• No results found

Intze Water Tank

N/A
N/A
Protected

Academic year: 2021

Share "Intze Water Tank"

Copied!
49
0
0

Loading.... (view fulltext now)

Full text

(1)

1 Tank capacity

Ltr.

1000

m3 100 mm thick

2 Height of tower from G.L.

16.00

1.00

mtr

3 Live load on Dome

1.50

kN/m2

0.1

kN/m2 300 x 300

3 Intencity of wind

1.50

kN/m

2

10

kN/m3

4 Noumber of columns

8

No. Bearing capcity of earth

250

kN/m2

4 Conrete

M

20

24

kN/m3 12.00 m

s

cc

5

N/mm2 m

13

s

cb

7

N/mm2 Q

0.897

8.00 m

5 Steel HYSD

fy

415

150

N/mm2

Resistance to cracking sct

1.2

N/mm2

s

cb

1.7

N/mm

2 Bottom Ring Beam Conocal Dom

6 Nominal Cover

25

mm

40

mm 1200 x 600 mm 600 mm thick

7 Depth / diameter Ratio

1:

0.75

8 Reinforcement Borrom sperical Dom 300 mm

Top Dome (main / distri. )

8

mm F

160

mm c/c both way 2.00m

Top Ring Beam

12

mm F

8

Nos. Bottom 2.00

two ledge srirrups

8

mm F

300

mm c/c 8.00 M

Vertical wall 600 x 1200 4.00 m

2 m from top hoop ring

10

mm F

190

mm c/c both side 4 m from top hoop ring

16

mm F

250

mm c/c both side 8 m from top hoop ring

20

mm F

190

mm c/c both side

2 m from top Distri. Steel

10

mm F

260

mm c/c both side Group of columns

4 m from top Distri. Steel

10

mm F

170

mm c/c both side 650 4.00 m

8 m from top Distri. Steel

10

mm F

130

mm c/c both side

Bottom Ring Beam

Main

20

mm F

18

Nos. 4.00 m

Distri. Steel

10

mm F

150

mm c/c

Conical wall

Main

25

mm F

190

mm c/c

Distri. Steel

10

mm F

130

mm c/c 4.00 m

Bottom sperical Dome

10

mm F

120

mm c/c both side Circular

Bottom circular girder Main top

25

mm F

6

Nos. Girder for Raft

Vertical strirrups

12

mm F

110

mm c/c

4

Ledge 750 X 1000 1.00 m

Main bottom

25

mm F

5

Nos. mm

Vertical strirrups

10

mm F

300

mm c/c

2

Ledge 1000

Column supprting tower Main

32

mm F

8

Nos. 5.00 m 250

Latral

10

mm F

300

mm c/c m

Bracing main

25

mm F

4

Nos. at top and bottom

strirrups

10

mm F

300

mm c/c

2

Ledge strirrup Circular girder for Raft bottom

25

mm F

6

Nos.

top

25

mm F

3

Nos.

strirrups

12

mm F

130

mm c/c

4

Ledge strirrup Raft Foundation slab main

25

mm F

200

mm c/c

Distribution

12

mm F

180

mm c/c pk_nandwana@yahoo.co.in 25 mm f @ 11.00 Braces

O.K.

m Effective Cover Tensile stress (Tank) unit weight wt of water m N.S.L. 500 3.00

DESIGN OF INTZE WATER TANK

Top Dome

mm dia Circular Girder Top Ring Beam

2.00 Circular 1.60

Name of work:-

pkn

Finishes load mtr Foudation from G.L.

1000000

(2)

8

mm f @

160

mm c/c Both side 6 Nos. top 10 mm f @ 150 mm c/c strirrup 300 B1 6.00 M 12 mm f @ 8 Nos. 300 8 mm f @ 300 mm c/c 0 m 200 10 mm f @ 190 mm c/c mm 10 mm f @ 260 mm c/c 200 x 200 300 10 mm f @ 170 mm c/c Fillet 10 mm f strirrup mm 16 mm f @ 250 mm c/c Braces 300 mm c/c 2 m 25 mm f 20 mm f @ 190 mm c/c 4 nos.top 4 m 25 mm f 10 mm f @ 130 mm c/c 4 nos.Bottom 400 mm 20 mm f @ 18 Nos. 25 mm f mm f mm f @ 150 mm c/c 10 mm f 3 nos.top nos.top 600 mm 300 mm c/c 12 mm f 25 mm f 32 mm f 130 mm c/c 6 nos.top 8 mm c/c 25 mm f 12 mm f 200 mm c/c 6 nos.top 25 mm f @ 6 Nos. top 32 mm f 10 mm f 12 mm f @ 8 nos. 300 mm c/c 110mmc/c.strirrup 1200 12 mm f @ 6Nos.both side 25 mm f @ 5 Nos.bottom pk_nandwana@yahoo.co.in 300 10 100

Bottom circular girder

Reinforcement detail in Intze Tank.

1200

600

Reinforcement Detail in circular girder and Raft foundation slab

Reiforcement in circular girder

Reinfocement in Brace

Cross -section of Bottom Ring girder

columns

500

Reinforcement Detail in r columns

(3)

Tank capacity ltr or =

1000

m3

Height of tower from G.L.

16.0

=

1.00

mtr

Live load on Dome

1.50

kN/m2 Finishes load =

0.10

kN/m2

Intencity of wind kN/m2 = kN/mm3

Noumber of columns

8

No. Bearing capcity of earth = kN/m2

Conrete M-

20

= kN/mm3

s

cb

7

N/mm 2 =

13

s

ct

5

N/mm 2 Q = Steel HYSD fy

415

N/mm2 =

150

N/mm2 Resistance to cracking scb

1.2

N/mm 2

s

cb=

1.7

N/mm 2 Nominal cover

25

mm =

35

mm

2 Design Constants:-For HYSD Bars Cocrete M =

20

wt. of concrete =

24

kN/mm3 for water Tank sst

=

150 N/mm

2 sst =

230

N/mm 2

s

cb

=

7 N/mm 2

m

=

13 k = 0.378 k = 0.283 J = 0.874 J = 0.906 R = 1.156 R = 1.669 3 Dimention of

tank:-D

=

Inside diameter of tank =

0.75 D

We have, p x D2 4

\ Height of cylindrical portion of tank = 0.75 x 11.93 = m Depth of conical Dome D/5 or D/6 = 12.00 / 6 = m Diameter of supporting tower =

8

m

Spacing of bracing =

4

m

4 Design of top dome

:-Thickness of dome slab = 100 = 0.10 m

Self load of dome = 0.10 x 1 x 1 x 24 = kN/m2

Live load = kN/m2

finishes = kN/m2

= kN/m2

If R = radious of dome D = diameter of Tank = m r = central rise = D/6=

2.00

m D/22+r2 6.002 + 2.00 2 2r 2 x 2.00 cos f =

8

/ 10.00 = 0.80 or f = degree 4.00 x 10.00 = 1 + 0.80 1.00 1.00 cos f 1.80 22.20 x 1000 100 x 1000 9.78 x 1000 1000 x 100

The stress are with in safe limit. However provide minimum reinforcement @ 0.3 % of area in each direction.

0.3 100

3.14xdia2 3.14 x 8 x 8

4 x100 4 x

Spacing of hoop Bars = 1000 x 50.2 / 300 = 167 say = 160 mm

8

mm F bar, @ 160 mm c/c in both circumferenially and meridionanlly.

pk_nandwana@yahoo.co.in 37 p xR1 x 100 Maridianal Stress = \ Ast = x 1000 = Hoop stress

Maridianal thrust at edge 'T'=

9.78

x 0.80 - =

Circumferential force =wR cose f - =

Say

12.00

kN/m 22.20 N/m

8.00

m

2.00

2.4 10.00

DESIGN OF INTZE WATER TANK

Tensile stess

250

10

wt. of concrete

1000000

1.50

= mm or = 0.10 0.22 1 + cosf 1.50 0.10

12.00

=

24

0.897

= D mm2 x 10.00 Total load or = 4.00 m foundation from G.L. wt of water m 11.930 "= Effective cover 300 m = 4.00 x 0.75 D

Assuming the average depth 1000 m3

=

the radius

r

top is given by, R = =

< mm2

50.2

N/mm2 N/m2 Safe < 5 N/mm2 5.00 N/mm2 safe = 100 Hence Provided using 8 mm bars A =

(4)

5 Design of top ring Beam

:-T1 cos f- D x 0.800 x 12.00

2 Permissible stress in high yield strenth deformed bars = 150 N/mm2,

106.60 x 1000

3.14xdia2 3.14 x 12 x 12

4 x100 4 x

No.of hoop Bars = 711 / 113 = 7 No. say 8.0 No.

Hence Provided

8

No.

12

mm F Ring bar, for symetry.

Actual , Ast = 8 x 113 = mm2

If Ac = cross section of ring beam Equivelent area of composite section of beam 106.60 x 1000

Ac + m x 904

300

x

300

= 90000 mm2

Provide

8

300 mm c/c to tie the 8 x 12 mm f ring beam.

