• No results found

Reduced cerebellar brain activity during reward processing in adolescent binge drinkers

N/A
N/A
Protected

Academic year: 2021

Share "Reduced cerebellar brain activity during reward processing in adolescent binge drinkers"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Developmental

Cognitive

Neuroscience

j ou rn a l h om ep a ge :h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / d c n

Reduced

cerebellar

brain

activity

during

reward

processing

in

adolescent

binge

drinkers

Anita

Cservenka

a

,

Scott

A.

Jones

b

,

Bonnie

J.

Nagel

a,b,∗ aDepartmentofPsychiatry,OregonHealth&ScienceUniversity,Portland,OR,UnitedStates

bDepartmentofBehavioralNeuroscience,OregonHealth&ScienceUniversity,Portland,OR,UnitedStates

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19December2014 Receivedinrevisedform28May2015 Accepted26June2015

Availableonline30June2015 Keywords: Adolescence Alcohol Binge Reward Cerebellum

a

b

s

t

r

a

c

t

Duetoongoingdevelopment,adolescencemaybeaperiodofheightenedvulnerabilitytotheneurotoxic effectsofalcohol.Bingedrinkingmayalterreward-drivenbehaviorandneurocircuitry,thereby increas-ingriskforescalatingalcoholuse.Therefore,wecomparedrewardprocessinginadolescentswithand withoutahistoryofrecentbingedrinking.Attheirbaselinestudyvisit,allparticipants(age=14.86±0.88) werefreeofheavyalcoholuseandcompletedamodifiedversionoftheWheelofFortune(WOF)functional magneticresonanceimagingtask.Followingthisvisit,17youthreportedbingedrinkingon≥3occasions withina90dayperiodandwerematchedto17youthwhoremainedalcoholandsubstance-naïve.All participantsrepeatedtheWOFtaskduringasecondvisit(age=16.83±1.22).Nosignificanteffectswere foundinaregionofinterestanalysisoftheventralstriatum,butwhole-brainanalysesshowed signifi-cantgroupdifferencesinrewardresponseatthesecondstudyvisitintheleftcerebellum,controllingfor baselinevisitbrainactivity(p/˛<0.05),whichwasnegativelycorrelatedwithmeannumberofdrinks consumed/drinkingdayinthelast90days.Thesefindingssuggestthatbingedrinkingduringadolescence mayalterbrainactivityduringrewardprocessinginadose-dependentmanner.

©2015TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Adolescenceisa period markedbycontinuedstructural and functionaldevelopmentinthebrain(forreview,seeBlakemore, 2012),aswellasmanyassociatedbehavioralandcognitivechanges (forreview,seePaus,2005).Adolescenceisalsoatimeofincreased risk-takingbehavior, includingexperimentationwithdrugs and alcohol(Eatonetal.,2012).Onepossibleexplanationforincreased risk-takingobserved duringadolescenceinvolvesthecontinued development of reward-related neurocircuitry (Galvan, 2010). Brainregions,suchastheorbitofrontalcortex(OFC),medial pre-frontalcortex(mPFC),andstriatumhavebeenimplicatedaskey componentsinthebrain’srewardsystem(McClureetal.,2004; Schultz,2000)and are regions that undergo development dur-ingadolescence(Goddingsetal.,2014;Gogtayet al.,2004).For example,dopaminereceptorlevelsandbindinginthestriatumare higherduringadolescencethanadulthood(Seemanetal.,1987) andareaccompaniedbyanincreaseindensityofdopaminergic

∗ Correspondingauthorat:OregonHealth&ScienceUniversity,Departmentof Psychiatry,3181SWSamJacksonParkRoad,MC:DC7P,Portland,OR97239,United States.Tel.:+15034944612.

E-mailaddress:nagelb@ohsu.edu(B.J.Nagel).

projections to the prefrontal cortex (Kalsbeek et al., 1988; RosenbergandLewis,1994;Tunbridgeetal.,2007).These devel-opmentalchangesintherewardsystemduringadolescencemay impacthowthebrainrespondstoreward.Specifically,some neu-roimagingstudieshave foundgreaterreward-relatedactivation duringadolescence,comparedtothatseeninadultsandchildren, inregionssuchastheventralstriatumandmPFC(VanLeijenhorst etal.,2010),which maybeassociatedwithan increasein ven-tralstriataldopaminerelease observedduringrewardingevents (Jonassonetal.,2014;Koeppetal.,1998).Thisheightenedplasticity oftherewardsystemduringadolescencemayrenderthe adoles-centbrainmorevulnerabletotheneurotoxiceffectsofdrugsof abuse.

Currently,themostcommonformofsubstanceuseamong ado-lescentsistheuseofalcohol.IntheUnitedStates,bytheendof the12thgrade,68%ofadolescentshavereporteddrinking alco-hol,52%reportbeingdrunkintheirlifetime,and26%reportbeing drunkwithinthelast30days(Johnstonetal.,2014).Furthermore, bingedrinking,themostcommonformofalcoholmisuseamong adolescents(Deas,2006),isreportedbyover22%ofadolescents (Johnstonetal.,2014).Inlinewithfindingsofcontinued develop-mentoftherewardsystemduringadolescence,pre-clinicalmodels havefoundthattherewardsysteminadolescenceresponds differ-entlytoalcoholthanduringadulthood.Increaseddopaminerelease http://dx.doi.org/10.1016/j.dcn.2015.06.004

(2)

withintheventralstriatumduringacutealcoholexposureis promi-nentinadolescents(Pascualetal.,2009;Philpotetal.,2009)and appearstobeassociatedwithgreaterrewardingeffectsofalcohol duringthisdevelopmentalstage(Pautassietal.,2008;Ristuccia andSpear,2008),whichmaypromotefuturedrinking.Insupport ofthisnotion,rodentmodelsindicatethatalcoholexposure dur-ingadolescence,comparedtoadulthood,increasesrewarddriven behavior(McMurrayetal.,2014;Schindleretal.,2014).

Agrowingbodyofliteraturehasdocumentednumerous abnor-malities in brain structure and functioning among adolescent alcoholusers.Bingedrinkingduringadolescencehasbeen asso-ciatedwithdifferencesinfrontallobecorticalthickness(Squeglia etal.,2012)andreductionsin cerebellarvolume (Lisdahletal., 2013),aswellaswidespreadreductionsinwhitematterintegrity withandwithoutcomorbidmarijuanause(Jacobusetal.,2013). Additionally,bingedrinkinghasbeenshowntohaveaneffecton brainactivityduringaffectivedecisionmaking(Xiaoetal.,2013) andspatialworkingmemory(Schweinsburgetal.,2008;Squeglia etal.,2011).Cross-sectionalneuroimagingstudieshavebegunto exploretheeffectsofalcoholonrewardprocessinginthebrain, butthisworkhasbeenlimitedtoadults.Alcohol-dependentadults haveshownincreasedactivationintheventralstriatumandmesial frontalcortex duringreward notification compared to controls (Bjorketal.,2008b),aswellasreducedrewardoutcome-related positivityinthebrain,measuredwithevent-relatedpotentials, sug-gestiveofdeficientrewardprocessing(Kamarajanetal.,2010).This latter“rewarddeficiency”findingisfurthersupportedbystudies inadultalcoholicswhichfoundhyporesponsiveactivityinthe ven-tralstriatumduringrewardanticipation(Becketal.,2009;Wrase etal.,2007).Whilebothhyper-andhyporesponsiveactivityinthe ventralstriatumhavebeenseeninhumanadults,preclinical mod-elsinadolescentsprimarilysupporttheideaofrewarddeficiency, suchthatrepeatedalcoholexposureleadstoa hypodopaminer-gicstate(Philpotetal.,2009),andalcohol-inducedchangestothe rewardsystemcorrelatewithincreasedalcoholseekingbehavior andvoluntaryconsumptioninadultratsthatexperienced adoles-centalcoholexposure(Pascualetal.,2009).Nolongitudinalstudy, toourknowledge,hasinvestigatedtheeffectsofbinge-levelalcohol useonreward-relatedbrainactivationinanadolescentpopulation. Thecurrentstudysoughttoexpandonthisbodyofliterature by examiningneuralactivation toreward in a groupof binge-drinking adolescents compared to alcohol/drug-naïve controls usingaprospective,longitudinalapproach.Adolescentsperformed amodifiedversionoftheWheelofFortune(WOF)task(Ernstetal., 2004), a reward-based decision-making task, during functional magneticresonance imaging(fMRI). Basedonpreviousfindings inadultalcoholicsofdecreased reward-relatedactivation(Beck etal.,2009;Wraseetal.,2007),aswellasalcohol’spropensityto affecttherewardsystemduringadolescence(Pascualetal.,2009; Philpotetal.,2009),wehypothesizedthatbinge-drinking adoles-centswould showreduced brainactivationtorewardoutcome, comparedtotheirnon-usingpeers,inrewardprocessingregions, suchasthemPFCandventralstriatum.

2. Materialsandmethods

2.1. Participantrecruitmentandscreening

Over200participants,ages12–16,wererecruitedaspartofa longitudinalstudyonriskfactorsforandconsequences of alco-hol use on brain and behavior during adolescence (Cservenka etal.,2012,2013,2014a,b;CservenkaandNagel,2012;Mackiewicz Segheteetal.,2013).Recruitmentwasconductedthrough com-munity mailings and local advertising. The participating youth andoneoftheirparentsorguardianswereinterviewedbyphone

duringapre-screentodetermineinitialeligibility,followingwhich studyconsentandassentwereobtainedfromparentsandyouth, respectively.Next,alongertelephonescreeninginterviewwas con-ductedwiththeyouthandparent,separately.Duringthisscreen, theStructuredClinicalInterview(Brownet al.,1994), the Diag-nostic Interview Schedule for Children Predictive Scales (Lucas et al., 2001), and theFamily History Assessment Module (Rice et al., 1995)were administered to assess thepresence of psy-chiatricconditionsintheyouth,anddeterminefamilyhistoryof psychopathology.YouthwhometDSM-IVcriteriaforanAxisI dis-orderwerenotincludedinthestudy.Otherexclusionarycriteria forstudyparticipationwere(1)lackoffamilyhistoryinformation, (2)presenceofpsychoticdisordersinfirst-degreebiological par-ents(i.e.schizophreniaorbipolarI),(3)parentreportofprenatal alcoholexposure,(4)MRIcontraindications(includingpregnancy), (4)headinjurywithlossofconsciousness,(5)useofpsychotropic medication, (6) left-handedness (Oldfield, 1971), and (7) seri-ousmedical/neurologicalconditions.Furthermore,sincethisstudy wasaimedatunderstandingtheneuralconsequencesof initiat-ingheavydrinkingduringadolescence,youthwereexcludedfrom theinitialstudyvisitiftheyreported>10lifetimealcoholic bev-erages,>2 drinks/occasion,>5lifetimeuses ofmarijuana, or>4 cigarettes/day(BriefLifetimeversionoftheCustomaryDrinking and Drug Use Record (CDDR,Brown et al. (1998)). Finally, the Hollingshead Index of Social Position (Hollingshead, 1957) was administeredtotheparticipatingparentorguardiantoestimate socioeconomicstatus (SES) of theyouth, based ontheparents’ educationalandoccupationalattainment.Allprocedureswerein accordancewiththeethicalguidelinesoftheOregonHealth& Sci-enceUniversity(OHSU)InstitutionalReviewBoard.

