Scanning near-field optical microscopy (SNOM)
and its application in mineralogy
Autor(en):
Gutmannsbauer, Winfried / Huser, Thomas / Lacoste, Thilo
Objekttyp:
Article
Zeitschrift:
Schweizerische mineralogische und petrographische Mitteilungen
= Bulletin suisse de minéralogie et pétrographie
Band (Jahr): 75 (1995)
Heft 2
Persistenter Link: http://dx.doi.org/10.5169/seals-57155
PDF erstellt am:
21.06.2016
Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.
Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.
Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch
SCHWEIZMINERALPETROGRMITT75,259-264, 1995
Scanning near-field
optical microscopy
(SNOM)
and
its application
in
mineralogy
byWinfriedGutmannsbauer12, Thomas Huser1,ThiloLacoste1,HarryHeinzelmann1 and Hans-Toachim Guntherodt1
Abstract
Scanningnearfield optical microscopy (SNOM)isamemberof the family ofscanningprobe microscopes
It
combinesthe high three dimensional resolution ofascanningforce microscope with the contrastmechanismsofan op
tical microscopeAnoptical resolution beyond the diffractionlimitcan be achieved We showthe first apphcation of this technique in the field of mineralogy,and wepoint out its future potential
KeywordsScanningnear field opticalmicroscopy, scanningforce microscopy, optical microscopy, diffraction limit, resolution,shearforceimage, spectroscopy
Introduction
Optical microscopyisstill themostpopulärmi¬
croscopytechnique today
It
isfast, mexpensive, providesawealthof Informationand allowstoin¬vestigate samples atambient conditions There
aremany contrastmechanisms,depending on
whether polarization, amplitude orphaseofthe
lightis detected Also,itsapplicapabilityranges
from imaging of livingspecimensto spectro-scopic analysis
of
mineralogicalsamples Toex¬tract more Informationofagivenarea,thereis a
growingneed
for
higher spatial resolution,lead¬ing automatically intothenanometncregime Al¬
thoughoptical interferometrygivesaverticalres¬
olution down tothenanometerscale, thelateral resolutionislimited by diffraction Thiswasde¬
rived by Abbe inhisworkondiffractionand mi¬ croscopicimaging (Abbe,1873)The theoretical diffraction
limit
of resolution,alsoknownastheRaleigh criterion(1), isessentiallygivenbythe
wavelengthAoftheemployed radiationandthe
numeric aperturen sm@
A
x *
0 61 An sin
q
(i)
where n is therefractive indexof the medium
betweenthe objectandthe microscope,and
0
is the acceptance angleof
thedetectionsystemAsaconsequence, thelateral resolutioncanonlybe
improvedby applyingahigh numerical aperture (NA nsmö) or bydecreasingthe wavelength,
suchasinelectron or X-ray microscopy
Success-ful effortshavebeen madein this direction by
Mansfield
andKino
(1990) andby vander
Oord
et al (1992) To get evenhigher resolutiononehasto gotoaregimewherewavelengthisof
no relevance Studiesin this direction resulted in another relativelynew anddifferentclassofmi¬ croscopesthathavealateral resolution m thena¬
nometerränge the scanningprobemicroscopes
(SPM), of which the most prominent memberis the scanningtunnehng microscope (STM)
(Bin-nig
etal,1986)All
ofthesedevelopmentsarevery interesting but onlyaminontyhasproven theirusefulnessto mineralogical or geological problems Nevertheless, dueto the high lateral resolutionofthese techniques,new insights mto mineralogicalquestions have beengained(Ho¬
chella
etal,
1989,Hochella
etal,
1990,Hartman
etal,
1990,Weisenhorn
etal,
1990,Johnssonet
al,
1991,Rachlin
etal,
1992,Hill-1
PhysikalischesInstitut, UniversitätBasel,Khngelbergstr82,CH4056 Basel,Switzerland 1
Corresponding authoremailgutmannsbaue@ubaclu umbas ch,Phone+416126737 30,Fax+41 61 267 37 84
260 W.GUTMANNSBAUER, TH. HUSER,T.LACOSTE, H.HEINZELMANN ANDH.-J.GÜNTHERODT
ner
etal,
1992;OhnesorgeandBinnig,1993;Scandella
etal,
1993;Stippet al., 1994; Hen¬derson
et al., 1994;Nagy
andBlum,1994).It
isthereforeclearthatmuchcouldbelearnedby
combiningtheinteractionmechanismof optical
microscopywiththeresolutionofthe scanning
probemethods.Thescanningnear-field optical
microscope(SNOM)combinestheproperties of
ascanningforcemicroscope(SFM)operatedin
thenon-contactmode and anopticalmicroscope.