6 Design of Cylendrical Tank wall

:-wHD 10 x 8.00 x 12.00

2

Area of ring Req. = 480000 / 150 =

3200

mm2 per meter height or 1600 mm2

both side 2.00 x 3200 3.14xdia2 3.14 x 10 x 10 4 x100 4 x 1000 x 78.5 800.0 / 2

Hence Provided

10

mm F bar, @ 190

0

to 2 mtr from top

4.00 x 3200

3.14xdia2 3.14 x 16 x 16

4 x100 4 x

1000 x 201 1600 / 2

Hence Provided

16

mm F bar, @ 250

2

to

4

mtr from top

8.00 x 3200

3.14xdia2 3.14 x 20 x 20

4 x100 4 x

1000 x 314 3200 / 2

Hence Provided

20

mm F bar, @ 190

4

to

8

mtr from top

1000 x 314

The spacing of ring may be increased towards the top, since pressure varies lineearly Using a tensile stress of 1.2N/mm2 for the the combined section ,

x

+ ( 13 x

3305

)

\ From which T = 360 mm

say

=

400 mm

Hence provided =

400

mm, at bottom and

200

mm at top = 300 mm

Distribution reinforcement 0.30 100 = 300 mm2 3.14xdia2 3.14 x 10 x 10 4 x100 4 x

The spacing of 10 mm f bars = 1000 x 79 / 300 = 260 mm c/c

Hence Provided

10

mm F bar, @ 260 mm c/c both direction from top 0 to 2 mtr from top

= =

201

mm2 100 A = = =

79

mm2 100 mm = mm2 = 2 480

mm c/c both direction from top

100 Ac

To resist the hoop tension at

= =

\ spacing of

mm bars 2

mm c/c both direction from top 10 mm bars 251 Actual , Ast = 600 x 200 x

At top , Ast

mm2 using 20 A = 10 mm f rings = A = 904 1.2 mm f strirrups @

Maximum hoop tension at base=

= Provide ring beam

= 150 mm bars

=

= , \ =

mtere below top, mtere below top, Ash

Ash = = mm 100 mm2

=

= mm2 100 22.20 8 800.0 106.60 =

3305

8 190 = 77077 711 196 =

79

Ash

Provide half the reinfocement near each face, Asd = mm2 = 20 1000 T = 1000 x 2 480 \ spacing of

mtere below top,

mm f rings =

\ spacing of using

=

Since dome roof has been design on membrane the analysis, the tank wall may be assumed to be free on top and bottom, Maximum hoop tension occurs at the base of wall,

=

using 10 mm bars A

To resist the hoop tension at 16 8 using 16 mm bars mm2 1600 = 8 Av thickness To resist the hoop tension at 4

thickness T is given by= mm f rings = 1.2 3200 kN

314

kN/m height = mm2 using = A 12

113

= mm2 mm2 mm2 2 Hoop tension'=F1= Ast mm 196

mm c/c both direction from top

(5)

0.30 100

= 450 mm2

3.14xdia2 3.14 x 10 x 10

4 x100 4 x

The spacing of 10 mm f bars = 1000 x 79 / 450 = 170 mm c/c

Hence Provided

10

mm F bar, @ 170 mm c/c both direction from top 2 to

4

mtr from top 0.30

100

= 600 mm2

3.14xdia2 3.14 x 10 x 10

4 x100 4 x

The spacing of 10 mm f bars = 1000 x 79 / 600 = 130 mm c/c

Hence Provided

10

mm F bar, @ 130 mm c/c both direction from top 4 to

8

meter upto mm 7 Design of Bottom Ring Beam

:-Load on ring beam:

(A) Load due to top dome = (Meridional trust x sin f )

= 22.20 x sin # = 22.20 x 0.6 = kN/m

(B) Load due to top ring beam = 0.30 x 0.30 x 24 = kN/m

© Load due to cylendrical wall = 0.30 x 8.00 x 24 = kN/m (D) Self load of Ring beam

1.20

x

0.60

= 1.20 x 0.60 x 24 = kN/m

Total = kN/m say kN/m

Horizontal force = H = V1 cot f =

91.00 x

1 = kN/m

\ Hoop tension Hg =((H x D )/2 =(

91.00

x

12.00 )/ 2.00 = kN/m Hoop Tension due to water pressure =(( wh.d.D)/2 )

Hw =(

10.00

x

8.00 x 0.60 x 12.00 ) / 2 = kN/m

Total Hoop tension = Hg + Hw = 546 + 288.0 = kN/m

This to be rested entirely by steel hoops, the area of which is Ash= 834 x 1000 / 150 = 5560 mm2

3.14xdia2 3.14 x 20 x 20

4 x100 4 x

No.of hoop Bars = 5560 / 314 = 18 No. say 18 No.

Hence Provided

18

No.

20

mm F Ring bar, for symetry. Actual , Ast = 18 x 314 = 5652 mm2

x 1.05 N/mm2 < 1.2

1200 x 600 + 13 x 5652 Hence safe

The 10 mm f distribution bars (vertical bars) provided in the wall @ 150 mm c/c should taken round the above ring to act as strirrups.

8 Design of conical dome wall

:-Avrage diameter of conical dome = ( 12.00 + 8.00 ) / 2 =

Avrage depth of water = 8.00 + 2.00 / 2

=

Weight of water above conical dome = 3.140 x 10.00 x 9.00

x

2.00 x 10 = Self weight of slab (thickness

600

= 3 x 10.00 x 2.83

x

0.6 x 24 = Load from top dome,top beam, wall & bottom beam = = 3.14 x 12.00

x

91.00 =

\ Total load on conical slab = kN

Load / unit Length V2 = 10360 / ( 3.14

x

8.00 )= 413 kN/m

Meridional thrust = T = V2 x Cosec f = 413 = 413

x

1.41 = 584 kN Meridional Stress = 584 x 1000 ) /( 600

x

1000 )= 0.97 < 5.00 N/mm2

safe Hoop tension in conical dome will be maximum at top of the conical dome slab since diameter D is maximum

at this section. Hoop tension = H =( p.cosec f + q. cot f ) . D/2

Water pressure = p = 10.00 x 8.00 = kN/m2

Weight of conical dome slab per m2 is computed as, q= 0.6 x 24 = kN/m2

f = 45 Degree D = 12 m \ H = 80.00 x cosec + 14.4 x cot 45 x D /2 =( 80.00 x 1.414 + 14.4 x 1 )x 12.00 / 2 = kN pk_nandwana@yahoo.co.in mm2 100 = = =

79

At middle , Ast

= x 300 45 mm2 = 834 1000 = mm thick 100 25 17.28 x x Provide half the reinfocement near each face, Asd

using 10 mm bars A = 834.00 = 10360 xcosec 45 14.4 10.00 9.00 5652 1279 57.6 13.36 100 3429 2.16 = mm2 900

Stress in equivalent section

=

314

mm2 Assuming Beam = A

90.40

Provide half the reinfocement near each face, Asd

using 10 mm bars A using 20 mm bars

At bottom , Ast

= mm2 765 x 1000 91.00 91.00 546 288

79

= 400 1000 = 1200 = 80.00

(6)

/ 150 = mm2

\ Area of each face = 5100 / 2 = 2550 mm2

3.14xdia2 3.14 x 25 x 25

4 x100 4 x

The spacing of 25 mm f bars = 1000 x 491 / 2550 = 190 mm c/c

25

mm F bar, @ 190 mm c/c on each face of the slab 1000 x 491 0.20 100 = 600 mm2 3.14xdia2 3.14 x 10 x 10 4 x100 4 x

The spacing of 10 mm f bars = 1000 x 79 / 600 = 130 mm c/c

=

10

mm F bar, @ 130 mm c/c on both face along the meridions.

x 1.15 N/mm2 < 1.2

600 x 1000 + 13 x 5164 Hence safe

9 Design of Bottom Sperical

Dome:-Thickness of Dom slab is assume = mm Diameter at base of slab = D = m

Central rise (1/5 x D) = m

If R = radious of dome D = diameter of base = 8.00 m r = central rise = D/5= 1.60 m D/22+r2 4.002

+ 1.60 2

2r 2 x 1.60

Self weight of Dome slab = 2x 3.14 x 5.800 x 1.60 x 0.300 x 24.00 = kN Volume of water above the dome is =

6.28 x 5.80 2

x 1.60 3.14 x 4.002x 3.00

\ Weight of water = x = kN

\ Total load on dome = + 4600 = kN

Load / unit Length V2 = 5020 / ( 3.14

x

16.00 )= 100 kN/m

Meridional thrust = T = wR/1+cosf cos f = 4.20 / 5.80

=

0.724 \ f = 44 Degree 100 x 5.80 1 + 0.724 Meridional Stress = 337.00 x 1000 ) /( 300

x

1000 )= 1.12 < 5.00 N/mm2 safe 1 1+ cosf 1 1.724 \ Hoop strss =( 83.60 x 1000 ) /( 300

x

1000 )= 0.28 < 5.00 N/mm2 safe 0.30 100 3.14xdia2 3.14 x 10 x 10 4 x100 4

Spacing of hoop Bars = 1000 x 79 / 650 = 121 say = 120 mm Hence Provided

10

mm F bar, @

120

mm c/c curmferentially and along the meridions.