2.2. Studyproceduresandfollow-upassessments

Eligiblemaleyouthwerescheduledforstudyvisitsatanytime, whilefemaleyouthwerescheduledduringthefirst10daysoftheir menstrualcycle(follicularphase)toaccountforcycle-related varia-tionsinhormonelevels.Attheinitialbaselinestudyvisit(agerange: 13.15–16.34),participantsunderwentneuroimaging,duringwhich theycompletedamodifiedversionoftheWOFfMRItask(Cservenka etal.,2013;CservenkaandNagel,2012;Ernstetal.,2004)anda structuralMRI scanfor co-registrationoffunctional data(other componentsoftheMRIscanarenotreportedinthisstudy). Fur-thermore,youthcompletedaneuropsychologicalbattery within one week of theimaging session, which included estimates of intellectualfunctioningusingtheWechslerAbbreviatedScaleof Intelligence(WASI,Wechsler(1999)).Pubertalstatuswasassessed withgender-specificlinedrawingsrepresentingpubertal develop-mentwithTanner’sSexualMaturationScale(Tayloretal.,2001). TheChildren’sDepressionInventory(Kovacs,1985)andthe State-TraitAnxietyInventory(Spielbergeretal.,1973)wereadministered ateachstudyvisittoassessdepressivesymptomsandstateanxiety, respectively.

Followingcompletion of the initialstudy visits, participants couldelecttoparticipateinthelongitudinalportionofthestudy. Ifyouthassentedtoparticipating,theywerecontactedbyphone approximatelyevery3 months.During thesephone interviews, youthwereaskedtoprovideinformationondrinkingbehaviorin thepast90days withtheCDDR(Brownet al.,1998),following whichthe90-dayTimelineFollowback(TLFB)(SobellandSobell, 1992; Sobelletal.,1986)wasusedtocollectdetailed informa-tiononalcohol,marijuana,nicotine,andotherdruguse,ifanyuse wasreported.Basedontheseinterviews,youthwhoreportedbinge drinking(≥5drinks/occasionformalesand≥4drinks/occasionfor females)onatleastoneoccasioninthepast90days,andhadat leasttwootheroccasionsof≥4drinks/occasioninthat3-month

(3)

period, were invited backfor a second study visit1 with iden-ticalneuroimagingproceduresandneuropsychologicalmeasures asadministeredduringtheirbaselinevisits.Youthwereaskedto abstainfromalcoholand/orotherdrugusefor72hpriortothe sec-ondstudyvisit.Atthetimeofthesecondstudyvisit(agerange: 14.51–18.68),absenceofacute alcoholintoxication priortothe neuroimagingsessionwasconfirmedwithabreathalyzer,which wasnegativeforallyouth.Aurinetestwasalsocollectedatthistime toassessforotherdrugsyouthmayhavetaken.Nineyouthfrom thebinge-drinkinggrouptestedpositivefortetrahydrocannabinol, whileoneoftheseninealsotestedpositivefortricyclic antidepres-sants,althoughuseofthismedicationwasnotreported.17youth metbinge-drinkingcriteriatobeinvitedbackforarevisit(except onemaleyouthwhoselargestbingewas4drinks,butalso com-pletedtherevisitstudyprocedures),andtheseyouthwerematched to17controlswhohadnotinitiatedanyalcoholorsubstanceuse. Alcohol-usingyouthwerematched onage,puberty,and sexto controlsandtheseadolescentsalsocompletedtheidenticalrevisit studyprocedures.Theintervalbetweenvisitswasvariableacross subjectsassomeyouthemergedintobingedrinkingmorequickly thanothers.Youthcompletedrevisitsbetween0.60and4.45years ofbeinginthestudy.Bingedrinkersandcontrolswerematchedon timebetweenvisits(meanforbingers=2.05±1.18years;meanfor controls:1.90±1.01years;t32=−0.40,p=0.69).

2.3. WheelofFortunefMRItask

Amodifiedversion(Cservenkaetal.,2013;CservenkaandNagel, 2012)oftheWOFfMRItask(Ernstetal.,2004)wasadministered toallyouthduringboththeirbaselineandsecondstudyvisits.This taskhasbeendescribedindetailelsewhere(Cservenkaetal.,2013; CservenkaandNagel,2012),butbriefly,procedureswereas fol-lows.Thetaskconsistedoftworunsof36trialseach,dividedinto threephasespertrial,with1–11secondfixationperiodsjittered betweentrials.Wheelsdividedintotwoportions,werepresented inthefirstphaseofeachtrial.Eachportionofthewheelwas asso-ciatedwiththeprobabilityofwinningacertainmonetaryreward. Inthefirstphaseofeachtrial,participantsmadeadecisionabout whichportionofawheeltheywantedtopick,inthesecondphase, theyanticipatedwhetherornottheywouldwin,andinthethird phase,theyreceivedfeedbackonwhetherornottheywon. Win-ningwasbasedonwhetherthechoiceinthedecision-makingphase ofthetaskmatchedthepre-definedprobabilitiesthatwere pro-grammedinthetask.Theportionsofeachwheelwerecategorized aseitherrisky(10%chanceofwinning$7or30%chanceofwinning $2),safe(90%chanceofwinning$1or70%chanceofwinning$1), orchance(50%chanceofwinning$2)(Cservenkaetal.,2013).

Toassess reward processing differencesbetween adolescent bingedrinkersandcontrols,thethirdphaseofthetaskwas ana-lyzed.Thecontrast of interestin thethird phase was behavior andbrainresponsetoWinsvs.NoWins.Winswereclassifiedas thosetrialsinwhichparticipantswontheportionofthewheelthey selectedafterarisky,chance,orsafechoice.NoWinswerethose trialsinwhichparticipantsdidnotwintheportionofthewheel theyselectedafterariskyorchancechoice.Sincenotwinningafter makinga safechoicewasrare,butcouldrepresentthegreatest expectancyviolationduringthetaskbasedonexpectedvalues(0.90 for10/90wheelsand0.70for30/70wheels),thesetrialswerenot includedintheregressorrepresentingNoWinbrainresponse. Fur-thermore,toensureyouthwereengagedinthetaskduringreward notification,theywereaskedtomakea buttonpresswiththeir indexfingeriftheywon,orabuttonpresswiththeirmiddlefinger,

1 Exceptforonemaleyouthwhocompletedthesecondvisitafterconsumingfour drinksonfouroccasionsina90dayperiodbeforehisrevisit.

iftheydidnotwinduringeachtrial.Accuracyandreactiontimeon thesetrialswasrecorded.AllparticipantspracticedtheWOFtask priortoenteringthescanner.

2.4. Imageacquisition

ParticipantswerescannedwithaSiemens3TTimTriosystemat OHSU’sAdvancedImagingResearchCenter.Amirrorwasmounted ona12-channelheadcoil,sothatparticipantscouldviewthetask projectedona screenattheendof thescannerbore.Allyouth weregivenearplugsandheadphonestoreducenoisefromtheMRI scanandallowcommunicationwiththescanoperatorthroughan intercomsystem.Pillows wereplacedaroundeach participant’s headtolimit headmotionwhilelyingin thesupineposition.A fourbuttonopticalbuttonbox, placedin theparticipant’sright hand,wasusedtomakeresponsesduring theWOFtask. A T1-weightedstructuralMPRAGEscan(timerepetitions(TR)=2300ms, time to echo (TE)=3.58ms, inversion time (TI)=900ms, flip angle=10◦, field of view (FOV)=240mm×256mm, voxel size=1mm×1mm×1.1mm, 160slices,acquisitiontime=9:14) wasacquiredsagittallyforco-registrationofthefunctionaldata totheparticipant’sanatomicalimage.T2*-weightedechoplanar imaging, acquired in theaxial plane,was usedto measurethe bloodoxygenlevel-dependent(BOLD)responseduringtheWOF task (TR=2000ms, TE=30ms, flip angle=90◦, FOV=240mm2,

voxel size=3.75mm×3.75mm×3.8mm, 33 slices, acquisition time=2runsof300TRs,lasting10:00mineach).

2.5. Imagepreprocessing

Imagepreprocessingfollowedconventionalprocedures previ-ouslydescribedinotherreports(Cservenkaetal.,2013;Cservenka andNagel,2012).AnalysisofFunctionalNeuroImages(AFNI)was usedfor all image preprocessing(Cox, 1996).Briefly, following image reconstruction,anatomical masks wereskull-stripped to remove non-brain skull and tissue. First, functional data were subjectedtoslicetimingcorrection,identificationofmovement artifact,andrealignmentofTRstothevolumerequiringtheleast amountofadjustmentofrigidbodyheadmotionfollowingaleast squaresalgorithm(Coxand Jesmanowicz,1999).Then, TRsthat requiredmorethan2.5mmor2.5degreesofadjustmentwere cen-soredprior tofurtheranalysestolimit artifactinducedbyhead motionorothernoise.Functionaldatawereblurredwitha6mm fullwidthhalfmaximumGaussian kerneltoincrease signal-to-noiseratio,fractionizedtotheanatomicalimage,andnormalizedto convertvaluestorelativepercentsignalchange.Thetworunsofthe WOFtaskwerethenconcatenatedaswerethesixmotion regres-sorsfromeachrunofthetask.Thehemodynamicresponsefunction (HRF)wasmodeledwithdurationoftheeventdefinedasthelength ofeachphaseofthetrial,whilemodelingdelaysintheHRF. Regres-sorsofinterestwererepresentedbyWinsandNoWins(asdefined above),whileothertask-relatedregressors,includingrisky,safe, andchancedecisions,andrisky,safe,andchanceanticipationswere alsomodeled(asdefinedabove),butwerenotexaminedforthe currentanalyses.AFNI’sbaselinemodelincludedthesixmotion regressorsofnon-interest,unmodeledfixation,lineardrift,andthe averageBOLDsignalfromtheentiretimecourseofthetask.Data werere-sampledinto3mm3voxelsandtransformedto

standard-izedTalairachspace(TalairachandTournoux,1988). 2.6. Group-levelanalyses

2.6.1. Demographicsandbehavior

Demographicvariablesanddependentvariablesfromtask per-formancewereexaminedfornormaldistributionusingIBMSPSS Version 20.0 (Corp. Released, 2011). Mixed model analysis of