Theresultisasimultaneousacquisition of optical
andtopographic information withalmosttheres¬
olutionofaSFM.
HOW TO OVERCOME THEDIFFRACTION LIMIT?
Thebasicideatoovercome thediffractionlimit inmicroscopy wasalreadydiscussedby Synge
(1928). To understand Synge'sproposalwe have
to introduce two notions thatarenotapplicable
to conventionalopticsbut to SNOM:thefar-field
andthe near-field.Withrespecttoalightsource,
the observer stays in the far-field when the
distance betweenhim andthe lightsource is
more than the wavelength X ofthe emitted light (d
»
X).Thenear-field, consequently, de-scribesthe rängewithinthewavelength ofthelight (d
«
X).Whentheobserver staysinthenear-fieldtheRaleigh
criterion(l)
is nomoreap¬plicableandtheresolutionisonly determinedby
thesizeof the lightsource and its Separationfrom thesurface.
A
resolution beyond the diffractionlimit
isthereforepossible. Synge'sproposalwas based on thefollowing knowledge(seeFig. 1):A
tiny apertureisilluminated fromthebackand actsasasubwavelength sizedlightsourcewhich
isscannedin opticalnear-field distancetoasam¬
plesurface, i.e., atadistance d
«
X.Nodiffrac-light source
d
«
XT
sample
Fig.1 Genericscanningnear-field opticalmicroscope
(SNOM)setup: asubwavelengthlightsource is
raster-scanned acrossthesample atsmalldistance.
tion limitedlens is neededforthe image forma¬
tionataresolution functionallydependent on
onlytheprobesizeand theprobe-to-sampleSep¬
aration,eachof whichcan be made muchsmaller than thewavelengthof light. But more than40 years passeduntilSynge's ideas weretakenup and realizedby AshandNicholls, whoachieved
alateral resolution
of
X/60inthemicrowave wavelengthregime (X 3cm) (Ashand Ni¬cholls,
1972).The realization ofthe scanningnear-field optical microscope (SNOM),sometimes also
termed NSOM,wasonlypossibleafterthe inven-tionoftheSTM, withitsability toactuate probes
inacontrolled mannerat distancesof nanome-tersoversurfaces
of
interest.Indeed,theSNOM borrowedmany partsfrom STMand especially SFM.Shortly after theappearanceoftheSTM,Pohl
et al. (1984)first demonstrated near-field microscopy intheoptical wavelengthregimewithaspatialresolutionofX/20 (25nm). Despite the attractive possibilities, SNOM
wasnearlyforgottenbecauseofthebigrush on theotherscanningprobe methods suchasSTM
andSFM.But nowmany scientists realizethat certainsample-specificinformation, especially chemicalidentificationand spectroscopy is near¬
lyimpossibleto obtain withSFM,or just under very restrictivecircumstances, suchasfriction forcemicroscopy(FFM)(Frommerand
Meyer,
1991;Meyer,
1992).SNOM providesmostof the contrastmechanismsknownfromthe conven¬tionalmicroscopy, suchas:absorption,polariza¬
tion,fluorescence, andreflectivity.
In
somecasestheresultingcontrast issimilar to thatobserved
in the far-field (conventional microscopy),
whereasinothers,near-fieldspecific eflfects are observed.
Experimental
Figure2showsaschematicdiagram ofaSNOM
as
it
was usedin thisstudy(Topometrix Aurora). Laser light(Ar
488nm)iscoupled intoanear-field probe formed fromanaluminium
(Al)-coat-ed,taperedoptical fiber(seeinsetinFig. 2).The apertureat the apexofthe-fiber, usuallyaround
50 nmindiameter, is theonlyplacethatisnot
coatedwithAI. Thetapered endisproduced by
pullingthefiber while heating withaC02 laser.
This probeisheldin near-fielddistanceof the
sampleby a force feedback similar to
non-contact SFM.Thefiberisattachedtoapiezo tube,thatoscillatesthefiberend near itsreso¬
nancefrequency.Approaching the probe tothe sample surface causes aninteraction thatresults
SCANNINGNEAR-FIELDOPTICAL MICROSCOPY (SNOM) 261
laser
(488 nm)^
fiber
scanpiezo
fiber "probe"
sample
lens
photomultiplier
fiber
Al-coating
near-field
far-field
Fig. 2 SchematicofaSNOM in transmission. Insetshowstheendof the opticalsensorwithanaperture of about
50nm indiameter.
phase shift.This dampingisafunction ofthedis¬
tance andisusedto keep the probe-to-sample
distance constant (shearforce feedback).
