrownA,BernalJD:TheSageofScience. Oxford:Oxford UniversityPress;2005.

16.

LawsonCL,PatwardhanA,BakerML,HrycC,GarciaES, HudsonBP,LagerstedtI,LudtkeSJ,PintilieG,SalaRetal.:

EMDataBankunifieddataresourcefor3DEM.NucleicAcids Res2016,44:D396-D403.

Thispaperdescribestheproceduresforstreamliningthedepositionand distributionof3DEMmapsandmodels.

17. IudinA,KorirPK,Salavert-TorresJ,KleywegtGJ,PatwardhanA:

EMPIAR:apublicarchiveforrawelectronmicroscopyimage data.NatMethods2016:13.

18.

BermanHM,BurleySK,ChiuW,SaliA,AdzhubeiA,BournePE, BryantSH,DunbrackRLJr,FidelisK,FrankJetal.:Outcomeofa workshoponarchivingstructuralmodelsofbiological macromolecules.Structure2006,14:1211-1217.

TherecommendationtoremovepurelyinsilicomodelsfromthePDBis contained in this paper.

19. HaasJ,RothS,ArnoldK,KieferF,SchmidtT,BordoliL, SchwedeT:TheProteinModelPortal–acomprehensive resourceforproteinstructureandmodelinformation. Database(Oxford)2013,2013:bat031.

20.

FitzgeraldPMD,WestbrookJD,BournePE,McMahonB, WatenpaughKD,BermanHM:4.5Macromoleculardictionary (mmCIF).In InternationalTablesforCrystallographyG.Definition andExchangeofCrystallographicData.EditedbyHallSR, McMahonB.Springer;2005:295-443.

AcompletedescriptionofthemmCIFdatadictionaryiscontainedhere. 21. MalfoisM,SvergunDI:sasCIF:AnExtensionofCore

CrystallographicInformationFileforSAS.JournalofApplied Crystallography2000,33:812-816.

22. WestbrookJ,ItoN,NakamuraH,HenrickK,BermanHM:PDBML: therepresentationofarchivalmacromolecularstructuredata inXML.Bioinformatics2005,21:988-992.

23.

KinjoAR,SuzukiH,YamashitaR,IkegawaY,KudouT,IgarashiR, KengakuY,ChoH,StandleyDM,NakagawaAetal.:ProteinData BankJapan(PDBj):maintainingastructuraldataarchiveand resourcedescriptionframeworkformat.NucleicAcidsRes 2012,40:D453-D460.

Descriptions of PDBj services are given here as well as the RDF format. 24. LinD,ManningNO,JiangJ,AbolaEE,StampfD,PriluskyJ,

SussmanJL:AutoDep:aweb-basedsystemfordepositionand validationofmacromolecularstructuralinformation.Acta Cryst2000,D56:828-841.

25. TagariM,TateJ,SwaminathanGJ,NewmanR,NaimA, VrankenW,KapopoulouA,HussainA,FillonJ,HenrickKetal.: E-MSD:improvingdatadepositionandstructurequality.Nucleic AcidsRes2006,34:D287-D290.

26.

BermanHM,WestbrookJ,FengZ,GillilandG,BhatTN,WeissigH, ShindyalovIN,BournePE:TheProteinDataBank.NucleicAcids Res2000,28:235-242.

Thisisthefirstcompletedescriptionoftheservicesprovided bythe RCSBPDB

27.

UlrichEL,AkutsuH,DoreleijersJF,HaranoY,IoannidisYE,LinJ, LivnyM,MadingS,MaziukD,MillerZetal.:BioMagResBank. NucleicAcidsRes2008,36:D402-D408.

A summary of the services provided by BMRB is given here. 28. DrugDesignDataResourceCommunity:ContinuousEvaluationof

LigandPosePrediction.https://drugdesigndata.org/about/celpp

(accessed18.04.16).

29. RosePW,PrlicA,BiC,BluhmWF,ChristieCH,DuttaS,GreenRK, GoodsellDS,WestbrookJD,WooJetal.:TheRCSBProteinData Bank:viewsofstructuralbiologyforbasicandapplied researchandeducation.NucleicAcidsRes2015,43:D345-D356.

30. VelankarS,vanGinkelG,AlhroubY,BattleGM,BerrisfordJM, ConroyMJ,DanaJM,GoreSP,GutmanasA,HaslamPetal.:

(6)

datafromPDBandEMDB.NucleicAcidsRes2016,44: D385-D395.

31.

GutmanasA,AlhroubY,BattleGM,BerrisfordJM,BochetE, ConroyMJ,DanaJM,FernandezMonteceloMA,vanGinkelG, GoreSPetal.:PDBe:ProteinDataBankinEurope.Nucleic AcidsRes2014,42:D285-D291.