(4)

Fig.1.Conjunctionmapoftask-relatedbrainactivityduringrewardprocessing.Task-relatedactivitymapsforeachgroupateachstudyvisit(baselineandrevisit)were voxel-thresholdedatp<0.05andaconjunctionmapwascreatedforWin>NoWinbrainresponsetodetermineareascommonlyactivatedacrossparticipantsregardlessof groupstatusortimeofstudyvisit.Occipital,superiorparietal,dorsolateralprefrontal,caudate,andventralstriatalbrainactivitywereseenintheWin>NoWincontrast overlaidonAFNI’sTalairachtemplatebrainintheaxialview.

variance(ANOVA)examinedeffectsofgroup,time,and group-by-timeinteractionsfordemographicvariables.Non-normalvariables, includingpubertal stageand accuracy identifyinga Win or No WinduringthefeedbackphaseoftheWOFtask,werecompared betweengroupsforeachstudyvisitwithMann–WhitneyUtests, whileothervariableswerecomparedbetweengroupsusing inde-pendentsamplest-tests.Outliersondrinkingmeasuresorbrain activitygreaterthan2.5standarddeviationsfromthemeanwere excludedfromcorrelationalanalysesrelatingbrainactivitywith drinking behavior. Cigarette and marijuana use characteristics wereseverelypositivelyskewed,sotheywere log-transformed priortocorrelationalanalyses.

2.6.2. Imaging

ToillustratesignificantWOFtask-relatedactivity,regardlessof groupstatusandstudyvisit,weconductedaconjunctionanalysis, voxelthresholdedatp<0.05(Fig.1),which confirmedexpected reward-relatedand task-positivebrain regionsactivatedbythe taskintheWinvs.NoWincontrast,includingtheventralstriatum, occipitalcortex,andfronto-parietalregions.TheWinvs.NoWin contrastappearstobea validmeasureofrewardprocessing,as

opposedtomoregeneralincentivesalienceprocessing,asareas activatedinthecurrentstudycloselyresemblethoseinprevious adolescentstudiesofrewardvs.norewardbrainactivity,which showdistinctpatternsfromlossvs.nolossBOLDresponse(Bjork etal.,2008a,2010).

Forgroup-levelanalyses,anaprioriregionofinterest(ROI) anal-ysisoftheventralstriatumwasconductedbyusingtheTalairach DaemonatlasinAFNI,andapplying4-mmradiusmasks(10voxels each)oftheleftandrightventralstriatumwithpeakcoordinates at12,−8,−8(rightventralstriatum)and−12,−8,−8(leftventral striatum).Theventralstriatalmaskswereresampledto3mm3to

matchthefunctionaldata.PercentsignalchangefortheWinvs. NoWincontrastwasextractedfromleftandrightventralstriatal masksforeachparticipantandmixedmodelANOVAsexaminedthe effectofgroup,time,andgroup-by-timeinteractionsfortheWin vs.NoWincontrastinSPSS.

Next, for thewhole-brain analysesexaminingdifferences in rewardprocessingbetweenbingedrinkersandcontrols,one sam-plet-testswerevoxelthresholdedatp<0.05foreachgroupand addedtogethertoformamapoftask-relatedbrainactivityatthe secondstudyvisit.AFNI’s3dttest++wasusedtocomparegroupson

(5)

Table1

Demographiccharacteristicsatthebaselinevisitandrevisit.

Baselinevisit Revisit T2–T1e

Bingedrinkers T2–T1 Controls Bingedrinkers(n=17) Controls(n=17) p Bingedrinkers(n=17) Controls(n=17) p p p

Female(n) n=7 n=7 n=7 n=7 Age 14.90(1.01) 14.82(0.75) 0.81 16.94(1.28) 16.72(1.19) 0.60 <0.00001 <0.00001 PubertalStatusa 4.50(0.63) 4.00(0.82) 0.06 4.81(0.40) 4.75(0.45) 0.78 0.06 0.005 IQb 111.59(9.25) 112.00(7.23) 0.89 114.18(11.08) 110.82(9.90) 0.36 0.18 0.68 Socioeconomicstatusc 31.41(15.57) 30.59(8.54) 0.85 35.80(14.86) 30.33(12.51) 0.48 0.23 0.14 %Riskydecisions 69.68(24.13) 59.46(22.56) 0.21 74.26(19.78) 66.02(24.70) 0.29 0.44 0.29 RMSd(Headmovement) 0.17(0.09) 0.32(0.26) 0.03* 0.22(0.16) 0.24(0.18) 0.71 0.31 0.12 CDIf 40.76(4.12) 41.29(5.88) 0.76 43.50(7.93) 38.93(4.77) 0.07 0.20 0.19 STAIg 40.89(5.19) 40.35(7.30) 0.81 37.10(6.04) 37.95(7.39) 0.72 0.053 0.13

Mean(standarddeviation).

aTanner’sSexualMaturationScale(Tayloretal.,2001);missingforonebinge-drinkingandonecontrolyouthatrevisit. b WechslerAbbreviatedScaleofIntelligence(Wechsler,1999).

c HollingsheadIndexofSocialPosition;higherscoresindicatelowerSES(Hollingshead,1957);missingfortwelvebinge-drinkingandeightcontrolyouthatrevisit. d Rootmeansquare.

eRevisitvs.BaselineVisit.

f Children’sDepressionInventory(Kovacs,1985);missingforthreebinge-drinkingandtwocontrolyouthatrevisit. gState-TraitAnxietyInventory(Spielbergeretal.,1973).

differencesinbrainactivityduringWinsvs.NoWins,restrictedto thepre-definedtask-relatedactivitymask.Resultsofthisanalysis weremultiplecomparisoncorrectedusingMonteCarlosimulation withbothavoxelandclusterthreshold(p/˛<0.05)(Formanetal., 1995),yieldingaminimumclustersizeof102voxels.Percent sig-nalchangefromtheclusterinwhichsignificantgroupdifferences emergedatthesecondstudyvisitwereextractedwith3dROIstats, andsignalfromthebaselinestudyvisitwasalsoextractedfrom thisregion.HierarchicalregressionsinIBMSPSSVersion20.0(Corp. Released,2011)testedwhethergroupdifferencesremained signif-icantafteraccountingforbrainactivityinthisclusteratthefirst studyvisit,ageatrevisit,andtimebetweenscans.Significant find-ingsfromthisanalysiswereoverlaidonaTalairachbraintemplate inAFNI,whilebargraphscreatedinGraphPadPrismversion5.00 forWindows,GraphPadSoftware,SanDiegoCalifornia,USA,www. graphpad.com,wereusedtoillustratepercentsignalchangeineach groupatfirstandsecondstudyvisitsinboththesignificantcontrast ofinterest(Winvs.NoWin)andforWinvs.baseline,andNoWin vs.baselinebrainactivity.

Inordertoexaminewhethergroupdifferencesinbrainactivity werepresentbetweenyouthwhoemergedintobingedrinkingand controls,anidenticalwhole-brainanalysistothatdescribedabove wasconductedatbaseline(controllingforbaselinedifferencesin headmovement;p/˛<0.05,≥94 voxels).Furthermore,two-way ANOVAsexaminedeffectsofgroup,sex,andgroup-by-sex inter-actionsinclusterswheresignificantdifferencesinBOLDresponse werepresentbetweenbingedrinkersandcontrolsatrevisit.

3. Results

3.1. DemographiccharacteristicsandWOFtaskbehavior

Participantcharacteristicsateachstudyvisitareillustratedin Table1(baselinestudyvisitandrevisit).Seventeenyouthmet crite-riaforbingedrinkinginthestudyandcompletedthesecondstudy visit.Theseyouthwerematchedto17controlswhohadabstained fromalcoholanddrugs.ValidWOFtaskdatawereavailablefromall youthateachstudyvisit.MixedmodelANOVAsexamined group-by-timeinteractionsandmaineffectsforalldemographicvariables inTable1,exceptforSES,whichwasmissingforeightcontrolsand 12bingedrinkersatrevisit.Nosignificantgroup-by-time interac-tionswerepresentforanyofthevariables.Maineffectsoftime werepresent for age (F1,32=109.92, MSE=0.60, p<0.0001,

par-tial2=0.78),pubertalstatus(F

1,32=16.48,MSE=0.27,p<0.0005,

partial 2=0.36), and state anxiety (F

1,32=6.86, MSE=23.72,

p=0.01, partial 2=0.18). Youth were older, more pubertally

mature,andlessanxiousatrevisitcomparedwithbaselinevisit.No maineffectsofgroupwerepresent.Whenexamininggroups sep-aratelyateachstudyvisit,significantdifferencesinpubertalstage andheadmovementwereseenatthebaselinestudyvisit,suchthat youthwholateremergedintobingedrinkingweremorepubertally matureatthistime,whileyouthwhoabstainedfromalcoholuse hadmoreheadmovementduringtheWOFtask(Table1).No differ-encesinanyofthedemographicvariableswerepresentbetween thegroupsatthesecondstudyvisit.Nosignificantdifferencesin taskperformance(meanreactiontimeandaccurateidentification ofwinningornotwinning)werepresentateitherstudyvisit(all p’s>0.10,Table2).

3.2. Alcoholanddruguse

Drinkingcharacteristicsinthebingedrinkersatthetimeofthe secondstudyvisitarelistedinTable3.TheCDDR(Brownetal., 1998)and TLFB(Sobelland Sobell,1992)wereadministeredto assessprevious90-dayalcoholandsubstanceuse.Lifetime meas-uresofalcohol,marijuana,andcigaretteusewerealsocalculated basedonsummingtheamountof drinksconsumed,amountof timesmarijuanawasused,andnumberofcigarettessmokedfrom timeofstudyentrythroughthetimeofthesecondstudyvisit.Other substanceusecharacteristics,includingageofonsetofcigaretteand marijuanausearealsolistedinTable3.Allbuttwobinge-drinking youth,hadusedmarijuanaatleastonceintheirlifetimebythetime ofthesecondstudyvisit.Noneofthecontrolshadeverreported consumingalcoholorusinganyothersubstancesinthisstudy. 3.3. Neuroimaging

Thea priori ROI analysisof Win vs. No Winbrain response in theventralstriatumdidnot showany significantgroup dif-ferences in brain response at revisit controlling for baseline brainresponseintheseregions(leftventralstriatum:F2,31=1.31,

R2=0.003, p=0.28, ˇ=−0.05, t=−0.30, p=0.76; right ventral

striatum: F2,31=0.21, R2=0.003, p=0.81, ˇ=−0.06, t=−0.32,

p=0.75).Tofollow-uponthesenegativefindings,intra-class cor-relationcoefficients(ICC)usingbaselineandrevisitbrainresponse werecalculatedinIBMSPSSVersion20.0(Corp.Released,2011)for thecontrolgrouponlytolimitconfoundsrelatedtoalcohol’seffects ontheBOLDsignalinthisregion.Forthecontrolgroup,theICCs

(6)

Table2

WOFtaskperformanceateachstudyvisit.

