• No results found

Contamination and spatial distribution of heavy metals in topsoil surrounding a mega cement factory

N/A
N/A
Protected

Academic year: 2021

Share "Contamination and spatial distribution of heavy metals in topsoil surrounding a mega cement factory"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

©Author(s)2014.ThisworkisdistributedundertheCreativeCommonsAttribution3.0License.

A

A

tm

spheric

P

P

ollution

R

R

esearch

www.atmospolres.com

Contamination and spatial distribution of heavy metals in topsoil

surrounding a mega cement factory

Clement

Oluseye

Ogunkunle,

Paul

Ojo

Fatoba

DepartmentofPlantBiology,UniversityofIlorin,Ilorin,Nigeria

ABSTRACT

ThisstudyassessedthelevelofcontaminationofthetopsoilbyPb,Cu,Cr,CdandZnandthespatialdistribution oftheseheavymetalsaroundacementfactory.Thirty–eightcompositesoilsampleswerecollectedaroundthe cementfactoryandsubjectedtonitric–perchloricaciddigestion.Totalmetalcontentsofthesoilweredetermined byflameatomicabsorptionspectrophotometry(FAAS)andthedatageneratedwereanalyzedstatistically.Spatial mappingofthedistributionofheavymetalswasdonethroughtheuseofInverseDistanceWeightedtechnique (IDW)ofArcGIS10.TheresultsshowedthatthecontaminationdomainofCdwasintheextremedomainwhilePb andCulevelsinthesoilwereinthesevereandmoderatecontaminationdomains.ZnandCrposednopotential environmentalhazardbecauseoftheirlowlevelinthesoil.ThespatialmappingoftheheavymetalsindicatedPb andCuenrichmentofthesoilnotonlytocomefromcementproductionactivitiesbutalsofromvehicular activitieswhileCdenrichmentofthesoilwasmainlyfromthecementproduction.MappingofZnandCr distributionshowedthattheirenrichmentsinthesoilwerefromcementproductionactivities.Fromthese findings,itishighlyrecommendedthatenvironmentalauditingofthecementproductionlinebecarriedoutto reducethereleaseofpollutants.Itisalsoimportantthatremediationactivitiesbecarriedoutonthesoilto reducethelevelsofCd,PbandCutoavertpotentialecologicaldisasters.

Keywords:Cementfactory,contamination,heavymetals,spatialmapping,cementpollution

CorrespondingAuthor:

Clement Oluseye Ogunkunle

:+234Ͳ806Ͳ2176518 :ogunkunle.co@unilorin.edu.ng seyeogunkunle@yahoo.com

ArticleHistory: Received:11July2013 Revised:07January2014 Accepted:08January2014

doi:10.5094/APR.2014.033

1.

Introduction

Soilhasbeenrecognizedasthemajorsinkforanthropogenic

heavymetaldepositionthroughvariouspathways(Harrisonetal.,

1981;Lietal.,2001;Al–KhashmanandShawabkeh,2006;Rashed,

2010;Guoetal.,2012).Thecontaminationofsoilbyheavymetals

canbeproblematiconseverallevelsbecausetheydonotdegrade

biologically(Emmanueletal.,2009)andthisalwaysresultin

severalsoildisfunctionsleadingtoconcernsabouttheenvironͲ

mentalquality.Metalcontaminatedsoilposesriskstohumansand

animalsthroughingestionofplantsthathavebioaccumulatedtoxic

metalsfromcontaminatedsoil(Turner,2009).Duetothehazards

posedbyheavymetalsinsoil,determinationoftheirlevelsinthe

soilisanecessaryindicatorshowinganthropogenicinputinthe

environment(Mantaetal.,2002;Addoetal.,2012;Guoetal.,

2012).Italsoassistsinthedevelopmentofremediationactivities

andpolicies.Thisisduetothefactthatcontributionofheavy

metalstoenvironmentalproblemsfromindustries,miningand

allied routes were investigated in many studies recently

(Ndiokwere,1984;Addoetal.,2012).