After
transmission throughtheapertureand the sample, thelightiscollectedwithanobjectivelensoftheconventionalsystem.
It
isalso possibleto collect light thatwasreflectedfromthe sample surface
(Bielefeldt
et al., 1994).Thismodeof detectioncan bevery usefulfor
opaque samples suchasores, andfor
localreflection-spectros-copy.
In
both cases the collected light is detectedbyaphotomultiplier. The sampleisscannedundertheprobe with the aid of
piezo-electrictransducers, andtheSNOM(transmis¬ sionor reflection)and shearforcesignals arecol¬
lectedforeverypoint (forareviewand an intro¬
ductionintotheotherSNOMtypessee
Heinzel-mannand
Pohl,
1994).Asaconsequence, non-contact (shearforce)andopticalimages areal¬ways collected simultaneously. Because the
oscil-lationoftheprobeisparallel to thesurfacein SNOM,insteadof the perpendicular motion in non-contactSFM,this modeiscalledshearforce
mode.
Results and discussion FIRSTMINERALOGICALAPPLICATIONS
Figure3ashowsaphotomicrograph ofa
well-pol-ishedthinsection (25um)
of
asymplectiticinter¬growth of amphibole, diopsideandplagioclaseat therim ofanidiomorphic garnet crystal. The
symplectite appearsonlyasablackarea(marked withawhite arrow)attheborder
of
the relatively idiomorphicgarnet.Identificationof thephasesformingthesymplectitewasperformed byelec¬
tron probe microanalysis. Figure3bshowsacor¬ responding shearforceimageofasymplectite fromthe samethinsection.Theshearforceim¬
agegivesinformation onthetopography of the
investigated area.
It
showsmainlyScratches,re¬sulting from thepolishingprocess(arrows1,2).
Figure3c displaysthe transmission modeSNOM
imagewhichwassimultaneously recorded with
the shearforceimagein figure3b.Onecansee
thatthisimaging mode yields completely differ¬
entinformation. Forexample,the grainbound¬ aryofgarnet isclearly visible (arrow1), and so is thesymplectiticintergrowthat the edgesof the
garnet.This picturereveals,that the symplectite
isamixtureof differentphases(arrow2).
It
ap¬pearsthatthe symplectitegrowsinto the garnet, forming pear-like structures orbulges(arrow3),
whichareindicativeof grainboundary migration.
It
isnot thateasyto attribute the clear contrasts toaspecific processin this near-field opticalim¬ age,butitisprobablyamixtureof absorptionand changes
of
the polarization.Figure4servesto illustrate that SNOMisalso suitable to imageinclusionsin minerals.
It
em-phasizes thepowerof
gaining information that262
W.
GUTMANNSBAUER.
TH. HUSER.
T.
LACOSTE.
H.
HEINZELMANN AND
H.-J.
GÜNTHERODT
J
1
%A-y
fe
200
y
m
%^
5
|jm
'
i
4 M1
-if
^m.
- *'s
**
JF-®y
¦
i-"-?¦¦;
'F\
4*R
Fig. 3
a)
Photomicrograph
of
a
garnet
with
a
symplectite
at its
border (arrow).
b. c)
Simultaneously acquired
to¬
pography (b)
and
SNOM
images (c)
of
a
selected area.
Note
the
different contrast
in the scanning near-field opti¬
cal microscope image.
Details
are
explained
in
the text.
was
not
accessible
until
now.
Figure
4a
shows
the
shear
force image
of
a
thin
section
of
a
rock
con¬
taining
quartz
and
feldspar. The
grainboundaries
are
clearly visible
due
to
the
different
relief
of
quartz
and feldspar developed
during
the
polish¬
ing
process
(arrow
1and
bright line).
The quartz
crystal
is
harder
and consequently higher than
the feldspar. These structures
can be
seen
in
the
shear
force (Fig. 4a)
as
well
as
in the
transmission
mode
SNOM
image (Fig. 4b).