Bingedrinkers(n=17) Controls(n=17) p-value

Female(n) n=7 n=7 Baselinevisit Winaccuracy(%)a 98.63(4.26) 99.78(0.63) 0.95 Nowinaccuracy(%)b 92.25(23.88) 97.58(3.75) 0.52 WinRT(ms)c 1237.53(261.62) 1318.11(335.87) 0.44 NowinRT(ms)d 1200.51(243.37) 1317.39(342.97) 0.26 Revisit Winaccuracy(%)a 96.59(13.10) 99.43(1.17) 0.79 Nowinaccuracy(%)b 98.11(2.56) 98.91(2.59) 0.15 WinRT(ms)c 1167.99(238.91) 1083.50(253.78) 0.33 NowinRT(ms)d 1119.80(229.03) 1057.47(251.77) 0.46

Mean(standarddeviation),RT=reactiontime.

aWinaccuracyfollowinga10%,30%,50%,70%,or90%selection.

bNowinaccuracyfollowinga10%,30%,or50%selection(70%and90%werenotincludedinbehavioralorimaginganalysesduetoexpectancyviolations). c Winreactiontimefollowinga10%,30%,50%,70%,or90%selection.

d NoWinreactiontimefollowinga10%,30%,or50%selection(70%and90%werenotincludedinbehavioralorimaginganalysesduetoexpectancyviolations).

were0.62and0.50forleftandrightventralstriatum,respectively. TheseICCscorrespondtofairtogoodrangesforreliability(Fleiss, 1986),andfallwithinacceptedrangesforneuroimaginganalyses (Aronetal.,2006).

Forthewhole-brainanalysis,asignificantgroupdifferencein brain activity to Wins vs. No Wins was seen in the left cere-bellum(lobule VIIa/crusI) atrevisit,while nosignificantgroup differences in Win vs.No Win BOLD response werepresent at thebaselinevisit.Inthiscluster,bingedrinkersshowedreduced Win vs.No Win brainresponse at thesecondstudy visit com-paredwithcontrols(Fig.2).Examinationofthesimplecontrasts ofWinvs.baselineandNoWinvs.baselinebrainactivityto inter-prettheresultsindicated thatthis effectwasdrivenbygreater brainresponseduringWinningincontrolscomparedwithbinge drinkers(t32=2.95,p=0.007).Bingedrinkersshowedno

signifi-cantdissociationbetweenBOLDresponsetoWinsandNoWinsat thesecondstudyvisit(t16=2.07,p>0.05),butdistinctbrain

activ-itywasseenbetweenthesetwoconditionsinthecontrolgroup Table3

Drinkingandsubstanceusecharacteristicsofbingedrinkersatrevisit.

CDDRa Bingedrinkers(n=17)

Agefirstdrank 14.65(1.66)

#ofdaysdrank/monthinpast90days 2.57(2.63) #ofdrinks/drinkingday(past90days) 4.72(1.66) #ofdrinks/drinkingoccasion(past90

days)

4.52(2.35) Largestamountdrankononeoccasion

(past90days)

6.38(1.84) Averagetimetoconsumelargestbinge

(hours)

1.87(1.26) Range:0.01–4.4 Lifetimedrinksatrevisit 70.29(69.71)Range:16–311.5 AgefirstusedMarijuanab 14.40(1.84)

LifetimeMarijuanauseoccasionsb 81.87(129.63)Range:2–476 Agefirstsmokedcigarettesc 14.67(1.94)

Lifetimecigaretteuseoccasionsc 213.89(326.60) Range:4–800

Otherdrugused n=6

Mean(standarddeviation).

aCustomaryDrinkingandDrugUseRecord(Brownetal.,1998). bn=15.

c n=9.

d One participant reported using psychedelic mushrooms and 3,4-methylenedioxy-methamphetamine (once each/lifetime), a second participant reportedusingpsychedelicmushrooms,3,4-methylenedioxy-methamphetamine, andlysergic aciddiethylamide (threetimes,six times,and onetime respec-tively/lifetime), a third participant reported using psychedelic mushrooms, 3,4-methylenedioxy-methamphetamine, and lysergic acid diethylamide (three times,sixtimes,andonetime,respectively/lifetime),afourthparticipantreported using 3,4-methylenedioxy-methamphetamineonce/lifetime, a fifth participant reportedusingnitrousoxideonce/lifetime,andasixthparticipantreportedusing psychedelicmushroomsonce/lifetime.

(t16=4.95,p=0.0001).Atthebaselinestudyvisit,however,there

werenodifferencesinWinvs.baseline(t32=0.97,p=0.34)orNo

Winvs.baseline(t32=0.31, p=0.76)brainactivityinthis region

betweenbingedrinkersandcontrols.Infact,bothgroupsshowed elevatedBOLDresponsetoWinscomparedwithNoWins(Bingers: (t16=2.38,p=0.03);Controls:(t16=2.56,p=0.02))intheabsence

ofanyheavydrinking.

Next,maineffectsofgroup,sex,andagroup-by-sexinteraction wereexaminedusingatwo-wayANOVAatbothrevisitand base-linevisit.Maineffectsofgroup(F1,30=15.72,MSE=0.02,p<0.0005,

partial2=0.34) and sex(F

1,30=8.23, MSE=0.02, p=0.007,

par-tial2=0.22) werepresent for Winvs. NoWin BOLDresponse

atrevisit(Fig.S1B).Posthoct-testsindicatedsignificantlylower Winvs.NoWinbrainresponseinbingedrinkerscomparedwith controls(t32=3.53,p=0.001)andsignificantlylowerWinvs.No

Winbrainresponseformalescomparedwithfemales(t32=2.40,

p=0.02).Afollow-upANOVAonthesimpleeffectcontrasts sug-gestedthiswasdrivenbyWinvs.baselineBOLDresponse,asmain effectsofgroup(F1,30=9.68,MSE=0.07,p=0.004,partial2=0.24)

andsex(F1,30=4.12,MSE=0.07,p=0.049,partial2=0.12)were

alsopresentforthiscontrast,suchthatbingedrinkershadlower brainresponsethancontrols,andmaleshadlowerbrainresponse thanfemales.Nogroup-by-sexinteractionincerebellarresponse waspresentatrevisit.Nomaineffectsofgrouporsex,andno group-by-sexinteractionwerepresentforBOLDresponseinthecerebellar clusteratthebaselinevisit(Fig.S1A,allp’s>0.10).

Todeterminewhethergroupdifferencesinbrainactivityatthe secondstudyvisitcouldhavebeenrelatedtopreexistingbaseline groupdifferencesinbrainresponse,ageatrevisit,ortimebetween visits,weconductedahierarchicalregression,controllingforthese variables. Group differences in pubertalstage and head move-ment(rootmeansquare)werenotsignificantlyrelatedtobaseline cerebellaractivity,sowerenotcovariedforintheanalyses. Con-trollingforbaselineactivityinthisregion,ageatrevisit,andtime betweenvisits,differencesinleftcerebellaractivitybetweenbinge drinkersandcontrolsremainedsignificantatthesecondstudyvisit (F4,29=5.0,R2=0.28,p=0.003,ˇ=−0.54,t=−3.68,p=0.001).

DrinkingcharacteristicswereexaminedincorrelationwithWin vs. No Win, Win vs. baseline, and No Win vs. baseline BOLD responseintheleftcerebellarcluster.Oneyouthwithpercent sig-nalchangegreaterthan2.5 standarddeviations fromthemean wasexcludedfromcorrelations.Onesignificantcorrelationwas presentwhenrelatingpast90daydrinks/drinkingdaywithreward outcome-relatedbrainactivity(Fig.3).Averagedrinksconsumed inthepast90dayswasnegativelyrelatedtoNoWinvs.baseline BOLDresponseintheleftcerebellum,indicatinggreaternumberof drinks/drinkingdayconsumedinthelast90dayswasassociated

(7)

Fig.2.Bingedrinkershadreducedcerebellarbrainactivityduringrewardprocessingcomparedwithcontrols.(A)Significantlyreducedposteriorcerebellar(lobuleVIIa/crus I)activityduringWinvs.NoWinwasseeninbingedrinkersatthetimeofrevisit,comparedwithcontrols,whileaccountingforbaselinebrainactivityinthisregion.Results aredisplayedinthesagittal,coronal,andaxialviewoverlaidonAFNI’sTalairachtemplatebrain.(B)Bargraphsofpercentsignalchangeillustratingsignificantdifferencesin brainactivityinthecontrastofinterest(Winvs.NoWin)andinsimpleeffectsaredisplayedforeachvisit.Atrevisit,bingedrinkershadsignificantlyreducedbrainresponse duringWinvs.NoWin.SimpleeffectsshowthiswasattributedtoreducedactivityduringWinvs.baselineinbingedrinkers,comparedwithcontrols.Whilecontrolsshowed elevatedbrainresponseduringWinvs.baselinecomparedwithNoWinvs.baseline,brainactivitywasnotdistinctinbingedrinkersduringrewardreceiptorabsence.This isincontrasttobrainresponseinthisregionatthebaselinevisit,whenbothgroupsshowedmoreactivityinresponsetoWinsthanNoWins.*p<0.05.

Fig.3.Drinksconsumed/drinkingdayinthepast3monthswasnegativelyrelatedtocerebellarbrainresponseinbingedrinkers.Averagedrinks/drinkingdaywasnegatively associatedwithreward-relatedactivityinbingedrinkers.Winvs.baselineactivityisplottedonthelefty-axis,whileNoWinvs.baselineactivityisplottedontherighty-axis.