The services offered by PDBe are described.

32. KinjoAR,NakamuraH:Compositestructuralmotifsofbinding sitesfordelineatingbiologicalfunctionsofproteins.PLoSOne 2012,7:e31437.

33. MarkleyJL,UlrichEL,BermanHM,HenrickK,NakamuraH, AkutsuH:BioMagResBank(BMRB)asapartnerinthe WorldwideProteinDataBank(wwPDB):newpolicies affectingbiomolecularNMRdepositions.JBiomolNMR2008,

40:153-155.

34. SillitoeI,LewisTE,CuffA,DasS,AshfordP,DawsonNL, FurnhamN,LaskowskiRA,LeeD,LeesJGetal.:CATH: comprehensivestructuralandfunctionalannotationsfor genomesequences.NucleicAcidsRes2015,43:D376-D381.

35. AndreevaA,HoworthD,BrennerSE,HubbardTJ,ChothiaC, MurzinAG:SCOPdatabasein2004:refinementsintegrate structureandsequencefamilydata.NucleicAcidsRes2004,

32:D226-D229.

36. AndreevaA,HoworthD,ChandoniaJM,BrennerSE,HubbardTJ, ChothiaC,MurzinAG:DatagrowthanditsimpactontheSCOP database:newdevelopments.NucleicAcidsRes2008,

36:D419-D425.

37. LewisTE,SillitoeI,AndreevaA,BlundellTL,BuchanDW, ChothiaC,CozzettoD,DanaJM,FilippisI,GoughJetal.:

Genome3D:exploitingstructuretohelpusersunderstand theirsequences.NucleicAcidsRes2015,43:D382-D386.

38. BermanHM,OlsonWK,BeveridgeDL,WestbrookJD,GelbinA, DemenyT,HsiehS-h,SrinivasanAR,SchneiderB:TheNucleic AcidDatabase–acomprehensiverelationaldatabaseof three-dimensionalstructuresofnucleicacids.Biophys.J. 1992,63:751-759.

39. GabanyiMJ,AdamsPD,ArnoldK,BordoliL,CarterLG, Flippen-AndersenJ,GiffordL,HaasJ,KouranovA,McLaughlinWAetal.:

TheStructuralBiologyKnowledgebase:aportaltoprotein structures,sequences,functions,andmethods.JStructFunct Genom2011,12:45-54.

40. MadlT,GabelF,SattlerM:NMRandsmall-angle scattering-basedstructuralanalysisofproteincomplexesinsolution.J StructBiol2011,173:472-482.

41. WangZ,ChernyshevA,KoehnEM,ManuelTD,LesleySA, KohenA:Oxidaseactivityofaflavin-dependentthymidylate synthase.FEBSJ2009,276:2801-2810.

42. ByeonIJ,LouisJM,GronenbornAM:Acapturedfolding intermediateinvolvedindimerizationanddomain-swapping ofGB1.JMolBiol2004,340:615-625.

43. WardAB,SaliA,WilsonIA:Biochemistry.Integrativestructural biology.Science2013,339:913-915.

44.

SaliA,BermanHM,SchwedeT,TrewhellaJ,KleywegtG, BurleySK,MarkleyJ,NakamuraH,AdamsP,BonvinAMetal.:

OutcomeofthefirstwwPDBhybrid/integrativemethodstask forceworkshop.Structure2015,23:1156-1167.

This paper summarized the steps necessary to establish an archive of structure data from hybrid/integrative methods.

Figure

Figure 1 120000(a) (b) (c) (d)100000800006000040000200000 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 YearNumber of EntriesYearlyTotal 9000060000 X-ray entriesNMR entriesEM entries30000012000800040001000 500 00 1980 1985 1990

References

Related documents

This presentation contains certain forward -looking statements relating to the business, financial performance and results of the Company and/or the industry in which the

Use the Project Web App component of Microsoft Project Server or Project Online or Project Lite to gain an understanding of what tasks you are responsible for across all

The early rise of Michael’s cult across the Mediterranean in the eastern empire would have perturbed Augustine (d. 430) in the contemporary West. Writing about angels the Bishop

We make use of the patent application procedure at the European Patent Office to introduce a new measure for the motive of creating entry barriers in technology markets and

The curriculum is divided into five major topic areas (A) Leadership Development, (B) Planning and Decision Making, (C) Human Resource Management, (D) Administration of the Police

Alterations to a qualified historic building or facility shall comply with 4.1.6 (Accessible Buildings: Alterations), the applicable technical specifications of section 4 and the

It is encouraging to note that following the Academic Coaching experience, there was a 30% increase in the number of academic coaches who would consider teaching in a Christian

The engagement of CHWs as members of multidisciplinary care teams with physicians, nurses, health educators, pharma- cists, case managers, and social workers can help in reducing