10 Design of Bottom Circilar Girder

:-Thurst from the conical dome T1 = kN/m

Acting at angle of a = Degree

Thrust from sperical dome T2 = kN/m

Acting at angle of b = Degree

Net horizontal force on ring beam = T1 cos a - T2 cos b

= 413.0 x 0.707 - 337.0 x 0.713 = kN/m

= 51.71 x 8 / 2.00 = kN

Assuming size of ring beam 600 x 1200 mm pk_nandwana@yahoo.co.in 51.71 10.00 -4600 900 = 44.50

5164

190 using = x 600 x = 1000 =

Whole of which is to be resisted by steel, As = 765000 5100

= mm2 1200 2 x = 45 = 100 x 5.80 x - = 83.60 kn/m mm2 100 =

491

mm2

79

= 765 mm2

the radius is given by, R =

\ = 3.14 x = w R = m 300 5020 1000 300 x = = 8.00 1000 Circumferential force = wR = x 460.0 420.0 3.00 = 25 )-Hence Provided

Maximim tenssile stress

10.0 = 10 mm bars

A

using

Provide nominal reinforcement Actual , Ast Hence Provided At bottom , Ast using T2 = cos f A -4.00 2 ( A = x Provide half the reinfocement near each face, Asd

mm bars 100 mm3 460 - 1.60 or R = 5.80 = 1.6 420.00 mm2

79

mm2 ( 0.724 337.00 kN/m ) 5.80 mm bars 206.84 Net horizontal force on ring beam

Hoop compression in the beam

= = =

10

413.00 337.00

(7)

\ Hoop strss =( 206.84 x 1000 ) /( 600

x

1200 )= 0.29 < 5.00 N/mm2

safe Vertical load on ring beam =( T1 sin a + T2 sin b )

= 413.0 x 0.707 + 337.0 x 0.701 = kN/m

Self weight of Beam = 0.60 x 1.200 x 24.00 = kN/m

\ kN/m

Total design load on the Ring girder = W = 3.14 x D x w

W = 3.14 x 8.000 x 547 = kN

The circular girder supported on 8 column. Using the moment cofficient given in table 4.1 Maximum negative bending moment on supports = x wR

M = x #### x 4.00 = kN.m

Maximum Positive B.M. at mid span section = x wR

= x #### x 4.00 = kN/m

Maximum Torsional moment = x wR

= x #### x 4.00 = kN/m

Shear force at suppoprt section is = V = (w.R.p/4)/2 = 547.0 x 4 x 0.79 )/ 2 = kN 12.8 degree from higher support)

V

= 859 -( 547.0 x 3.14 x 4 x 12.75 )/ 180 = kN

Design of support section M = 457 V = 859 kN

457 x

0.874 x 600

Provide depth = 1200 mm cover = 50 mm Afective depth = mm

Mc x

sst. j.d 150 x 0.874 x 1150

3.14xdia2 3.14 x 25 x 25

4 x100 4 x

No.of Bars = 3031 / 491 =

6

No.

Actual , Ast = 6 x 491 = 2944 mm2

859 x 1000

600 x 1150

100 Ast 100 x 2944

b x d 600 x 1150

Since tc < Tv 0.27 < 1.24 Shear reinforcement required 0.27 x 600 x 1150

859 - 186 = kN

Using 12 mm f 4 legged strirups, spacing is,

150 x 4 x 113.04 x 1150

x

12

110

mm c/c center near supports.

Design of mid span

section:-Mc x sst. j.d 150 x 0.874 x 1150 0.30 100 3.14xdia2 3.14 x 25 x 25 4 x100 4 x

No.of Bars = 2160 / 491 =

5

No.

Actual , Ast = 5 x 491 = 2453 mm2

226 x 1000

600 x 1150

100 Ast 100 x 2453

b x d 600 x 1150

Since tc < Tv 0.25 < 0.33 Shear reinforcement required 0.25 x 600 x 1150

226 - 173 = kN

Using 10 mm f 2 legged strirups, spacing is,

150 x 2 x 78.5 x 1150

x

But Sv

>

0.75d or 300 mm whichever is less = 0.75 x 1150 = 863 mm

10

mm F ,

2

legged strirrups @

300

mm c/c .

373

547.0

13741

529 0.0083 934 mm = 600

But minimum area of steel is x x 1200

18.00

33

859 0.0083

457

0.0041 0.0041

226

Total Load = = 457 0.0006 0.0006 Shear force at section of maximum torsion is (At an angle of

= \ d 1000000 = 1150 using 25 mm bars A 1000000 = 3031 mm2 Ast Balance shear = 673 = = N/mm2 % tv = = 1.24 mm2 100 =

491

N/mm2

Shear taken by concrete =

1000 = 186 kN 0.427 \ tc sv = 673 1000 = 0.27 % of steel used = = = = 116 mm 1000000 = 1499 mm2 using 25 mm bars A mm F bar, @ Hence Provided Ast = = 226 = 2160 mm2 = tc 506 mm = 0.33 N/mm2 0.356

491

mm2 100 = N/mm2 = tv = = 0.25 % of steel used = = = % \ kN 1000

Shear taken by concrete = = 173

Balance shear = 54

Hence Provided

sv = =

(8)

Design of section subject to maximum torsion:-T = 33.00 kN D = 1200 mm d = 1150 mm V = 373 kN b = 600 mm M = 0 1 + D / b 1+ 1200 / 600 1.7 1.7 \ Me1 = (M+M1) = 0 + 59.00 = kN.m Mc x sst. j.d 150 x 0.874 x 1150 0.30 100 3.14xdia2 3.14 x 25 x 25 4 x100 4 x

No.of Bars = 2160 / 491 =

5

No.

Actual , Ast = 5 x 491 = 2453 mm2 33.00 0.6 Ve 461 x 1000 bd 600 x 1150 100 Ast 100 x 2453 b x d 600 x 1150

Since tc < Tv 0.25 < 0.67 Shear reinforcement required Using 12 mm f 4 legged strirups,with side cover of 25mm and top and bottom cover of 50mm

Asv . Asv 4 x 113.04 x 150 Tv-Tc)b 0.668 - 0.25 ) x 600

12

mm F ,

4

legged strirrups @

270

mm c/c .

11 Design of columns of supporting tower

:-The tank is supported on

8

8 m

mean diameter . Height of staging above ground level is

16.0

m. Let us assume the height of bracing is

4.00

mt . Hence

3

Panels of

4.00

m height each and

1

4.00

m height. Let the columns is connected to raft foundation by means of a ring beam. The top of which is provided at

1.00

meter below the ground level, so that the actual height of bottom pannel is

5.00

m height load on columns

Vertical load on each column = 13741 / 8 = kN

Self weight of column diameter mm

650

= 0.785 x 0.65 2

x 16 x 24.0 = kN

16

500

x

500

) = 3 x 0.5 x 0.5 x 3.14 x 24.0 = 57 kN

Total vertical load on each column = kN

Wind force on column

Intensity of wind pressure = 1.50 kN/m2 Reduction coffiecent of circular shape = 0.70 (a) wind force on top of dome and culendrical wall.

= 9.00 x 12.00 x 0.70 x 1.50 x = 114 kN

(b) Wind force on conical dome= 2.00 x 10.00 x 0.70 x 1.50 x = 21 kN

(c ) Wind force on bottom ring beam 1.2 x 8.00 x 0.70 x 1.50 x = 11 kN

(d) wind force on 5 no. column= 5 x 0.65 x 0.70 x 1.50 x 16.0 = 55 kN

(e) wind force in bracing = 0.5 x 8.00 x 3 x 1.50 = 18 kN

Total Horizontal force = 219 kN M

= 219 x 4.00 / 2 = kN.m

If M1 =Moment at the base of columns due to wind load

moment at the base columns is computed as 438

Assuming contraflexure point at mid height of columns and fixidity at base due to raft foundation, the columns, symemetrically placed on a circle of

panel of height meter weight of bracing (

1903

1718 128 = = 59.00 373 + 1.6 x 1000000 = Mt = = 59 T = kN.m 59.00 33.00 391 mm2 2160

But minimum area of steel is = x 600 mm2

Ast = mm2 100 = = x 1200 = 0.668 N/mm2 Equivalent shear = Ve = V+1.6T/b = =

491

using 25 mm bars A % of steel used = = = 461 kN Tve = = = = 0.25 N/mm2 0.356 % \ tc Hence Provided = 270 mm Spacing sv = = =( 114 x 23 + 21 x 17 + 11 x 16.00 + 6 x 12 3299 + 6 x 8.00 + 6 x 4.00 ) = kN.m

If V = Reaction devloped at the base of exterior columns

V V 4 2

r1 4 2

M1 =

S

M +

3299

(9)

= 3299 + V x 16

\ V = 3299 / 16 = 207

\ = 1903 + 207 = kN

Moment in each column in the base = 438 / 8 = kN.m

Reinforcement in column

;-Axial load = P = kN kN.m 55.0 x 1000 x

Since eccentricity is small, direct stress are predominent. Using 8 bars of 32 mm f and latral tis of10 300 mm c/c

Ast = 8 x 0.785 x 32 x 32.00 = 6431 mm2 AC= 0.785 x 650 2+( 1.50 x 13 x 6431 )

=

mm3 0.785 x 325 4 +( 1.50 x 13 )x 4 x 804 x 275 2 + 4 x 804 x ( 275 / 1.41 )2 = +( 19.5 )x( + 3216 x = + + = mm4 2110 x 1000 55.0 x 1000 x 1000 x 325

Permissible stress in concrete is increased by 33.33% while considering wind effect.

s

'

cc

s

'

cb

s

cc

s

cb 5 x 1.33 7 x 1.33

=

0.69419

+

0.141

= 0.84

= 0.84 < 1

O.K.