(8)

withreducedBOLDactivityinthisregion.Marijuanaandcigarette usecharacteristicswerealsoexaminedforrelationshipswithbrain activity,since15ofthe17bingedrinkershadusedmarijuanaat leastoncebythetimeofthesecondvisit,while9ofthe17binge drinkershadsmokedcigarettesbythistime.Ageoffirstmarijuana use,lifetimemarijuanause,ageoffirstcigaretteuse,andlifetime cigaretteuse,werenotsignificantlycorrelatedwithWinvs.NoWin, Winvs.baseline,orNoWinvs.baselinebrainresponseattimeof revisit(allp’s>0.10).

4. Discussion

Toourknowledge,thecurrentfindingsarethefirsttoreport alterationsinbrainfunctioningduringrewardprocessingin adoles-centbingedrinkers,usingaprospectivelongitudinaldesign.Since bingedrinkingisacommonlyobservedalcoholusepatternduring adolescence,reportedbynearlyaquarterofyouthin12thgrade (Johnstonetal.,2014),itisimportanttounderstandwhetherthis pattern of alcohol usemayalter adolescent reward processing. Alcohol-induced neurotoxicity during adolescence (Jacobus and Tapert,2013)mayhave long-termeffectsthat extendwellinto adulthood,thussignalingtheneedtoidentifybrainareasaffected byheavyalcoholconsumptionduringneuromaturation.

4.1. Cerebellumandalcohol-inducedneurotoxicity

IncontrasttoourhypothesisofreducedventralstriatalormPFC activity,wereportasignificantdifferencebetweenbingedrinkers andcontrolsinleftcerebellar(lobuleVIIa/crusI)activity,driven byreducedBOLDresponseinthisregioninheavyalcoholusers comparedwithcontrolsduringrewardreceipt.Apreviousstudy foundthatventralstriatalactivitywassimilarinalcohol-dependent adultsvs.controls,andthatpersonalitycharacteristicsaccounted for more variance in nucleus accumbens activity than alcohol-drinkingstatus (Bjork etal.,2012), whichmayhelpexplainthe negativefindingsin thisregion.Furthermore,it ispossiblethat effectsinmesolimbiccircuitrymayonlybepresentafterprolonged, heavyalcohol use, asseen inadults withalcohol usedisorders (AUDs)(Becketal.,2009;vanHolstetal.,2014;Wraseetal.,2007). Itiscurrentlyunknownwhetherlong-termheavyalcoholusethat isinitiatedduringadolescencemayalterreward-relatedventral striatalresponse.Inthecurrentstudy,ICCvaluesofpercentsignal changeintheventralstriatumwerefairtogood(butnot excel-lent),making itdifficult todetermineifthe negativeresultsof bingedrinking-relatedeffects inthisregionweredue tolackof powerorlackofeffect.Importantly,thesemodestvaluesmayalso beimpactedbydevelopmentalchangeinthisregion,rendering reli-abilityovertimeinthisagerangedifficulttoassess.However,the negativefindingsintheventralstriatalROIshadsmalleffectsizes (Cohen’sf2=0.003–0.004),suggestingthatevenwithalarger

sam-ple,wemaynothaveobservedsignificantgroupdifferencesinthis region.

Nevertheless,the directionalityof thefindings doessupport hyporesponsivecerebellaractivityduringrewardreceiptinbinge drinkers.We foundthat compared totheirbaseline studyvisit, bingedrinkersshowedsignificantreductionsincerebellarbrain responseduringrewardprocessing,whilecontrolyouthdidnot. Theabsence of significantdifferences in brainactivityin these youthpriortotheinitiationofheavyalcoholuseprovidesgreater confidencethatthecurrentfindingscouldbeassociatedwith alco-hol consumption, rather than preexisting neural alterations in bingedrinkerspriortoheavyalcoholuse.Asignificant relation-shipwithmeannumberofalcoholicbeveragesconsumed/drinking dayinthepast3monthswasnegativelyrelated toreward out-comeprocessinginlobuleVIIA/crusI,providingfurthersupport

fordose-dependentalcohol-relatedchangesinbrainfunctioning. Additionally, cerebellar brain response hasbeen seen in other reward processingstudies duringboth reward anticipationand feedback(Dichteretal.,2012;Koenekeet al.,2008; Neesetal., 2012).For example,cerebellarcrus Iactivitywasfoundduring theoutcomephaseofawheel-of-fortunegamewithchocolatebar rewardswhereindividualpreferenceforrewardswascorrelated withcerebellarcrusIactivityduringrewardreceipt(Koenekeetal., 2008).Thus,cerebellarcrusIactivitymaybeanimportantregion forexaminingrewardoutcomeprocessing.

Thecurrentstudyemployedtheuseofadecision-makingtask todeterminealcohol’seffects onadolescent rewardprocessing, becauseanimal and humanstudiessuggest that reward-driven behavior(McMurrayetal.,2014;Schindleretal.,2014)isaltered afterheavyalcoholconsumptionduringadolescence.However,it isunclearwhetherreward-relatedresponseishyper-or hypoac-tiveinhumanAUDs(Becketal.,2009;vanHolstetal.,2014;Wrase etal.,2007).Thepresentfindingssupportreducedrewardresponse in binge-drinking youthin the cerebellum, a brain regionthat hasconsistentlybeenassociatedwithvolumetric(Andersonetal., 2010;Chanraudetal.,2007,2010;DeBellisetal.,2005;Sullivan etal.,2000,2010)andfunctional(Desmondetal.,2003;Jungetal., 2014;Piteletal.,2013;Rogersetal.,2012;Sullivanetal.,2003) abnormalitiesinadultsandyouthwithheavyalcohol consump-tion.Rodentmodelsindicatethatchronicethanolintakeinduces apoptosis of both Purkinje and granulecells in thecerebellum (Oliveiraetal.,2014),andreducessynapticplasticity(Valenzuela etal.,2010).Humanneuroimagingstudieshavefoundthat cerebel-larvolumeandconnectivityinalcoholicsareassociatedwithmotor (Sullivanetal.,2000)andcognitive(Chanraudetal.,2007,2010; Jungetal.,2014)impairments.Theserelationshipsareexplainedby thecerebellum’sroleinclassicmotorfunctioning(Ito,2006),but alsoitsfunctionalconnectionswithexecutivecontrolregions,such astheprefrontalcortex(Diamond,2000;KellyandStrick,2003; KrienenandBuckner,2009;SchmahmannandPandya,1997). Addi-tionally,cerebellardamageresultsincerebellarcognitiveaffective syndrome(Schmahmannand Sherman,1998), characterizedby emotionalregulationdeficits,implyingconnectivitywiththe lim-bicsystem(Heathetal.,1978;SchutterandvanHonk,2005).Itis believedthatcerebellarcognitiveaffectivesyndromemay,inpart, accountforcognitiveandemotionaldeficitsobservedinalcoholics withcerebellardamage(Fitzpatricketal.,2008).Thus,prefrontal and limbicconnectivitywiththecerebellumcouldexplainwhy brainactivitymaybealteredinheavyalcoholusersinthisregion duringtaskswithhighemotionalsalience,suchasareward-based decision-makingtask.

Intermsofadolescent-specificdrinkingbehavior,thecurrent findingssupportpreviousreports–thatapatternofbinge drink-ingduringadolescencemaybeneurotoxictothecerebellum.Not only has reduced volume beenreported in alcoholics (Sullivan etal.,2000,2010)andyouthwithAUDs(De Bellisetal.,2005), butarecentstudyalsofoundreducedcerebellarvolumein binge-drinkingadolescents, related totheparticipants’recent alcohol consumption(Lisdahletal.,2013).Thecurrentstudycomplements thisfindingbyprovidingevidenceforbingedrinking-relatedeffects oncerebellarrewardresponse,alsorelatedtorecentalcohol con-sumption.Whilepaststudieshavereportedbingedrinkingeffects during adolescence onbrain response duringworking memory (Squegliaetal.,2011),verbalencoding(Schweinsburgetal.,2010, 2011),andaffectivedecision-making(Xiaoetal.,2013),thisisthe firststudytoreporteffectsonrewardprocessing.Itispossiblethat emotionalsalienceoftrialswithrewardreceiptisreducedinvalue forbingedrinkers,whichcouldexplainreducedcerebellar activ-itytorewardandcomparableresponseinthisregionregardless ofwhetherfeedbackindicatedrewardpresenceorabsence.This interpretationissupportedbythefindingthatreducedresponse

(9)

torewardinbingedrinkerswaslocalizedtolobuleVIIa/crusI,a posteriorpartofthecerebellumimplicatedmoreincognitiveand emotionalfunctionsbasedonitsconnectivitypatterns,asopposed tomotorfunctionsthatarelocalizedtoanteriorportionsofthe cerebellum(Stoodley,2012).Itisdamagetothisposteriorportion thathasbeenreportedtoresultincognitiveandemotionaldeficits (StoodleyandSchmahmann,2010).Thesefindingssuggestan emo-tionalcomponenttocerebellarresponseduringrewardprocessing thatissupportedbythespecificcerebellarregioninwhichblunted rewardresponsewasobservedinbingedrinkers.Futurestudies willneedtoexamineregionalspecificityofcerebellaralterations inactivityandvolumeinheavyalcoholuserstodeterminewhether motorand/orcognitive/affectivedeficitswouldbeexpected.

Sincehypoactiverewardresponsehasbeenreportedinthe ven-tralstriatumofalcoholicsinpreviousstudies(Becketal.,2009; Wraseetal.,2007),thecurrentfindingscouldalsobeexplainedby modelsthatsuggestchangesinthecerebellumwithitsfunctional relationshipstoreward-relatedbrainregionsinaddiction(Moulton et al., 2014).Reciprocal dopaminergic projections betweenthe basalgangliaandthepontinenucleiprovideconnectivitytothe cerebellarcortex(BostanandStrick,2010).Thisconnectivityprofile couldexplainahypoactivepatternofcerebellarresponsetoreward receiptinbingedrinkersifthispathwayisalteredbyheavyalcohol use.Additionally,crusIhasbeenshowntobefunctionally con-nectedtobrainregionsinvolvedinemotionalsalience,suchasthe anteriorinsulaandanteriorcingulatecortex(Buckneretal.,2011), whichprovidesfurtherevidenceforposteriorcerebellar involve-mentwithaddiction(Moultonetal.,2014).Thecurrentfindings maysuggestthatheavyalcohol usehasreducedthesalienceor valueofrewardsinbingedrinkers,whichcouldleadtoapathof increasedreward-seekingbehaviorthatmayultimatelyheighten vulnerabilityforthedevelopmentofAUDs.