But
in transmis¬
sion
mode.
however.
there
are some
additional
SCANNING
NEAR-FIELD
OPTICAL MICROSCOPY
(SNOM)
263
im
\
WM
*
^
4
um
i
*;
0
Fig.
4
Topographic
(a) and
SNOM (b)
images
of
a
thin
section
containing quartz
and feldspar. The
solid
inclusion marked
on the
left
is
shown
in
a
separate
scan
in
(c).
crystal
is
not totally uniform.
There
are
lighter
and
darker
regions arranged in
parallel
bands.
This
shows
local
variations
of
the
sample
absorp-tivity.
that could
be
the
result
from
former
tec¬
tonic
stress
(deformation-bands).
Second,
there
are
three
black
spots
(circled),
that
show
a
differ¬
ent
absorptivity
and
probably
represent mineral
inclusions. Figure
4c
shows
a
smaller
scan
of
the
upper
left
cycled spot. which
has
a
diameter
of
about
200
nm.
With
conventional optical microscopy. it
would
bc
very hard
just
to
see
these
and
other
small structures,
such
as
solid and
fluid
inclu¬
sions.
symplectites.
myrmecites,
exsolution-lamellas and
polysynthetic
twins.
An
optical
identification of
these
minerals
and
structures
would
be
impossible.
With SNOM, it
is
possible
to
additionally perform optical
spectroscopy
with
a
spatial
resolution in
the ränge
of
nanomelers.
The
only prerequisite
is
a
tuneable
laser.
that
is
a
laser that
can
continuously emit different
wave¬
lengths.
Other
types
of
spectroscopy that
are
at-tainable,
and
where
different
groups
are
working
on. are
fluorescence,
cathodoluminescence.
Ra¬
man
and
infrared
spectroscopy.
If
one
sueeeeds
to
dye
the
different
phases
with
a
dye
that
is
excit-able by
the wavelength
of
the
laser
used, an easy
identification
with
high
resolution
is
possible.
The
Al-coating
of
the
fiber
can bc used
to very
lo¬
cally
emit
electrons
at
the
apex
of
the
probe,
causing
cathodoluminescence effects
which
can
be
subsequently detected
with SNOM.
In very
similar
ways
the
fiber
can be used
to perform
Ra¬
man and
infrared
spectroscopy
(Paesler
et al.,
1990:
Tsai
etal..
1994).
1
um
Conclusions
SNOM
is
a
promising
technique
for
the
mineral¬
ogical and geological field.
Il
combines the
high
spatial
resolution
of
a
non-contact SFM
with
the
well
established contrast mechanisms
of optical
microscopy.
In
the near
future, it
will
be
useful
in
order
to
perform
chemical analysis and
point
spectroscopy
in
the nanometer ränge.
It
is
also
possible to gain
very
small
scale
optical
informa¬
tion
on rock
formation
and
possible
former
tec¬
tonic activities (mineral deformation. mineral
re¬
crystallization
at
the
rims
due
to
tectonic
stress)
264 W GUTMANNSBAUER, TH HUSER, T LACOSTE,H HEINZELMANN ANDH-JGUNTHERODT
Like in conventionalmicroscopy, one isnot restricted to transparentsamples opaque miner¬
alsalso can beinvestigated withthe same appara¬ tus
A
majoradvantageof SNOMisthatit
doesnot require newsamplepreparationtechniques
SNOMcan becarried outon the samethinsec¬
tions and Single crystals usedfor microprobe
analysis.Attentionhastobe paidparticularlyto
avery goodpohshof thesurfaceofthe sampleso
thatthetip of the SNOMsensor canfollowthe surfaceprofile
Acknowledgements
Wethank R Giere,CMeyre,C deCapitaniand J
Partzsch,Mineralogical Petrographical Institute of
Basel,forahvely collaboration Further thanksare
extended to RLuthiandE Meyer forfruitfuldiscus¬ sionsThisworkwassupportedby the SwissNational
Science Foundation and the Kommission zur Forderung der wissenschaftlichenForschungin der
Schweiz
References
Abbe, E(1873)Beitrage zur TheoriedesMikroskops undder mikroskopischen Wahrnehmung Archiv für Mikroskopische Anatomie,9,413