12 Design of Bracing

:-Moment In Brace = 2 x Moment in column x (2)0.5

= 2 x 55.0 x 2.00 (1/2)

= kN.m

Section of braces =

500

x

500

mm

\ b = 500 mm and d = 450 mm

Moment of resistance of section is

M1 = 0.897 x 500 x 450 2= or 91.00 kN.m Balance moment = M1 - M2 = 156.00 - 91.00 = kN.m Mc x sst. j.d 230 x 0.906 x 450 Mc x sst. j.d 230 x 0.906 x 400

\ Ast = Ast1 + Ast2 = 971 + 781 = mm2

3.14xdia2 3.14 x 25 x 25

4 x100 4 x

No.of Bars = 1752 / 491 = 4 No. bars at top and bottom

Actual , Ast = 4 x 491 = 1963 mm2

Length of barces L = 2 x 4.00 x sin

= 2 x 4.00 x 0.38 = 3.06 m Moment in brace 1/2 x brace length 0.5 x 3.06 102.00 x 1000 500 450 100 Ast 100 x 1963 b x d 500 x 450

Since tc < t v 0.36 < 0.46 Shear reinforcement required 0.36 x 500 x 450

Shear carried by concrete =

mm2 100 22.5 = = =

491

= mm2 1752 using 25 mm bars A 1000000

156.00

= 781.0 Ast2 = = 65 971.0 mm2 65.00 moment of ineria, le = 91 < 1000000 Ast1 = = = N/mm2 Bending stress =

s

'

cb 13622162891 = = 8757962891 243210000 457067 = = + 1.31 13622162891 + 1 4.62 55.0 2110 2110 55.0 Bending moment = M =

Total load on leeward column at base

457067

= 121605000 90821250 37812.5 4.62 N/mm2 1.31 eccentricity = (M/P ) = 1000000 2110 = = 8757962891 4742595000 mm f at or Direct compressve stress =

s

'

cc

t v = = 0.46

Maximum shear force in brace. = 156.00

% \ tc % of steel used = = = N/mm2 mm = 0.36 = 81.00 kN

26.07

0.872 N/mm2

102.00

kN

(10)

Balance shear = 102.0 - 81.00 = kN Using 10 mm f 2 legged strirups, spacing is,

150 2 x 78.5 x 450

x

But Sv

>

0.75d or 300 mm whichever is less = 0.75 x 450 = 338 or 330 mm

10

mm F ,

2

legged strirrups @

300

mm c/c .

13 Design of

foundation:-A circular girder with raft slab is provided for tower foundations. Total load on foundation = 1903 x 8 = kN

Self weight of foundation @ 10% = kN

Total Load = kN

Sefe bearing capacity of soil at site = kN/m2

\ Area required = 16746 / 250 = m2

a raft slab with equal projections on either sideof a circular ring beam and if

\ b = width of raft slab, then = 3.14 x 8 x b = 67.0 or b = 2.67 m Adopting a raft slab having inner diameter =

8.00

- 3.00 = 5.00 m say b =

3.00

m

and Outer diameter =

8.00

+ 3.00 = 11.00 m

Design of circular girder of raft slab

Total load on circular girder = kN

Load per meter run of girder = / ( p x 8 )= kN/m

Refering to moment coeffiecents given in table 4.1, the maximum moment in the circul;ar girder is computed. maximum negative moment at support. K1.W.R. = x #### x 4 = kN.m

maximum positive moment at MID span. K2.W.R. = x #### x 4 = kN.m

maximum Torsional moment (at

12.75

from support x #### x 4 = kN.m

607

x 4.00 x p/4

Shear force at section of maximum torsion is

607 x p x 4 x 12.75

The support section is designed for maximum moment

maximum negative moment

M

= kN.m = kN

Assuming the width of section =

750

mm

M = V = 953 kN

506 x

0.897 x 750

Adopt depth =

870

mm cover = 70 mm Over all depth = mm

Mc x

sst. j.d 230 x 0.906 x 870

3.14xdia2 3.14 x 25 x 25

4 x100 4 x

No.of Bars = 2793 / 491 = 6 No.

Actual , Ast = 6 x 491 = 2944 mm2

953 x 1000

750 x 1000

100 Ast 100 x 2944

b x d 750 x 1000

Since tc < Tv 0.26 < 1.27 Shear reinforcement required 0.26 x 750 x 1000

953 - 195 = kN

pk_nandwana@yahoo.co.in

Using 12 mm f 4 legged strirups, spacing is,

Balance shear = 758

= 0.26 N/mm2

Shear taken by concrete = = 195 kN

1000 0.393 % \ tc % of steel used = = = mm2 100 tv = = 1.27 N/mm2 = = =

491

using 25 mm bars A 506.00

1000

Ast = = 506 1000000 = 2793 mm2 \ d = 1000000 = 868 mm kN = 953 - kN

506.00

Shear force V

953.00

Shear force at support section is V =

2.00

= 953 V 180 = 413.00 0.0083 506 0.0041 250 0.0006 37

Shear carried by concrete =

1000 15224.0 = 81.00 kN 21.00 = Say 500 mm Providing 250.00 Hence Provided 505 mm 21 1000 sv = 15224.00 15224.00 607 1522.0 16746.00 67.00

(11)

230 x 4 x 113.04 x 1000 x

12

130

mm c/c center near supports.

Steel required for mid span

Mc x

sst. j.d 230 x 0.906 x 870

0.85 x b.d 1 x 750 x 870

3.14xdia2 3.14 x 25 x 25

4 x100 4 x

No.of Bars = 1380 / 491 = 3 No.

Actual , Ast = 3 x 491 = 1472 mm2

The section subjected to maximum torsional moment and shear should be design for the following forces.

T = 37 kN.m D = 1000 mm V = 413 kN b = 750 mm M = 0 d = 870 mm 1 + D/b 1 + 1000 / 750 1.7 \ Me1= M + M1 = 0 + 51 = 51 kN.m Mc x sst. j.d 230 x 0.906 x 870 0.85 x b.d 1 x 750 x 870 3.14xdia2 3.14 x 25 x 25 4 x100 4 x

No.of Bars = 1337 / 491 = 3 No.

Actual , Ast = 3 x 491 = 1472 mm2 Equivalent shear Ve = V +1.65T/b =

413

+ 1.6 x( 37 / 0.75 )= kn

492

x 1000

750

x 870 100 Ast 100 x 1337 b x d 750 x 870

Since tc < Tv 0.19 < 0.75 Shear reinforcement required 0.19 x 750 x 870

Balance shear = 492 - 124 = 368 kN

Using 12 mm f 4 legged strirups, spacing is,

4 x 113 x 230

0.75 - 0.19 )x 1000

Hence Provided

12

4

legged strirrups @

180

mm c/c center near supports. Design of Raft

Slab:-Maximum projection of raft slab from face of coloum 3.00 - 0.75

p x( 5.50 2

- 2.5 2

) Considring one meter width of raft slab along the circular arc.

w L 2 203 x 1.123 2

2

129 x

0.897 x 1000

Adopt depth =

450

mm cover = 50 mm Over all depth = mm

Mc x

sst. j.d 230 x 0.906 x 450

3.14xdia2 3.14 x 25 x 25

4 x100 4 x

pk_nandwana@yahoo.co.in

Spacing of bars = 1000 x 491 / 2064 = 238 say = 200 mm 0.19 N/mm2 \ tc 415 = 1337 mm2 mm2 mm2 say = mm2 kN 203 kN.m mm2 100 =

491

= = using 25 mm bars A

500

Ast = = 129 1000000 = 1376 2064 \ d = 1000000 = 380 mm = Siol pressure = = 15224 2 = = 129 sv mm F Shear taken by concrete =

=

Maximum Bending moment =

= 184 = mm = 124 kN 1.123 m 0.205 % 1000 = 2 = 0.75 N/mm2 % of steel used = = = T Mt = = 37

T v

= = 51 = 281 mm2 x 1.7 = 1000000 = 1337 51.00 kN.m

But minimum steel Ast = =

fy Ast = =

491

100 using 25 mm bars A mm2 100 492 = = = =

491

= = 25 mm bars A 1000000

But minimum steel Ast =

fy using

=

415 Hence Provided mm F bar, @

Ast = = 250 mm 758 1000 = 1380 mm2 sv = = 137

(12)

25

200

mm c/c to reduce shear stress Ast = mm2 actual steel used = = 1000 x

491

/ 200 = 2454 mm2

0.12 x 500 x 1000

3.14xdia2 3.14 x 12 x 12

4 x100 4 x

Spacing of barsNo.of Bars = 1000 x 113 / 600 = 188 mm

12

180

mm c/c to reduce shear stress

450 mm from face of columns

V = 203 x 0.673 x 1.000 = 137 kN.m

137

x 1000

1000

x 450 100 Ast 100 x 2454 b x d 1000 x 450 Since tc > Tv 0.310 > 0.304 O.K.