4.2. Strengthsandlimitations

Thestrengthsandlimitationsofthepresentstudymerit dis-cussion.First,bycollectingdataonparticipantsatbothabaseline andsecondstudyvisit,wewereabletoexaminegroupdifferences inalcohol-relatedeffectsonbrainfunctioningbyaccountingfor preexistingdifferencesinpatternsofbrainactivityinyouthwho havenot yetengagedin heavyalcohol use. Thepresentresults canconfirmwithgreaterconfidencethatthecurrentfindingsare morelikely duetodifferences inalcohol consumptionbetween thegroups, rather than a premorbiddifference in vulnerability towardalcoholuseintheseyouth.Infact,therelationshipobserved betweennumberofdrinksconsumed/drinkingdayinthe3months leadinguptothesecondstudyvisitwithcerebellarbrainactivity, suggeststhat,infact,theremaybeadose-responserelationship betweenalcohol useand cerebellarreward processing inbinge drinkers.Additionally,toourknowledgethisisthefirst longitu-dinalstudytoreportontheeffectsofadolescentbingedrinking duringrewardprocessing.Giventhatmultiplestudiesreport aber-rantrewardprocessinginadultalcoholics(Becketal.,2009;van Holstetal.,2014;Wraseetal.,2007),thecurrentfindingssuggest thatalcohol-inducedreward-relatedalterationsduring neurode-velopmentmayalreadybetakingplaceprior totheonsetofan AUD.

Despiteprospectivemethodologicalrigor,thesizeofthecurrent samplewastoosmalltoexaminesex-by-alcoholuseinteractions onbrainfunctioningatthewhole-brainlevel.However,weexpect additionalyouthtoemergeintobingedrinkingduringthe longi-tudinalstudy,and thusanticipatea largersamplewillallowus toanswer important questions related tosex interactions that havebeenreportedintheadultalcoholismliterature. Addition-ally,thecurrentsampleofadolescentbingedrinkersreporteduse of other substances that may have limited detection of purely

alcohol-relatedeffects.Amajorityofthebingedrinkershadused marijuanabythetimeofthesecondstudyvisit,andhalfhadused cigarettes.Thisisnotsurprising,ascigaretteandmarijuanauseare highlyco-morbidwithalcoholuseduringadolescence(Mossetal., 2014;Palmeret al.,2009).Thus,itis difficulttoexaminebinge drinkerswhohavenotusedanyothersubstancebutalcohol. How-ever,giventhatnoneofthecigaretteormarijuanausevariables relatedtobrainactivityinthecurrentstudy,itismorelikelythatthe currenteffectsarealcohol-related,especiallyconsideringthe cor-relationsfoundwithdrinkingvariablesandBOLDresponse.Finally, while a relationship between alcohol use and cerebellar brain responsewasfoundatrevisit,thepossibilityofotherconfounding variablesthat werenotassessed(i.e.earlylifetrauma, cumula-tivestressfullifeevents),whichcouldhaveincreasedbetweenthe baselinevisitand revisit,ordifferedbygrouporsex,mayhave influencedthecurrentfindings,andcouldbeassessedinfuture studies.

5. Conclusions

Toourknowledge,thisisthefirststudytoreportonadolescent bingedrinkersandbrainactivityduringrewardprocessing,using alongitudinaldesign.Thecerebellumhasconsistentlybeen impli-catedinalcohol-relatedbraindamageacrossstudiesofadultsand adolescents.Wecontributetothisliteraturebyshowingthatbinge drinkershavereducedreward-relatedresponseintheleftposterior cerebellum(lobuleVIIa/crusI),apatternthatwasnotpresentprior toheavyalcoholuse.LobuleVIIa/crusIoftheposteriorcerebellum isaregionimplicatedinaffectiveprocessing,cognitive function-ing,as wellasreward salience(Moultonet al.,2014; Stoodley, 2012).Thissuggests that response toreward presence maybe bluntedinbingedrinkersduetoalterationsofpathwaystolimbic and/orrewardsystems,whichcouldpotentiallydrivefurtherrisky drinkingbehavior.Importantly,thesefindingsmaycontributeto targetedearlyinterventionstrategiesinadolescentbingedrinkers, asitsuggeststhatrewardfunctioningmaybealteredinyouthwho havejustbeguntoengageinheavyalcoholuse.

Conflictofinterest

Allauthorshavemadesignificantcontributionstothis work, andthemanuscripthasbeenreadandapprovedbyallauthors.This manuscriptcontainsoriginalmaterial,andhasnotbeensubmitted, norisitinpressorpublishedelsewhereinanyform.Theauthors ofthismanuscriptensurethatallworkwascompletedwithcare toensurescientificintegrityoftheresearch.Noconflictsofinterest arepresent.

Acknowledgements

ThisstudywassupportedbytheNationalInstituteonAlcohol AbuseandAlcoholism(R01AA017664–Nagel;U01–AA021691 –Nagel,andP60AA010760–PI:Crabbe).Wewouldliketothank theresearchassistantsandvolunteersoftheDevelopmentalBrain ImagingLabfortheirassistancewithdatacollection.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.dcn.2015.06.004

References

Anderson,C.M.,Rabi,K.,Lukas,S.E.,Teicher,M.H.,2010.Cerebellarlingulasizeand experientialriskfactorsassociatedwithhighlevelsofalcoholanddrugusein youngadults.Cerebellum9,198–209.

(10)

Aron,A.R.,Gluck,M.A.,Poldrack,R.A.,2006.Long-termtest–retestreliabilityof functionalMRIinaclassificationlearningtask.Neuroimage29,1000–1006.

Beck,A.,Schlagenhauf,F.,Wustenberg,T.,Hein,J.,Kienast,T.,Kahnt,T.,Schmack, K.,Hagele,C.,Knutson,B.,Heinz,A.,Wrase,J.,2009.Ventralstriatalactivation duringrewardanticipationcorrelateswithimpulsivityinalcoholics.Biol. Psychiatry66,734–742.

Bjork,J.M.,Knutson,B.,Hommer,D.W.,2008a.Incentive-elicitedstriatalactivation inadolescentchildrenofalcoholics.Addiction103,1308–1319.

Bjork,J.M.,Smith,A.R.,Hommer,D.W.,2008b.Striatalsensitivitytoreward deliveriesandomissionsinsubstancedependentpatients.Neuroimage42, 1609–1621.

Bjork,J.M.,Smith,A.R.,Chen,G.,Hommer,D.W.,2010.Adolescents,adultsand rewards:comparingmotivationalneurocircuitryrecruitmentusingfMRI.PLoS ONE5,e11440.

Bjork,J.M.,Smith,A.R.,Chen,G.,Hommer,D.W.,2012.Mesolimbicrecruitmentby nondrugrewardsindetoxifiedalcoholics:effortanticipation,reward anticipation,andrewarddelivery.Hum.BrainMapp.33,2174–2188.

Blakemore,S.J.,2012.Imagingbraindevelopment:theadolescentbrain. Neuroimage61,397–406.

Bostan,A.C.,Strick,P.L.,2010.Thecerebellumandbasalgangliaare interconnected.Neuropsychol.Rev.20,261–270.

Brown,S.A.,Myers,M.G.,Mott,M.A.,Vik,P.W.,1994.Correlatesofsuccessfollowing treatmentforadolescentsubstanceabuse.Appl.Prev.Psychol.3,61–73.

Brown,S.A.,Myers,M.G.,Lippke,L.,Tapert,S.F.,Stewart,D.G.,Vik,P.W.,1998.

PsychometricevaluationoftheCustomaryDrinkingandDrugUseRecord (CDDR):ameasureofadolescentalcoholanddruginvolvement.J.Stud. AlcoholDrugs59,427–438.

Buckner,R.L.,Krienen,F.M.,Castellanos,A.,Diaz,J.C.,Yeo,B.T.,2011.The organizationofthehumancerebellumestimatedbyintrinsicfunctional connectivity.JNeurophysiol.106,2322–2345.

Chanraud,S.,Martelli,C.,Delain,F.,Kostogianni,N.,Douaud,G.,Aubin,H.J., Reynaud,M.,Martinot,J.L.,2007.Brainmorphometryandcognitive performanceindetoxifiedalcohol-dependentswithpreservedpsychosocial functioning.Neuropsychopharmacology32,429–438.

Chanraud,S.,Pitel,A.L.,Rohlfing,T.,Pfefferbaum,A.,Sullivan,E.V.,2010.Dual taskingandworkingmemoryinalcoholism:relationtofrontocerebellar circuitry.Neuropsychopharmacology35,1868–1878.

Corp.,I.,Released,2011.IBMSPSSStatisticsforWindows.Version20.0.IBMCorp., Armonk,NY.

Cox,R.W.,1996.AFNI:softwareforanalysisandvisualizationoffunctional magneticresonanceneuroimages.Comput.Biomed.Res.29,162–173.

Cox,R.W.,Jesmanowicz,A.,1999.Real-time3Dimageregistrationforfunctional MRI.Magn.Reson.Med.42,1014–1018.

Cservenka,A.,Herting,M.M.,Nagel,B.J.,2012.Atypicalfrontallobeactivityduring verbalworkingmemoryinyouthwithafamilyhistoryofalcoholism.Drug AlcoholDepend.123,98–104.

Cservenka,A.,Herting,M.M.,Seghete,K.L.,Hudson,K.A.,Nagel,B.J.,2013.Highand lowsensationseekingadolescentsshowdistinctpatternsofbrainactivity duringrewardprocessing.Neuroimage66C,184–193.

Cservenka,A.,Nagel,B.J.,2012.Riskydecision-making:anfMRIstudyofyouthat highriskforalcoholism.Alcohol.Clin.Exp.Res.36,604–615.

Cservenka,A.,Casimo,K.,Fair,D.A.,Nagel,B.J.,2014a.Restingstatefunctional connectivityofthenucleusaccumbensinyouthwithafamilyhistoryof alcoholism.PsychiatryRes.221,210–219.

Cservenka,A.,Fair,D.A.,Nagel,B.J.,2014b.Emotionalprocessingandbrainactivity inyouthathighriskforalcoholism.Alcohol.Clin.Exp.Res.38,

1912–1923.

DeBellis,M.D.,Narasimhan,A.,Thatcher,D.L.,Keshavan,M.S.,Soloff,P.,Clark,D.B., 2005.Prefrontalcortex,thalamus,andcerebellarvolumesinadolescentsand youngadultswithadolescent-onsetalcoholusedisordersandcomorbid mentaldisorders.Alcohol.Clin.Exp.Res.29,1590–1600.

Deas,D.,2006.Adolescentsubstanceabuseandpsychiatriccomorbidities.J.Clin. Psychiatry67(Suppl.7),18–23.