Ash, E andNicholls,G (1972) Super-resolution aperture scanningmicroscope Nature,237,
510-512
Bielefeldt,
H Horsch,I,
Krausch,G Lux-Steiner,M Mlynek,JandMarti,O(1994)Re-flection-scanning near-field optical microscopyand
spectroscopy of opaquesamples AppliedPhysics
A,59,103-108
Binnig,G Quate,C andGerber,C (1986)Atomic force microscopePhysRevLett,56(9), 930-933
Frommer,JandMeyer,E(1991)Atomic forcemi¬
croscopy
A
toolforsurface science JournalofPhysicsof Condensed Matter, 3,1-9
Hartman,
H,
Sposito, G,Yang,A,
Manne,SGould,SandHansma,P (1990)Molecularimag¬
ing of clay mineralsurfaceswiththeatomic force microscope Clays and Clay Minerals, 38(4),
337-342
Heinzelmann,HandPohl,D(1994) Scanning
near-field optical microscopy AppliedPhysicsA,59, 89-101
Henderson, GS
Vrdoljak,
GAEby, RK Wicks, FJ andRachlin,AL
(1994) Atomic forcemi¬croscopystudiesoflayerSilicatemineralsColloids
and Surfaces,87,197-212
Hillner,
P,Gratz,A,
Manne,S andHansma,P (1992)Atomic-scale imaging ofcalcitegrowthanddissolution in real timeGeology, 20, 359-362
Hochella,
Jr
M F, Eggleston,CM Elings, VBParks,
GA,
Brown,Jr GE,
Wu,CM andKjoller,
K(1989)Mineralogy in twodimensions Scanningtunnehng microscopy of semiconducting mineralswith implications forgeochemicalreactiv-ltyAmerMineral,74,1233-1246
Hochella,
Jr, MF,
Eggleston, CM Elings, VBandThompson, MS(1990)Atomic structureand
morphology ofthealbite010surface An atomic-force microscope andelectrondiffractionstudy
AmerMineral,75, 723-730
Johnsson,PA Eggleston,CMandHochella, Jr
MF
(1991)Imaginemolecular-scalestructureandmicrotopography of hematite withtheatomic force microscope American Mineralogist, 76,1442-1445
Mansfield,SandKino,G(1990) Solid immersion microscopeApplPhysLett,57, 2615-2616
Meyer,E(1992)Atomic force microscopyProgress
inSurface Science, 41,3-49
Nagy, K L andBlum,AE(1994) Scanning Probe
Microscopy of Clay Minerals, volume7of CMS Workshop Lectures The Clay Minerals Society,
PO Box4416,Boulder,CO 80306
Ohnesorge, FandBinnig,G(1993)True atomicres¬
olution by atomic force microscopy through
repul-sive andattractive forcesScience, 260, 1451-1456
Paesler,
M,
Moyer,P,Jahncke,C,Johnson,C, Reddick, R Warmack,R andFerrell,
T(1990) Analytical photonscanningtunnehngmi¬
croscopyPhysicalReview B,42(10), 6750-6753
Pohl,D Denk, WandLanz, M (1984) Optical stethoscopyImage recording with resolutionX/20
ApplPhysLett,44, 651-653
Rachlin, A L Henderson,GS and Gho, MC (1992)Anatomic forcemicroscope(AFM)study
of the calcitecleavage planeImage averagingin fourierSpaceAmer Mineral,77, 904-910
Scandella, L Kruse,NandPrins, R(1993) Imag¬
ine of zeolitesurface structuresby atomic forcemi¬
croscopySurface ScienceLetters,281, 331-334
Stipp,S Eggleston,C andNielsen, B(1994) Cal¬
citesurfacestructureobserved atmicrographicand
molecular scaleswith atomic force microscopy
(AFM) Geochim Cosmochim Acta, 58(14),
3023-3033
Synge, E(1928)Asuggestedmodelfor extendingmi¬
croscopic resolution mtotheultra-microscopicre¬
gion Philos Mag 6, 356-362
Tsai, D Othonos,
A,
Moskovits, M and Uttam-chandani,D (1994) Ramanspectroscopy using afiber optic probe with subwavelength apertureApplPhysLett,64(14), 1768-1770 VAN DER OORD, C GERRITSEN,H LEVINE,Y,
MYR-ing, W, Jones, GandMunro,
I
(1992) Synchro¬tron radiationasas ahghtsourcein confocalmicros¬
copy RevSeiInstr,63, 632-433
Weisenhorn,
A Dougall,
JM Gould,S Cox,SWise,W,Massie,J, Maivald,P,Elings, V, Stucky,G andHansma,P (1990) Imagingand
mampulating moleculesonazeolitesurfacewithan
atomic force microscopeScience,247,1330-1333