Cementproductionisanimportantemissionsourceofheavy

metalssuchasCd,Cr,Cu,PbandZn(Adejumoetal.,1994;

Schuhmacheretal.,2004;Al–KhashmanandShawabkeh,2006;

Isiklietal.,2006).Theseheavymetalsaredepositedintosoilat

variousdistances(Schuhmacheretal.,2009)dependingonwind

velocityandparticlesize(CPCB,2007)throughcementdustsand

stackfumes.Themajorityofheavymetalsincementdustoriginate

fromrawmaterials.AsAchternboschetal.(2003)reportedthat

typicalcementrawmaterialscontain25mg/kgofCr,21mg/kgof

Cu,20mg/kgofPband53mg/kgofZnandabout50%ofthetotal

Cd, Cuand Zn load in cement areintroduced throughraw

materials.Majorityofemittedheavymetalsareknowntobetoxic

tohumansandplants,evenatlowconcentrations(Kabata–Pendias

andMukherjee,2007)withverylargesetofhealthconsequences

fromexposuretoitssoilcontaminationdependingonpollutant

type/species, pathway of exposure and vulnerability of the

exposedpopulation(eitherchildren,adultsoraged)(Adekolaet

al.,2012).Therefore,themainobjectivesofthisresearchwere(i)

todeterminethelevelofheavymetalcontaminationand,(ii)

analyzethespatialvariationofheavymetalsinthesurrounding

topsoiloftheLafarge–CementWAPCOfactory,SWNigeria.The

studywascarriedoutinthewetseasonsoftheyear2011and

2012inSagamu,alocalsettlementsouthwesternNigeria.

2.

Materials

and

Methods

2.1.Studyarea

ThestudyareaistheimmediateenvironmentoftheLafarge– CementWAPCO(formerlyWestAfricanPortlandCement)whichis

situatedinSagamu,southwestNigeria(6°50'7°00'N;3°45'4°00'E)

(Figure1).ThefactoryisthesecondworksofLafarge–Cement

WAPCOinNigeriaandlocated72kmsoutheastofIbadan(largest

cityinWestAfrica)and67kmnorthwestofLagos(Africa’ssecond

mostpopulouscity).Thefactorywasestablished,commissioned

andbecamefullyoperationalin1978withthepresentproduction

capacityof900000tonnes/year(LafargeCementWAPCOPLC,

2011).Theareastandsonalow–lyinggentundulatingterrainwith

altituderangingbetween30and61mabovesealevel.Theareais

characterizedby high annual temperature,high rainfall,high

(2)

classifiedashumidtropicalregion(Akanni,1992).Thesoiltypeof

ShagamuisFerralitic(Aweto,1981)andFerruginous(Ilalokhoinet

al,2013).Theclimateisclassifiedashumidtropicalclimaticzone

(Adamson,1996)andcontrolledbytheTropicalMaritimeand

TropicalContinentalairmasses(Ilalokhoinetal,2013).Themean

annualrainfallofShagamufor2012was1100mm(NIMET,2012).

ThegeologyofShagamucomprisesofsedimentaryrockswhich

consistsofAbeokutaformation(Adegoke,1969).Itisreportedto

behighly fossiliferous andconsists of depositsoflimestone

(GbadeboandBankole,2007),sandwithsandstone,siltstone,clay,

mudstoneandshaleinterbed.AccordingtoAgbaje(2009),the

basalconglomerateofAbeokutaformationhaspoorlyrounded

quartzpebbleswithasilicifiedandferruginoussandstonematrix.

TheprevailingwinddirectionwasSouthwesterlyattheperiodof

study(wetseasonperiod–June–October)whiletheprevailingwind

speedrangedrangebetween2.52to3.55m/sandinthedry

season.Theprevailingwinddirectioninthedryseason(November

toMarch)isNortheasterly.

(3)

2.2.Samplingandchemicalanalysis

Samplingwascarriedoutinthewetseasonsof2011and2012

intheareasurroundingthefactoryexcludingthenorthernpartof

thefactorybecauseofthepresenceofswamps.Apartofthedata

collectedin2011hasbeenreportedinOgunkunleandFatoba

(2013).Atotalof38compositetopsoilsampleswerecollectedin

the west, south and the east parts of the factory. Twenty

compositesampleswerecollectedin2011whiletheremaining18

compositesampleswerecollectedin2012,bothsamplingsinthe

wetseason(AugustandSeptember).Sixteencompositesamples

werecollectedinthewest,twelvecompositesamplesinthesouth

whiletensampleswerecollectedintheeast.Ateverysampling

pointcoordinatesweretakenbyahand–heldGPS(Garmin2H).

Threesubsampleswerecollectedatthedepthof0–15cmwithin

10mradiusofapointusingasoilauger.Thesampleswerebulked

togethertoobtainacompositesampleandrecordedagainstthe

coordinateposition.Thesoilsamplescollectedwereplacedin

polyethylene bags, properly labeled and transported to the

laboratory.Beforechemicalanalysisinthelaboratory,thesoil

sampleswereair–dried,sievedthrougha2–mmsievemeshto

removecoarsematerialanddebris,andpulverizedintopowder.