Desmond,J.E.,Chen,S.H.,DeRosa,E.,Pryor,M.R.,Pfefferbaum,A.,Sullivan,E.V., 2003.Increasedfrontocerebellaractivationinalcoholicsduringverbalworking memory:anfMRIstudy.Neuroimage19,1510–1520.

Diamond,A.,2000.Closeinterrelationofmotordevelopmentandcognitive developmentandofthecerebellumandprefrontalcortex.ChildDev.71, 44–56.

Dichter,G.S.,Kozink,R.V.,McClernon,F.J.,Smoski,M.J.,2012.Remittedmajor depressionischaracterizedbyrewardnetworkhyperactivationduringreward anticipationandhypoactivationduringrewardoutcomes.J.AffectDisord.136, 1126–1134.

Eaton,D.K.,Kann,L.,Kinchen,S.,Shanklin,S.,Flint,K.H.,Hawkins,J.,Harris,W.A., Lowry,R.,McManus,T.,Chyen,D.,Whittle,L.,Lim,C.,Wechsler,H.,Centersfor Disease,C.,Prevention,2012.Youthriskbehaviorsurveillance–UnitedStates 2011.MMWRSurveillSumm.61,1–162.

Ernst,M.,Nelson,E.E.,McClure,E.B.,Monk,C.S.,Munson,S.,Eshel,N.,Zarahn,E., Leibenluft,E.,Zametkin,A.,Towbin,K.,Blair,J.,Charney,D.,Pine,D.S.,2004.

Choiceselectionandrewardanticipation:anfMRIstudy.Neuropsychologia42, 1585–1597.

Fitzpatrick,L.E.,Jackson,M.,Crowe,S.F.,2008.Therelationshipbetweenalcoholic cerebellardegenerationandcognitiveandemotionalfunctioning.Neurosci. Biobehav.Rev.32,466–485.

Fleiss,J.L.,1986.TheDesignandAnalysisofClinicalExperiments,Vol.XXX.John Wiley&Sons,NewYork.

Forman,S.D.,Cohen,J.D.,Fitzgerald,M.,Eddy,W.F.,Mintun,M.A.,Noll,D.C.,1995.

Improvedassessmentofsignificantactivationinfunctionalmagnetic resonanceimaging(fMRI):useofacluster-sizethreshold.Magn.Reson.Med. 33,636–647.

Galvan,A.,2010.Adolescentdevelopmentoftherewardsystem.FrontHum. Neurosci.4,6.

Goddings,A.L.,Mills,K.L.,Clasen,L.S.,Giedd,J.N.,Viner,R.M.,Blakemore,S.J.,2014.

Theinfluenceofpubertyonsubcorticalbraindevelopment.Neuroimage88, 242–251.

Gogtay,N.,Giedd,J.N.,Lusk,L.,Hayashi,K.M.,Greenstein,D.,Vaituzis,A.C.,Nugent 3rd,T.F.,Herman,D.H.,Clasen,L.S.,Toga,A.W.,Rapoport,J.L.,Thompson,P.M., 2004.Dynamicmappingofhumancorticaldevelopmentduringchildhood throughearlyadulthood.Proc.Natl.Acad.Sci.U.S.A.101,8174–8179.

Heath,R.G.,Dempesy,C.W.,Fontana,C.J.,Myers,W.A.,1978.Cerebellar stimulation:effectsonseptalregion,hippocampus,andamygdalaofcatsand rats.Biol.Psychiatry13,501–529.

Hollingshead,A.B.,1957.TwoFactorIndexofSocialPosition,vol.XXX.NewHaven, CT.

Ito,M.,2006.Cerebellarcircuitryasaneuronalmachine.Prog.Neurobiol.78, 272–303.

Jacobus,J.,Squeglia,L.M.,Bava,S.,Tapert,S.F.,2013.Whitemattercharacterization ofadolescentbingedrinkingwithandwithoutco-occurringmarijuanause:a 3-yearinvestigation.PsychiatryRes.214,374–381.

Jacobus,J.,Tapert,S.F.,2013.Neurotoxiceffectsofalcoholinadolescence.Annu. Rev.Clin.Psychol.9,703–721.

Johnston,L.D.,O’Malley,P.M.,Miech,R.A.,Bachman,J.G.,Schulenberg,J.E.,2014.

MonitoringtheFuture:NationalResultsonAdolescentDrugUse:1975–2013: Overview,KeyFindingsonAdolescentDrugUse.InstituteforSocialResearch, TheUniversityofMichigan,AnnArbor.

Jonasson,L.S.,Axelsson,J.,Riklund,K.,Braver,T.S.,Ogren,M.,Backman,L.,Nyberg, L.,2014.Dopaminereleaseinnucleusaccumbensduringrewardedtask switchingmeasuredby[(1)(1)C]raclopride.Neuroimage99,357–364.

Jung,Y.C.,Schulte,T.,Muller-Oehring,E.M.,Namkoong,K.,Pfefferbaum,A., Sullivan,E.V.,2014.Compromisedfrontocerebellarcircuitrycontributesto nonplanningimpulsivityinrecoveringalcoholics.Psychopharmacology(Berl) 231,4443–4453.

Kalsbeek,A.,Voorn,P.,Buijs,R.M.,Pool,C.W.,Uylings,H.B.,1988.Developmentof thedopaminergicinnervationintheprefrontalcortexoftherat.J.Comp. Neurol.269,58–72.

Kamarajan,C.,Rangaswamy,M.,Tang,Y.,Chorlian,D.B.,Pandey,A.K.,Roopesh, B.N.,Manz,N.,Saunders,R.,Stimus,A.T.,Porjesz,B.,2010.Dysfunctional rewardprocessinginmalealcoholics:anERPstudyduringagamblingtask.J. PsychiatryRes.44,576–590.

Kelly,R.M.,Strick,P.L.,2003.Cerebellarloopswithmotorcortexandprefrontal cortexofanonhumanprimate.J.Neurosci.23,8432–8444.

Koeneke,S.,Pedroni,A.F.,Dieckmann,A.,Bosch,V.,Jancke,L.,2008.Individual preferencesmodulateincentivevalues:evidencefromfunctionalMRI.Behav. BrainFunct.4,55.

Koepp,M.J.,Gunn,R.N.,Lawrence,A.D.,Cunningham,V.J.,Dagher,A.,Jones,T., Brooks,D.J.,Bench,C.J.,Grasby,P.M.,1998.Evidenceforstriataldopamine releaseduringavideogame.Nature393,

266–268.

Kovacs,M.,1985.TheChildren’sDepressionInventory(CDI).Psychopharmacol. Bull.21,995–998.

Krienen,F.M.,Buckner,R.L.,2009.Segregatedfronto-cerebellarcircuitsrevealedby intrinsicfunctionalconnectivity.Cereb.Cortex19,2485–2497.

Lisdahl,K.M.,Thayer,R.,Squeglia,L.M.,McQueeny,T.M.,Tapert,S.F.,2013.Recent bingedrinkingpredictssmallercerebellarvolumesinadolescents.Psychiatry Res.211,17–23.

Lucas,C.P.,Zhang,H.,Fisher,P.W.,Shaffer,D.,Regier,D.A.,Narrow,W.E.,Bourdon, K.,Dulcan,M.K.,Canino,G.,Rubio-Stipec,M.,Lahey,B.B.,Friman,P.,2001.The DISCPredictiveScales(DPS):efficientlyscreeningfordiagnoses.J.Am.Acad. ChildAdolesc.Psychiatry40,443–449.

MackiewiczSeghete,K.L.,Cservenka,A.,Herting,M.M.,Nagel,B.J.,2013.Atypical spatialworkingmemoryandtask-generalbrainactivityinadolescentswitha familyhistoryofalcoholism.Alcohol.Clin.Exp.Res.37,390–398.

McClure,S.M.,York,M.K.,Montague,P.R.,2004.Theneuralsubstratesofreward processinginhumans:themodernroleofFMRI.Neuroscientist10,260–268.

McMurray,M.S.,Amodeo,L.R.,Roitman,J.D.,2014.Effectsofvoluntaryalcohol intakeonriskpreferenceandbehavioralflexibilityduringratadolescence. PLOSONE9,e100697.

Moss,H.B.,Chen,C.M.,Yi,H.Y.,2014.Earlyadolescentpatternsofalcohol, cigarettes,andmarijuanapolysubstanceuseandyoungadultsubstanceuse outcomesinanationallyrepresentativesample.DrugAlcoholDepend.136, 51–62.

Moulton,E.A.,Elman,I.,Becerra,L.R.,Goldstein,R.Z.,Borsook,D.,2014.The cerebellumandaddiction:insightsgainedfromneuroimagingresearch. Addict.Biol.19,317–331.

Nees,F.,Vollstadt-Klein,S.,Fauth-Buhler,M.,Steiner,S.,Mann,K.,Poustka,L., Banaschewski,T.,Buchel,C.,Conrod,P.J.,Garavan,H.,Heinz,A.,Ittermann,B., Artiges,E.,Paus,T.,Pausova,Z.,Rietschel,M.,Smolka,M.N.,Struve,M.,Loth,E., Schumann,G.,Flor,H.,2012.Atargetsampleofadolescentsandreward processing:sameneuralandbehavioralcorrelatesengagedincommon paradigms?Exp.BrainRes.223,429–439.

Oldfield,R.C.,1971.Theassessmentandanalysisofhandedness:theEdinburgh inventory.Neuropsychologia9,97–113.

(11)

Oliveira,S.A.,Chuffa,L.G.,Fioruci-Fontanelli,B.A.,Neto,F.S.,Novais,P.C.,Tirapelli, L.F.,Oishi,J.C.,Takase,L.F.,Stefanini,M.A.,Martinez,M.,Martinez,F.E.,2014.

Apoptosisofpurkinjeandgranularcellsofthecerebellumfollowingchronic ethanolintake.Cerebellum13,728–738.

Palmer,R.H.,Young,S.E.,Hopfer,C.J.,Corley,R.P.,Stallings,M.C.,Crowley,T.J., Hewitt,J.K.,2009.Developmentalepidemiologyofdruguseandabusein adolescenceandyoungadulthood:Evidenceofgeneralizedrisk.DrugAlcohol Depend.102,78–87.

Pascual,M.,Boix,J.,Felipo,V.,Guerri,C.,2009.Repeatedalcoholadministration duringadolescencecauseschangesinthemesolimbicdopaminergicand glutamatergicsystemsandpromotesalcoholintakeintheadultrat.J. Neurochem.108,920–931.