Reinforcement shown in drawing

pk_nandwana@yahoo.co.in 2454 = 0.31 N/mm2 =

113

% \ tc

t

v mm2 100 0.304 Hence Provided mm F bar, @

Shear force at a section

N/mm2 % of steel used = = = 0.55 mm bars A 100 = = = 600 mm2 Hence Provided mm F bar, @

= =

Distribution steel = using 12

(13)

M-15 M-20 M-25 M-30 M-35 M-40 Grade of concrete 18.67 13.33 10.98 9.33 8.11 7.18 tbd (N / mm 2 ) 5 7 8.5 10 11.5 13 93.33 93.33 93.33 93.33 93.33 93.33 kc 0.4 0.4 0.4 0.4 0.4 0.4 jc 0.867 0.867 0.867 0.867 0.867 0.867 Rc 0.867 1.214 1.474 1.734 1.994 2.254 Pc (%) 0.714 1 1.214 1.429 1.643 1.857 kc 0.329 0.329 0.329 0.329 0.329 0.329 jc 0.89 0.89 0.89 0.89 0.89 0.89 Rc 0.732 1.025 1.244 1.464 1.684 1.903 Pc (%) 0.433 0.606 0.736 0.866 0.997 1.127 kc 0.289 0.289 0.289 0.289 0.289 0.289 jc 0.904 0.904 0.904 0.904 0.904 0.904 Rc 0.653 0.914 1.11 1.306 1.502 1.698 Pc (%) 0.314 0.44 0.534 0.628 0.722 0.816 kc 0.253 0.253 0.253 0.253 0.253 0.253 jc 0.916 0.916 0.916 0.914 0.916 0.916 Rc 0.579 0.811 0.985 1.159 1.332 1.506 Pc (%) 0.23 0.322 0.391 0.46 0.53 0.599 M-15 M-20 M-25 M-30 M-35 M-40 0.18 0.18 0.19 0.2 0.2 0.2 0.22 0.22 0.23 0.23 0.23 0.23 0.29 0.30 0.31 0.31 0.31 0.32 0.34 0.35 0.36 0.37 0.37 0.38 0.37 0.39 0.40 0.41 0.42 0.42 0.40 0.42 0.44 0.45 0.45 0.46 0.42 0.45 0.46 0.48 0.49 0.49 0.44 0.47 0.49 0.50 0.52 0.52 0.44 0.49 0.51 0.53 0.54 0.55 0.44 0.51 0.53 0.55 0.56 0.57 0.44 0.51 0.55 0.57 0.58 0.60 0.44 0.51 0.56 0.58 0.60 0.62 0.44 0.51 0.57 0.6 0.62 0.63 15 20 25 30 35 40 1.6 1.8 1.9 2.2 2.3 2.5 100As 100As % fy 200 250 328 bd bd 0.0 m

scbc

(a) sst = 140 N/mm2 (Fe 250)

VALUES OF DESIGN CONSTANTS

Grade of concrete Modular Ratio

scbc

N/mm2 (b) sst = 190 N/mm2 (c ) sst = 230 N/mm2 (Fe 415)

100As Permissible shear stress in concrete tv N/mm2

(d) sst =

275 N/mm2 (Fe 500)

Permissible shear stress Table tv in concrete (IS : 456-2000)

< 0.15 bd 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

modification factore Table 2.75

3.00 and above

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete M

tc.max

Shear stress tc

M-20 M-20

(14)

0.14 0.17 0.17 0.14 0.05 0.15 0.18 0.18 0.15 0.10 0.16 0.18 0.19 0.18 0.15 0.17 0.18 0.2 0.21 0.20 0.18 0.19 0.21 0.24 0.25 2 0.19 0.19 0.22 0.27 0.30 1.85 0.2 0.19 0.23 0.3 0.35 1.75 0.21 0.2 0.24 0.32 0.4 1.65 0.22 0.2 0.25 0.35 0.5 2.0 1.5 0.23 0.2 0.26 0.38 0.6 1.75 1.4 0.24 0.21 0.27 0.41 0.7 1.90 1.65 1.35 0.25 0.21 0.28 0.44 0.8 1.80 1.55 1.30 0.26 0.21 0.29 0.47 0.9 1.70 1.5 1.25 0.27 0.22 0.30 0.5 1.0 1.60 1.45 1.2 0.28 0.22 0.31 0.55 1.1 1.55 1.4 1.16 0.29 0.22 0.32 0.6 1.2 1.50 1.35 1.13 0.3 0.23 0.33 0.65 1.3 1.50 1.3 1.1 0.31 0.23 0.34 0.7 1.4 1.45 1.3 1.1 0.32 0.24 0.35 0.75 1.5 1.40 1.25 1.07 0.33 0.24 0.36 0.82 1.6 1.35 1.2 1.05 0.34 0.24 0.37 0.88 1.7 1.35 1.2 1.03 0.35 0.25 0.38 0.94 1.8 1.30 1.18 1.01 0.36 0.25 0.39 1.00 1.9 1.30 1.16 1.0 0.37 0.25 0.4 1.08 2.0 1.25 1.14 0.99 0.38 0.26 0.41 1.16 2.1 1.25 1.13 0.97 0.39 0.26 0.42 1.25 2.2 1.20 1.12 0.96 0.4 0.26 0.43 1.33 2.3 1.18 1.1 0.95 0.41 0.27 0.44 1.41 2.4 1.17 1.1 0.94 0.42 0.27 0.45 1.50 2.5 1.16 1.08 0.93 0.43 0.27 0.46 1.63 2.6 1.15 1.06 0.92 0.44 0.28 0.46 1.64 2.7 1.14 1.05 0.92 0.45 0.28 0.47 1.75 2.8 1.13 1.04 0.91 0.46 0.28 0.48 1.88 2.9 1.12 1.03 0.91 0.47 0.29 0.49 2.00 3.0 1.11 1.02 0.90 0.48 0.29 0.50 2.13 3.1 1.11 1.01 0.87 0.49 0.29 0.51 2.25 3.2 1.11 1.00 0.86 0.5 0.30 0.51 0.30 0.52 0.30 0.53 0.30 0.54 0.30

0.55 0.31 Degree sin cosine tangent sec cosec

0.56 0.31 1.0 0.017 0.999 0.017 1.001 57.307 0.57 0.31 1.5 0.026 0.999 0.262 1.001 38.462 0.58 0.31 2.0 0.035 0.999 0.035 1.001 28.662 0.59 0.31 2.5 0.044 0.999 0.044 1.001 22.936 0.6 0.32 3.0 0.052 0.998 0.052 1.002 19.109 0.61 0.32 3.5 0.061 0.998 0.061 1.002 16.393 0.62 0.32 4.0 0.070 0.997 0.070 1.003 14.347 0.63 0.32 4.5 0.078 0.996 0.079 1.004 12.747 0.64 0.32 5.0 0.087 0.996 0.087 1.004 11.481 0.65 0.33 5.5 0.096 0.995 0.096 1.005 10.434 0.66 0.33 6.0 0.104 0.994 0.105 1.006 9.615 0.67 0.33 6.5 0.113 0.993 0.114 1.007 8.834 0.68 0.33 7.0 0.122 0.992 0.123 1.008 8.210 Value of angle

(15)