ThepHwasdeterminedinasoilsolution(1:2.5)usingaglass

electrodepHmeter (PHC–3Cmodel)andtheorganicmatter

contentwasdeterminedusingignitionmethodofPeltolaand

Astrom(2003)andReddyetal.(2009)basedon1gofthesoil

sample.Onegramofthepulverizedsamplewasdigestedin10mL

ofHNO3(70%SigmaAldrich,Germany)and5mLofHCLO4(70%

SigmaAldrich,Germany)accordingtoJiangetal.(2011)onan

electrichotplate.Digestioncontinueduntilfumesturnedtowhite

which indicatedcompletedigestionoforganicmatter inthe

sample.DigestedsamplewasfilteredusingWhatmanNo.42filter

paperintoa–250mLbeakeranddilutedwithdeionizedwaterto

25mL.LevelsofPb,Cu,CrandZninthedigestedsampleswith

blanksofthereagentsweredeterminedusingFAAS(BulkScientific

210VGPandPerkinElmerAAnalyst200).DetectionlimitsforBulk

Scientific210VGPusedwere0.08mg/L,0.005mg/L,0.04mg/L,

and0.005mg/LwhiledetectionlimitsforVarianAAnalyst200

were0.18mg/L,0.025mg/L,0.018mg/Land0.006mg/LforPb,

Cu,CrandZnrespectively.Duplicatesampleanalysisandsoil

standardreferencematerial193BGCOD310Awereemployedto

checktheaccuracyofanalysis.Referencematerial193BGCOD

310Awassubjectedtothesamewetdigestionateverytenth

digestionofthesoilsamples.Theamountofmetalrecoveredin

mg/kgwasdeterminedaccordinglyusingtheFAAS.Therecovery

percentage wasdetermined bydividing the recoveredmetal

contentofthereferencematerialdigestedbythecertifiedamount

multipliedby100.Calibrationforeachelementwasdoneusing

seriesofworkingstandardsolutions(CPIInternational,USA)and

calibrationgraphwithcorrelationcoefficient(r2)>0.999.

2.3.Dataanalysis

DataweresubjectedtoAnalysisofVariance(ANOVA)and

significantmeanswereseparatedbyDuncanMultipleTestRange

(Al–KhashmanandShawabkeh,2006) at 5%probabilitylevel.

SpearmanCorrelationanalysiswasalsoemployedtodetermine

therelationshipsexistingamongtheheavymetals.Contamination

levelsofthestudiedheavymetalsweredeterminedaccordingto

thefollowingequation:

CFi=Ci/Cref (1)

where,CFiisthecontaminationfactor/index,Ciisthemetal

concentrationsateachsamplingpoint,andCrefistheevaluation

criterionofthemetal(Hakanson,1980).Theevaluationcriteriain

Equation(1)arethepermissiblelimitsofheavymetals(Pb–

70mg/kg,Cu–63mg/kg,Cr–64mg/kg,Cd–1.4mg/kgandZn–

200mg/kg) for soil by CCME (2007). CF<1 indicates no

contamination,CF=1–2suspectedcontamination,CF=2–3.5slight

contamination, CF=3.5–8 moderate contamination, CF=8–27

severecontamination,CF>27extremecontamination(Gonzalez– Miqueoetal.,2010).

Geo–statisticsinterpolationandmappingwascarriedthrough

InverseDistanceWeighted(IDW)techniquebyusingArcGIS10

[Environmental System Research Institute (ESRI), Redlands,

Canada].Thismethodassumesthattheinfluenceofthevariable

beingmappeddecreaseswithdistancefromitssampledlocation

andreliesmainlyontheinverseofthedistanceraisedtoamatheͲ

maticalpowerwhichcontrolsthesignificanceofknownpointson

theinterpolatedvaluesbasedontheirdistancefromtheoutput

point(WatsonandPhilip,1985).

3.

Results

and

Discussion

3.1.Heavymetallevelsofthetopsoilaroundthecementfactory

RecoveryrateofthereferencematerialanalyzedbyFAASBulk

scientific210VGPrangedfrom96%to112%whiletherecovery

rateofreferencematerialanalyzedbyVarianAAnalyst200ranged

from83.8%to110.8%.

Table1showedtherangeofvariationanddescriptivestatisͲ

ticsforthedistributionofheavymetalconcentrationsinthesoil.

ThepHofthesoilwasslightlyacidic,withrangesfrom5.1to8.5.