Paus,T.,2005.Mappingbrainmaturationandcognitivedevelopmentduring adolescence.TrendsCogn.Sci.9,60–68.

Pautassi,R.M.,Myers,M.,Spear,L.P.,Molina,J.C.,Spear,N.E.,2008.Adolescentbut notadultratsexhibitethanol-mediatedappetitivesecond-orderconditioning. AlcoholClin.Exp.Res.32,2016–2027.

Philpot,R.M.,Wecker,L.,Kirstein,C.L.,2009.Repeatedethanolexposureduring adolescencealtersthedevelopmentaltrajectoryofdopaminergicoutputfrom thenucleusaccumbenssepti.Int.J.Dev.Neurosci.27,805–815.

Pitel,A.L.,Chanraud,S.,Muller-Oehring,E.M.,Pfefferbaum,A.,Sullivan,E.V.,2013.

Modulationoflimbic-cerebellarfunctionalconnectivityenablesalcoholicsto recognizewhoiswho.BrainStruct.Funct.218,683–695.

Rice,J.P.,Reich,T.,Bucholz,K.K.,Neuman,R.J.,Fishman,R.,Rochberg,N., Hesselbrock,V.M.,NurnbergerJr.,J.I.,Schuckit,M.A.,Begleiter,H.,1995.

Comparisonofdirectinterviewandfamilyhistorydiagnosesofalcohol dependence.Alcohol.Clin.Exp.Res.19,1018–1023.

Ristuccia,R.C.,Spear,L.P.,2008.Adolescentandadultheartrateresponsesto self-administeredethanol.AlcoholClin.Exp.Res.32,1807–1815.

Rogers,B.P.,Parks,M.H.,Nickel,M.K.,Katwal,S.B.,Martin,P.R.,2012.Reduced fronto-cerebellarfunctionalconnectivityinchronicalcoholicpatients.Alcohol. Clin.Exp.Res.36,294–301.

Rosenberg,D.R.,Lewis,D.A.,1994.Changesinthedopaminergicinnervationof monkeyprefrontalcortexduringlatepostnataldevelopment:atyrosine hydroxylaseimmunohistochemicalstudy.Biol.Psychiatry36,272–277.

Schindler,A.G.,Tsutsui,K.T.,Clark,J.J.,2014.Chronicalcoholintakeduring adolescence,butnotadulthood,promotespersistentdeficitsinrisk-based decisionmaking.AlcoholClin.Exp.Res.38,1622–1629.

Schmahmann,J.D.,Pandya,D.N.,1997.Thecerebrocerebellarsystem.Int.Rev. Neurobiol.41,31–60.

Schmahmann,J.D.,Sherman,J.C.,1998.Thecerebellarcognitiveaffective syndrome.Brain121(Pt4),561–579.

Schultz,W.,2000.Multiplerewardsignalsinthebrain.Nat.Rev.Neurosci.1, 199–207.

Schutter,D.J.,vanHonk,J.,2005.Thecerebellumontheriseinhumanemotion. Cerebellum4,290–294.

Schweinsburg,A.D.,Nagel,B.J.,Schweinsburg,B.C.,Park,A.,Theilmann,R.J.,Tapert, S.F.,2008.AbstinentadolescentmarijuanausersshowalteredfMRIresponse duringspatialworkingmemory.PsychiatryRes.163,40–51.

Schweinsburg,A.D.,McQueeny,T.,Nagel,B.J.,Eyler,L.T.,Tapert,S.F.,2010.A preliminarystudyoffunctionalmagneticresonanceimagingresponseduring verbalencodingamongadolescentbingedrinkers.Alcohol44,111–117.

Schweinsburg,A.D.,Schweinsburg,B.C.,Nagel,B.J.,Eyler,L.T.,Tapert,S.F.,2011.

Neuralcorrelatesofverballearninginadolescentalcoholandmarijuanausers. Addiction106,564–573.

Seeman,P.,Bzowej,N.H.,Guan,H.C.,Bergeron,C.,Becker,L.E.,Reynolds,G.P.,Bird, E.D.,Riederer,P.,Jellinger,K.,Watanabe,S.,etal.,1987.Humanbrain dopaminereceptorsinchildrenandagingadults.Synapse1,399–404.

Sobell,L.C.,Sobell,M.B.,1992.Timelinefollow-back:atechniqueforassessing self-reportedalcoholconsumption.In:Litten,R.Z.,Allen,J.,etal.(Eds.),

Measuringalcoholconsumption:Psychologicalandbiologicalmethods,vol. XXX.HumanaPress,NewJersey,pp.41–72.

Sobell,M.B.,Sobell,L.C.,Klajner,F.,Pavan,D.,etal.,1986.Thereliabilityofa timelinemethodforassessingnormaldrinkercollegestudents’recentdrinking history:utilityforalcoholresearch.Addict.Behav.11,149–161.

Spielberger,C.D.,Edwards,C.D.,Lushene,R.E.,Montuori,J.,Platzek,D.,1973.

ManualforTheState-TraitAnxietyInventoryforChildren.Consulting PsychologistsPress,PaloAlto,CA.

Squeglia,L.M.,Schweinsburg,A.D.,Pulido,C.,Tapert,S.F.,2011.Adolescentbinge drinkinglinkedtoabnormalspatialworkingmemorybrainactivation: differentialgendereffects.AlcoholClin.Exp.Res.35,1831–1841.

Squeglia,L.M.,Sorg,S.F.,Schweinsburg,A.D.,Wetherill,R.R.,Pulido,C.,Tapert,S.F., 2012.Bingedrinkingdifferentiallyaffectsadolescentmaleandfemalebrain morphometry.Psychopharmacology(Berl)220,529–539.

Stoodley,C.J.,Schmahmann,J.D.,2010.Evidencefortopographicorganizationin thecerebellumofmotorcontrolversuscognitiveandaffectiveprocessing. Cortex46,831–844.

Stoodley,C.J.,2012.Thecerebellumandcognition:evidencefromfunctional imagingstudies.Cerebellum11,352–365.

Sullivan,E.V.,Deshmukh,A.,Desmond,J.E.,Lim,K.O.,Pfefferbaum,A.,2000.

Cerebellarvolumedeclineinnormalaging,alcoholism,andKorsakoff’s syndrome:relationtoataxia.Neuropsychology14,341–352.

Sullivan,E.V.,Harding,A.J.,Pentney,R.,Dlugos,C.,Martin,P.R.,Parks,M.H., Desmond,J.E.,Chen,S.H.,Pryor,M.R.,DeRosa,E.,Pfefferbaum,A.,2003.

Disruptionoffrontocerebellarcircuitryandfunctioninalcoholism.Alcohol Clin.Exp.Res.27,301–309.

Sullivan,E.V.,Rohlfing,T.,Pfefferbaum,A.,2010.Pontocerebellarvolumedeficits andataxiainalcoholicmenandwomen:noevidencefor“telescoping”. Psychopharmacology(Berl)208,279–290.

Talairach,J.,Tournoux,P.,1988.Coplanarstereotaxicatlasofthehumanbrain. Three-dimensionalproportionalsystem:anapproachtocerebralimaging.,vol. XXX.Thieme,NewYork.

Taylor,S.J.,Whincup,P.H.,Hindmarsh,P.C.,Lampe,F.,Odoki,K.,Cook,D.G.,2001.

Performanceofanewpubertalself-assessmentquestionnaire:apreliminary study.Paediatr.Perinat.Epidemiol.15,88–94.

Tunbridge,E.M.,Weickert,C.S.,Kleinman,J.E.,Herman,M.M.,Chen,J.,Kolachana, B.S.,Harrison,P.J.,Weinberger,D.R.,2007.Catechol-o-methyltransferase enzymeactivityandproteinexpressioninhumanprefrontalcortexacrossthe postnatallifespan.CerebCortex17,1206–1212.

Valenzuela,C.F.,Lindquist,B.,Zamudio-Bulcock,P.A.,2010.Areviewofsynaptic plasticityatPurkinjeneuronswithafocusonethanol-inducedcerebellar dysfunction.Int.Rev.Neurobiol.91,339–372.

vanHolst,R.J.,Clark,L.,Veltman,D.J.,vandenBrink,W.,Goudriaan,A.E.,2014.

Enhancedstriatalresponsesduringexpectancycodinginalcoholdependence. DrugAlcoholDepend.142,204–208.

VanLeijenhorst,L.,GuntherMoor,B.,OpdeMacks,Z.A.,Rombouts,S.A., Westenberg,P.M.,Crone,E.A.,2010.Adolescentriskydecision-making: neurocognitivedevelopmentofrewardandcontrolregions.Neuroimage51, 345–355.

Wechsler,D.,1999.WechslerAbbreviatedScaleofIntelligence,vol.XXX. PsychologicalCorporation,SanAntonio,TX.

Wrase,J.,Schlagenhauf,F.,Kienast,T.,Wustenberg,T.,Bermpohl,F.,Kahnt,T.,Beck, A.,Strohle,A.,Juckel,G.,Knutson,B.,Heinz,A.,2007.Dysfunctionofreward processingcorrelateswithalcoholcravingindetoxifiedalcoholics. Neuroimage35,787–794.

Xiao,L.,Bechara,A.,Gong,Q.,Huang,X.,Li,X.,Xue,G.,Wong,S.,Lu,Z.L.,Palmer,P., Wei,Y.,Jia,Y.,Johnson,C.A.,2013.AbnormalAffectivedecisionmaking revealedinadolescentbingedrinkersusingafunctionalmagneticresonance imagingstudy.Psychol.Addict.Behav.27,443–454.

References

Related documents

Two events were defined for analyses: (1) childbirth was defined by a delivery during the follow- up period; and (2) occurrence of perianal fistula by the onset of perianal

Beyond 10 years after surgery, corneal steepening and regular astigmatism progressively increased in the keratoconus cohort, remaining unchanged in the control Fuchs dystrophy

As already noted, the way evidence is evaluated differs radically in criminal, administrative and civil proceedings because of their nature and their teleological approach. 32

The Undergraduate Certificate, Undergraduate Diploma and BA in Theology and Ministry are Durham University programmes jointly delivered by Wesley Study Centre and Cranmer

Generally milk tanker is filled with pasteurized milk and this milk is transport form one place to another place durining transporting interior surface of tanker become

File Network RH Networks Low-Level Control System CODAC Networks RH Supervisor System PSH PIS PSS CIN CSN CODAC High-Level Control System CIS CSS RH Plant Controller

Portfolio Size, Allocation, and Assets Under Management .... Total

The items used to set the state table were the successors of those which been in use since the material culture of the Irish state table was first established over half a