0.69 0.33 7.5 0.131 0.991 0.132 1.009 7.663 0.7 0.34 8.0 0.139 0.990 0.141 1.010 7.189 0.71 0.34 8.5 0.148 0.989 0.149 1.011 6.766 0.72 0.34 9.0 0.156 0.987 0.158 1.013 6.394 0.73 0.34 9.5 0.165 0.986 0.168 1.014 6.046 0.74 0.34 10.0 0.174 0.984 0.176 1.016 5.760 0.75 0.35 10.5 0.182 0.983 0.185 1.017 5.488 0.76 0.35 11.0 0.191 0.981 0.194 1.019 5.241 0.77 0.35 11.5 0.199 0.979 0.204 1.021 5.016 0.78 0.35 12.0 0.208 0.978 0.213 1.022 4.810 0.79 0.35 12.5 0.819 0.976 0.839 1.025 1.221 0.8 0.35 13.0 0.225 0.974 0.231 1.027 4.446 0.81 0.35 13.5 0.233 0.972 0.240 1.029 4.284 0.82 0.36 14.0 0.242 0.970 0.249 1.031 4.134 0.83 0.36 14.5 0.250 0.968 0.259 1.033 3.995 0.84 0.36 15.0 0.259 0.965 0.268 1.036 3.864 0.85 0.36 15.5 0.259 0.963 0.269 1.038 3.864 0.86 0.36 16.0 0.276 0.961 0.287 1.041 3.628 0.87 0.36 16.5 0.284 0.958 0.296 1.044 3.521 0.88 0.37 17.0 0.292 0.956 0.306 1.046 3.421 0.89 0.37 17.5 0.301 0.953 0.316 1.049 3.326 0.9 0.37 18.0 0.309 0.951 0.325 1.052 3.236 0.91 0.37 18.5 0.317 0.948 0.335 1.055 3.152 0.92 0.37 19.0 0.326 0.945 0.344 1.058 3.072 0.93 0.37 19.5 0.334 0.942 0.354 1.062 2.996 0.94 0.38 20.0 0.342 0.939 0.364 1.065 2.924 0.95 0.38 20.5 0.350 0.936 0.374 1.068 2.856 0.96 0.38 21.0 0.358 0.933 0.384 1.072 2.791 0.97 0.38 21.5 0.367 0.930 0.394 1.075 2.729 0.98 0.38 22.0 0.375 0.927 0.404 1.079 2.670 0.99 0.38 22.5 0.383 0.923 0.415 1.083 2.613 1.00 0.39 23.0 0.391 0.920 0.425 1.087 2.560 1.01 0.39 23.5 0.399 0.917 0.435 1.091 2.508 1.02 0.39 24.0 0.407 0.913 0.445 1.095 2.459 1.03 0.39 24.5 0.415 0.909 0.456 1.100 2.411 1.04 0.39 25.0 0.422 0.906 0.466 1.104 2.370 1.05 0.39 25.5 0.431 0.905 0.476 1.105 2.323 1.06 0.39 26.0 0.438 0.897 0.489 1.115 2.282 1.07 0.39 26.5 0.446 0.894 0.499 1.119 2.241 1.08 0.4 27.0 0.454 0.891 0.510 1.122 2.203 1.09 0.4 27.5 0.462 0.887 0.521 1.127 2.166 1.10 0.4 28.0 0.469 0.882 0.532 1.134 2.130 1.11 0.4 28.5 0.477 0.878 0.543 1.139 2.096 1.12 0.4 29.0 0.485 0.874 0.555 1.144 2.063 1.13 0.4 29.5 0.492 0.870 0.566 1.149 2.031 1.14 0.4 30.0 0.500 0.866 0.577 1.155 2.000 1.15 0.4 30.5 0.508 0.861 0.589 1.161 1.970 1.16 0.41 31.0 0.515 0.857 0.601 1.167 1.942 1.17 0.41 31.5 0.522 0.852 0.613 1.174 1.914 1.18 0.41 32.0 0.530 0.848 0.625 1.179 1.887 1.19 0.41 32.5 0.537 0.843 0.637 1.186 1.862 1.20 0.41 33.0 0.545 0.838 0.650 1.193 1.836 1.21 0.41 33.5 0.552 0.833 0.663 1.200 1.812 1.22 0.41 34.0 0.559 0.829 0.675 1.206 1.788 1.23 0.41 34.5 0.566 0.824 0.687 1.214 1.766 1.24 0.41 35.0 0.573 0.819 0.700 1.221 1.745

(16)

1.25 0.42 35.5 0.581 0.814 0.713 1.229 1.722 1.26 0.42 36.0 0.588 0.809 0.726 1.236 1.702 1.27 0.42 36.5 0.595 0.803 0.741 1.245 1.681 1.28 0.42 37.0 0.602 0.798 0.754 1.253 1.662 1.29 0.42 37.5 0.609 0.793 0.768 1.261 1.643 1.30 0.42 38.0 0.616 0.788 0.781 1.269 1.624 1.31 0.42 38.5 0.623 0.782 0.796 1.279 1.606 1.32 0.42 39.0 0.629 0.777 0.810 1.287 1.589 1.33 0.43 39.5 0.636 0.771 0.825 1.297 1.572 1.34 0.43 40.0 0.643 0.766 0.839 1.305 1.555 1.35 0.43 40.5 0.649 0.760 0.854 1.316 1.540 1.36 0.43 41.0 0.656 0.754 0.870 1.326 1.524 1.37 0.43 41.5 0.663 0.748 0.886 1.337 1.509 1.38 0.43 42.0 0.669 0.743 0.901 1.346 1.495 1.39 0.43 42.5 0.676 0.737 0.917 1.357 1.480 1.40 0.43 43.0 0.682 0.731 0.933 1.368 1.466 1.41 0.44 43.5 0.688 0.725 0.949 1.379 1.453 1.42 0.44 44.0 0.695 0.719 0.966 1.391 1.440 1.43 0.44 44.5 0.701 0.713 0.983 1.403 1.427 1.44 0.44 45.0 0.707 0.707 1.000 1.414 1.414 1.45 0.44 45.5 0.713 0.700 1.019 1.429 1.402 1.46 0.44 46.0 0.719 0.694 1.036 1.441 1.390 1.47 0.44 46.5 0.725 0.688 1.054 1.453 1.379 1.48 0.44 47.0 0.731 0.681 1.074 1.468 1.367 1.49 0.44 47.5 0.737 0.675 1.092 1.481 1.356 1.50 0.45 48.0 0.742 0.669 1.109 1.495 1.348 1.51 0.45 48.5 0.749 0.662 1.131 1.511 1.335 1.52 0.45 49.0 0.755 0.656 1.150 1.524 1.325 1.53 0.45 49.5 0.760 0.649 1.172 1.541 1.315 1.54 0.45 50.0 0.766 0.642 1.193 1.558 1.305 1.55 0.45 50.5 0.772 0.636 1.213 1.572 1.296 1.56 0.45 51.0 0.777 0.629 1.235 1.590 1.287 1.57 0.45 51.5 0.786 0.622 1.263 1.608 1.273 1.58 0.45 52.0 0.788 0.615 1.281 1.626 1.269 1.59 0.45 52.5 0.793 0.608 1.305 1.645 1.261 1.60 0.45 53.0 0.799 0.601 1.329 1.664 1.252 1.61 0.45 53.5 0.804 0.594 1.353 1.684 1.244 1.62 0.45 54.0 0.809 0.587 1.378 1.704 1.236 1.63 0.46 54.5 0.814 0.580 1.404 1.724 1.228 1.64 0.46 55.0 0.819 0.573 1.429 1.745 1.221 1.65 0.46 55.5 0.824 0.566 1.456 1.767 1.213 1.66 0.46 56.0 0.829 0.559 1.483 1.789 1.206 1.67 0.46 56.5 0.834 0.551 1.513 1.815 1.199 1.68 0.46 57.0 0.839 0.544 1.542 1.838 1.192 1.69 0.46 57.5 0.843 0.537 1.570 1.862 1.186 1.70 0.46 58.0 0.848 0.529 1.603 1.890 1.179 1.71 0.46 58.5 0.853 0.522 1.633 1.916 1.173 1.72 0.46 59.0 0.857 0.515 1.664 1.942 1.167 1.73 0.46 59.5 0.862 0.507 1.699 1.972 1.161 1.74 0.46 60.0 0.866 0.500 1.732 2.000 1.155 1.75 0.47 60.5 0.870 0.492 1.769 2.033 1.149 1.76 0.47 61.0 0.875 0.484 1.807 2.066 1.143 1.77 0.47 61.5 0.879 0.477 1.842 2.096 1.138 1.78 0.47 62.0 0.883 0.469 1.883 2.132 1.133 1.79 0.47 62.5 0.887 0.461 1.924 2.169 1.127 1.80 0.47 63.0 0.891 0.453 1.967 2.208 1.122

(17)

1.81 0.47 63.5 0.895 0.446 2.007 2.242 1.117 1.82 0.47 64.0 0.899 0.438 2.052 2.283 1.113 1.83 0.47 64.5 0.903 0.430 2.099 2.326 1.108 1.84 0.47 65.0 0.906 0.422 2.148 2.370 1.103 1.85 0.47 65.5 0.910 0.414 2.198 2.415 1.099 1.86 0.47 66.0 0.914 0.406 2.250 2.463 1.095 1.87 0.47 66.5 0.917 0.398 2.304 2.513 1.091 1.88 0.48 67.0 0.921 0.390 2.360 2.564 1.086 1.89 0.48 67.5 0.924 0.382 2.418 2.618 1.082 1.90 0.48 68.0 0.927 0.374 2.479 2.674 1.079 1.91 0.48 68.5 0.930 0.367 2.539 2.729 1.075 1.92 0.48 69.0 0.934 0.358 2.608 2.793 1.071 1.93 0.48 69.5 0.937 0.350 2.674 2.856 1.068 1.94 0.48 70.0 0.940 0.342 2.747 2.924 1.064 1.95 0.48 70.5 0.943 0.333 2.831 3.003 1.061 1.96 0.48 71.0 0.946 0.326 2.904 3.072 1.058 1.97 0.48 71.5 0.948 0.317 2.989 3.152 1.055 1.98 0.48 72.0 0.951 0.309 3.078 3.236 1.052 1.99 0.48 72.5 0.954 0.301 3.172 3.326 1.049 2.00 0.49 73.0 0.956 0.292 3.271 3.420 1.046 2.01 0.49 73.5 0.959 0.284 3.376 3.521 1.043 2.02 0.49 74.0 0.961 0.276 3.488 3.628 1.040 2.03 0.49 74.5 0.964 0.267 3.606 3.743 1.038 2.04 0.49 75.0 0.966 0.259 3.732 3.864 1.035 2.05 0.49 75.5 0.968 0.250 3.868 3.995 1.033 2.06 0.49 76.0 0.970 0.242 4.011 4.134 1.031 2.07 0.49 76.5 0.982 0.233 4.209 4.284 1.018 2.08 0.49 77.0 0.974 0.225 4.332 4.446 1.026 2.09 0.49 77.5 0.976 0.216 4.511 4.621 1.024 2.10 0.49 78.0 0.978 0.208 4.705 4.810 1.022 2.11 0.49 78.5 0.980 0.199 4.915 5.016 1.021 2.12 0.49 79.0 0.982 0.191 5.145 5.241 1.019 2.13 0.50 79.5 0.983 0.182 5.396 5.488 1.017 2.14 0.50 80.0 0.985 0.174 5.673 5.760 1.015 2.15 0.50 80.5 0.986 0.165 5.977 6.061 1.014 2.16 0.50 81.0 0.988 0.156 6.315 6.394 1.013 2.17 0.50 81.5 0.989 0.148 6.691 6.766 1.011 2.18 0.50 82.0 0.999 0.139 7.178 7.185 1.001 2.19 0.50 82.5 0.991 0.131 7.597 7.663 1.009 2.20 0.50 83.0 0.993 0.122 8.145 8.206 1.008 2.21 0.50 83.5 0.994 0.113 8.777 8.834 1.007 2.22 0.50 84.0 0.995 0.105 9.517 9.569 1.006 2.23 0.50 84.5 0.995 0.096 10.389 10.438 1.005 2.24 0.50 85.0 0.996 0.087 11.431 11.474 1.004 2.25 0.51 85.5 0.997 0.078 12.716 12.755 1.003 2.26 0.51 86.0 0.998 0.070 14.302 14.337 1.002 2.27 0.51 86.5 0.998 0.061 16.362 16.393 1.002 2.28 0.51 87.0 0.999 0.052 19.083 19.109 1.001 2.29 0.51 87.5 0.999 0.044 22.913 22.936 1.001 2.30 0.51 88.0 0.999 0.035 28.637 28.654 1.001 2.31 0.51 88.5 1.000 0.026 38.299 38.314 1.000 2.32 0.51 89.0 0.9998 0.017 57.295 57.307 1.000 2.33 0.51 89.5 0.9999 0.009 114.931 114.943 1.000 2.34 0.51 90.0 1.000 0.000 1.000 1.000 2.35 0.51 2.36 0.51

(18)

2.37 0.51 2.38 0.51 cos Degree 2.39 0.51 0.000 90.0 2.40 0.51 0.009 89.5 2.41 0.51 0.017 89.0 2.42 0.51 0.026 88.5 2.43 0.51 0.035 88.0 2.44 0.51 0.044 87.5 2.45 0.51 0.052 87.0 2.46 0.51 0.061 86.5 2.47 0.51 0.070 86.0 2.48 0.51 0.078 85.5 2.49 0.51 0.087 85.0 2.50 0.51 0.096 84.5 2.51 0.51 0.105 84.0 2.52 0.51 0.113 83.5 2.53 0.51 0.122 83.0 2.54 0.51 0.131 82.5 2.55 0.51 0.139 82.0 2.56 0.51 0.148 81.5 2.57 0.51 0.156 81.0 2.58 0.51 0.165 80.5 2.59 0.51 0.174 80.0 2.60 0.51 0.182 79.5 2.61 0.51 0.191 79.0 2.62 0.51 0.199 78.5 2.63 0.51 0.208 78.0 2.64 0.51 0.216 77.5 2.65 0.51 0.225 77.0 2.66 0.51 0.233 76.5 2.67 0.51 0.242 76.0 2.68 0.51 0.250 75.5 2.69 0.51 0.259 75.0 2.70 0.51 0.267 74.5 2.71 0.51 0.276 74.0 2.72 0.51 0.284 73.5 2.73 0.51 0.292 73.0 2.74 0.51 0.301 72.5 2.75 0.51 0.309 72.0 2.76 0.51 0.317 71.5 2.77 0.51 0.326 71.0 2.78 0.51 0.334 70.5 2.79 0.51 0.342 70.0 2.80 0.51 0.350 69.5 2.81 0.51 0.358 69.0 2.82 0.51 0.366 68.5 2.83 0.51 0.374 68.0 2.84 0.51 0.382 67.5 2.85 0.51 0.390 67.0 2.86 0.51 0.398 66.5 2.87 0.51 0.406 66.0 2.88 0.51 0.414 65.5 2.89 0.51 0.422 65.0 2.90 0.51 0.430 64.5 2.91 0.51 0.438 64.0 2.92 0.51 0.446 63.5

(19)

2.93 0.51 0.453 63.0 2.94 0.51 0.461 62.5 2.95 0.51 0.469 62.0 2.96 0.51 0.477 61.5 2.97 0.51 0.484 61.0 2.98 0.51 0.492 60.5 2.99 0.51 0.500 60.0 3.00 0.51 0.507 59.5 3.01 0.51 0.515 59.0 3.02 0.51 0.522 58.5 3.03 0.51 0.529 58.0 3.04 0.51 0.537 57.5 3.05 0.51 0.544 57.0 3.06 0.51 0.551 56.5 3.07 0.51 0.559 56.0 3.08 0.51 0.566 55.5 3.09 0.51 0.573 55.0 3.10 0.51 0.580 54.5 3.11 0.51 0.587 54.0 3.12 0.51 0.594 53.5 3.13 0.51 0.601 53.0 3.14 0.51 0.608 52.5 3.15 0.51 0.615 52.0 0.622 51.5 0.629 51.0 0.636 50.5 0.642 50.0 0.649 49.5 0.656 49.0 0.662 48.5 0.669 48.0 0.675 47.5 0.681 47.0 0.688 46.5 0.694 46.0 0.700 45.5 0.707 45.0 0.713 44.5 0.719 44.0 0.725 43.5 0.731 43.0 0.737 42.5 0.743 42.0 0.748 41.5 0.754 41.0 0.760 40.5 0.766 40.0 0.771 39.5 0.777 39.0 0.782 38.5 0.788 38.0 0.793 37.5 0.798 37.0 0.803 36.5 0.809 36.0 0.814 35.5

(20)

0.819 35.0 0.824 34.5 0.829 34.0 0.833 33.5 0.838 33.0 0.843 32.5 0.848 32.0 0.852 31.5 0.857 31.0 0.861 30.5 0.866 30.0 0.870 29.5 0.874 29.0 0.878 28.5 0.882 28.0 0.887 27.5 0.891 27.0 0.894 26.5 0.897 26.0 0.905 25.5 0.906 25.0 0.909 24.5 0.913 24.0 0.917 23.5 0.920 23.0 0.923 22.5 0.927 22.0 0.930 21.5 0.933 21.0 0.936 20.5 0.939 20.0 0.942 19.5 0.945 19.0 0.948 18.5 0.951 18.0 0.953 17.5 0.956 17.0 0.958 16.5 0.961 16.0 0.963 15.5 0.965 15.0 0.968 14.5 0.970 14.0 0.972 13.5 0.974 13.0 0.976 12.5 0.978 12.0 0.979 11.5 0.981 11.0 0.983 10.5 0.984 10.0 0.986 9.5 0.987 9.0 0.989 8.5 0.990 8.0 0.991 7.5

(21)

0.992 7.0 0.993 6.5 0.994 6.0 0.995 5.5 0.996 5.0 0.996 4.5 0.997 4.0 0.998 3.5 0.9986 3.0 0.9990 2.5 0.999 2.0 0.9996 1.5 0.9998 1.0

(22)

Grade of concreteM-10 M-15 M-20 M-25 M-30 M-35 M-40 M-45 tbd (N / mm 2 ) -- 0.6 0.8 0.9 1 1.1 1.2 1.3 M 15 M 20 M 25 M 30 M 35 M 40 M 45 M 50 (N/mm2) Kg/m2 (N/mm2) Kg/m2 M 10 3.0 300 2.5 250 M 15 5.0 500 4.0 400 M 20 7.0 700 5.0 500 M 25 8.5 850 6.0 600 M 30 10.0 1000 8.0 800 M 35 11.5 1150 9.0 900 M 40 13.0 1300 10.0 1000 M 45 14.5 1450 11.0 1100 M 50 16.0 1600 12.0 1200 M-15 M-20 M-25 M-30 M-35 M-40 1.6 1.8 1.9 2.2 2.3 2.5 415 500 2.00

Development Length in tension

Grade of concrete

Plain M.S. Bars H.Y.S.D. Bars

tbd (N / mm2) kd = LdF tbd (N / mm2) kd = LdF Permissible Bond stress Table tbd in concrete (IS : 456-2000)

0.6 58 0.96 60 0.8 44 1.28 45 1 35 1.6 36 0.9 39 1.44 40 1.1 32 1.76 33 1.2 29 1.92 30 1.4 25 2.24 26 1.3 27 2.08 28

Permissible stress in concrete (IS : 456-2000)

Bending acbc Direct (acc)

Grade of concrete

Permission stress in compression (N/mm2) Permissible stress in bond (Average) for plain bars in tention (N/mm2)

-- --(N/mm2) in kg/m2 0.6 60 0.8 80 0.9 90 1.0 100 1.1 110 1.2 120 1.3 130 1.4 140

modification factore Table

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete

(23)

1.80 1.65 1.90 1.50 1.80 1.40 1.70 1.35 1.60 1.30 1.50 1.20 1.40 1.16 1.30 1.08 1.20 1.00 1.15 0.95 1.05 0.90 1.02 0.86 1.20 0.84 0.98 0.82 0.96 0.81 0.94 0.80 0.92 0.79 0.91 0.78 0.90 0.77 0.89 0.76 0.86 0.75 0.86 0.74 0.85 0.73 0.84 0.72 0.83 0.72 0.83 0.72 0.82 0.71 0.82 0.71 0.81 0.71 0.81 0.70 0.81 0.70 0.81 0.69 0.81 0.69 0.81 0.68 0.81 0.68

Table Carpentors's coefficents for cylenlidrical tank (Reyolndhand book)

cotangent Degree Factors

57.249 1.0 H+dA 10 20 30 40 10 56.300 1.5 0.2 0.046 0.028 0.022 0.015 -28.633 2.0 0.3 0.032 0.019 0.014 0.01 0.55 22.913 2.5 0.4 0.024 0.014 0.01 0.007 0.5 19.071 3.0 0.5 0.02 0.02 0.009 0.006 0.45 16.361 3.5 1.0 0.012 0.006 0.005 0.003 0.37 14.304 4.0 2.0 0.006 0.003 0.002 0.002 0.3 12.696 4.5 4.0 0.004 0.002 0.002 0.001 0.27 11.435 5.0 10.382 5.5 9.558 6.0

8.772 6.5 Cofficent for bending moment and twisting moment in circular beam

8.144 7.0 No of support 2f C1 C2 F K1 Value of angle V a lue o f H/D TABLE 20.1

(24)

7.594 7.5 4 90 0.137 0.07 7.117 8.0 5 72 0.108 0.054 6.691 8.5 6 60 0.089 0.045 6.311 9.0 8 45 0.066 0.03 5.961 9.5 9 40 0.06 0.027 5.668 10.0 10 36 0.054 0.023 5.395 10.5 12 30 0.045 0.017 5.142 11.0 4.911 11.5 4.704 12.0 1.192 12.5 4.331 13.0 4.165 13.5 4.010 14.0

3.867 14.5 Cofficent for bending moment and twisting moment in circular beam 3.729 15.0 3.721 15.5 3.487 16.0 3.373 16.5 3.271 17.0 4 90 0.0342 0.0176 3.169 17.5 6 72 0.148 0.0075 3.078 18.0 8 60 0.0083 0.0041 2.988 18.5 10 45 0.0054 0.0023 2.903 19.0 12 40 0.0037 0.0014 2.822 19.5 2.746 20.0 2.673 20.5 2.604 21.0 2.538 21.5 2.475 22.0 2.412 22.5 2.355 23.0 2.300 23.5 2.245 24.0 2.192 24.5 2.147 25.0 2.102 25.5 2.047 26.0 2.004 26.5 1.963 27.0 1.921 27.5 1.879 28.0 1.840 28.5 1.803 29.0 1.767 29.5 1.732 30.0 1.697 30.5 1.664 31.0 1.631 31.5 1.600 32.0 1.569 32.5 1.539 33.0 1.509 33.5 1.483 34.0 1.455 34.5 1.429 35.0 Positive bending moment at center of span K2

TABLE 4.1 for (Krishna Raju) intze tank design

No of support 2f Negative bending moment at support K1

(25)

1.402 35.5 1.377 36.0 1.350 36.5 1.326 37.0 1.303 37.5 1.280 38.0 1.256 38.5 1.235 39.0 1.212 39.5 1.191 40.0 1.170 40.5 1.149 41.0 1.129 41.5 1.110 42.0 1.091 42.5 1.072 43.0 1.053 43.5 1.035 44.0 1.017 44.5 1.000 45.0 0.981 45.5 0.965 46.0 0.949 46.5 0.931 47.0 0.916 47.5 0.901 48.0 0.884 48.5 0.869 49.0 0.853 49.5 0.838 50.0 0.824 50.5 0.809 51.0 0.792 51.5 0.780 52.0 0.766 52.5 0.753 53.0 0.739 53.5 0.726 54.0 0.712 54.5 0.700 55.0 0.687 55.5 0.674 56.0 0.661 56.5 0.649 57.0 0.637 57.5 0.624 58.0 0.612 58.5 0.601 59.0 0.588 59.5 0.577 60.0 0.565 60.5 0.553 61.0 0.543 61.5 0.531 62.0 0.520 62.5 0.508 63.0

(26)

0.498 63.5 0.487 64.0 0.476 64.5 0.466 65.0 0.455 65.5 0.444 66.0 0.434 66.5 0.424 67.0 0.414 67.5 0.403 68.0 0.394 68.5 0.384 69.0 0.374 69.5 0.364 70.0 0.353 70.5 0.344 71.0 0.335 71.5 0.325 72.0 0.315 72.5 0.306 73.0 0.296 73.5 0.287 74.0 0.277 74.5 0.268 75.0 0.259 75.5 0.249 76.0 0.238 76.5 0.231 77.0 0.222 77.5 0.213 78.0 0.203 78.5 0.194 79.0 0.185 79.5 0.176 80.0 0.167 80.5 0.158 81.0 0.149 81.5 0.139 82.0 0.132 82.5 0.123 83.0 0.114 83.5 0.105 84.0 0.096 84.5 0.087 85.0 0.079 85.5 0.070 86.0 0.061 86.5 0.052 87.0 0.044 87.5 0.035 88.0 0.026 88.5 0.017 89.0 0.009 89.5 0.000 90.0

(27)
(28)
(29)
(30)
(31)

M-50 1.4 fs = 120 =fy200 fs =145 =fy250 0 Modification factore

Fs= steel stress of service load =0.58fy for steeel fy 500 = Fs N/mm2 fy 415 = Fs N/mm2 fy 328 = Fs N/mm2 fy 250 = Fs N/mm2 fy 207 = Fs N/mm2 2.0 1.6

Permissible Bond stress Table tbd in concrete (IS : 456-2000)

1.2 0.8 0.4 0.4 0.8 1.2 190 290 240 145 120

(32)

Table Carpentors's coefficents for cylenlidrical tank (Reyolndhand book)

20 30 40 10 20 30 40 0.5 0.45 0.4 0.32 0.46 0.53 0.5 0.43 0.38 0.33 0.35 0.53 0.6 0.66 0.39 0.35 0.3 0.44 0.58 0.65 0.7 0.37 0.32 0.27 0.48 0.63 0.69 0.73 0.28 0.24 0.21 0.62 0.73 0.74 0.83 0.22 0.19 0.16 0.73 0.81 0.85 0.88 0.2 0.17 0.14 0.8 0.85 0.87 0.9

Cofficent for bending moment and twisting moment in circular beam

C3 fm

(33)

0.021 19.25 0.014 15.25 0.009 12.75 0.005 9.5 0.004 8.5 0.003 7.25 0.002 6.25

Cofficent for bending moment and twisting moment in circular beam

0.0053 19.25 0.00015 15.25 0.0006 12.75 0.00003 9.5

0.0017 8.5 TABLE 4.1 for (Krishna Raju) intze tank design

Maximum twesting moment or

torqu K3

(34)
(35)
(36)
(37)
(38)
(39)
(40)

fs =145 =fy250 fs =190 =fy328 fs =240 =fy415 fs = 290 =fy500 Fig 7.1 2.8 1.2 1.6 2.0 2.4

(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)

References

Related documents

These time series were from measurements of charcoal abundance in core samples taken from wet meadows on the west slope of the Sierra Nevada in or near the giant sequoia

NCLEX-RN: A Computerized Adaptive Test (CAT) developed by the National Council of State Boards of Nursing (NCSBN), designed to test knowledge, skills, and abilities essential to

General scheme of a solar cooling system hot water storage tank collector field heat exchanger absorption chiller cold water storage tank cooling tower compression chiller M M

Tank Cleaning - Remove the Mist Nozzle from the top of the Water Tank then remove the Water Tank from the unit. Turn the tank upside down, unscrew the Tank Cap and drain any water

A) Overview of Services: Provide description of the nature of the proposer’s services and activities. List the address from which the primary work on the contract would be

– Effect: norm is capable of having direct effect in the legal relations between an individual and the Member State (or the EU) = vertical direct effect.. • Case 43/75 Defrenne

ALAT, ASAT, and GGT were all elevated in untreated diabetic rats but treatment with either MO methanolic leaf extracts or insulin significantly reduced plasma levels of these