Organicmattercontentsofthesoilrangedfrom1.3%to15.0%

withthemeanvalueof5.6,whichindicatedthatthesoilwasrich

in organic matter content(Table1).The descriptivestatistics

showedthatallthemetalsexceptZnwerenormallydistributedby

thelowvaluesoftheskewness.ThisisinagreementwithReimann

andFilzmoser(2000),reportedthatgeochemicaldataarebimodal

andnon–normal.PbandCuhadhighconcentrations(469.2and

404.4mg/kgrespectively)withhighvariations.Cdratednextinsoil

content(298.9mg/kg)whileCrandZnsoilcontentswere186.2

and 168.1mg/kg respectively(Table1).This high Pb and Cu

contentofthesoilprincipallycouldhavecomefromthesynergistic

depositioneffectsfromcementproductionoperationsandtraffic

activities.PbandCuareknowntobepartofheavymetalsreleased

duringcementproduction(CarrerasandPignata,2002;Banatet

al., 2005; Kakareka and Kukharchyk, 2011). However, the

substantiallyhighconcentrationscouldbeattributedtoother

sourceslikethereleasefromvehicularactivities(Farmakiand

Thomaidis,2008;Wangetal.,2009)sincethefactoryislocated

closetoanintersectionofseveralmajorroadswhichwouldhave

contributedtothehighconcentrationsreported.Thesignificantly

highsoilcontentsofPbandCuinthisstudywasconsistentwith

thefindingsofAl–KhashmanandShawabkeh(2006),Bietal.

(2006),andWuetal.(2010)butcontrarytothefindingsofAdekola

etal.(2012)onasimilarcementfactoryinnorth–centralNigeria.

Thisinconsistencyinthefindingscanberelatedtotheshortperiod

ofproductionactivitiesofthefacilitystudiedbyAdekolaetal.

(2012).Significant(p<0.01)negativecorrelationsexistedbetween

thesoilpHandsoilcontentsofPb,CuandCd(r=–0.614,–0.529

and–0.685,respectively).ThisshowedthatpHofthesoilseemed

tobeamajorfactoraffectingtheamountsofPb,CuandCdinthe

soil;anyincreaseinthesoilpHreducesthesoilcontentofthese

metals.Thesignificantpositivecorrelation(0.482)betweenPband

Cucontentsofthesoilaroundthefactory(p<0.01)alsosignifies

thepossiblecommonpollutionsourceofthetwoheavymetals

(Table2).ThepresenceofCdinthesoilcouldpartlybelinkedto

theemissionsfromcementproductiondue to itssignificant

correlationswithPbandCu(r=0.554and0.662,respectively,

p<0.01)(Table2).Cdhasbeenreportedtobereleasedasaresult

oftherawmaterialsusedinthecementproduction(Scoullos,

2001) but usually in low concentrations (Al–Khashman and

Shawabkeh,2006).Butitssignificantlyhighconcentrationinthe

soilcouldnotevidentlybelinkedtoanthropogenicactivitiesofthe

cementfactory.Theonlyexplanationforthehighsoilcontentof

(4)

becausethesoilisferralitic.Olaide(1987)reportedthatsubstantial

amountsofPbandCdarereleasedduringferraliticweathering

throughoxidationandleaching.CrandZnarepresentinthesoilin

concentrationsthatareaboveothersimilarstudies(Al–Khashman

andShawabkeh,2006;MandalandVoutchkov,2011).Observed

highconcentrationsinthepresentstudyisattributedtothelong

yearsofoperationofthisfacilityasithasbeeninoperationfor

morethanthreedecadesandisstillinfulloperation.Therewasno

significantcorrelationbetweenCrandZnandtheirsoilcontents

arestatisticallythesame(p<0.05).ThissuggeststhatCrandZnare

notfromthesamepollutionsource,althoughtheyareboth

supposedpollutantsfromindustrialactivitieslikecementproducͲ

tion(ATSDR,2000;CarrerasandPignata,2002;Banatetal.,2005).

ItisalsoworthytonotethatCrisametalindicatinggeogenicload

asitisreleasedfromparentrocks(Facchinellietal.,2001;Takacet

al.,2009).Therefore,rapidweatheringofparentrockscouldhave

contributedtothehighCrloadtothesoilaroundthefactory.But

mechanicalabrasionofvehicleswiththeassociatedtirewearsmay

haveaddedtotherelativelyhighaccumulationofZnparticlesfrom

thecementdustemissionsinthesoil(CarrerasandPignata,2002;

Al–Khashman,2004).

ComparisonofthelevelsofPb,Cu,Cr,CdandZninsoiltothe

recommendedlimitsoftheCanadianCouncilforMinistersofthe

EnvironmentshowedthatconcentrationsofPb,Cu,CrandCdin

thesoilwerebeyondtheacceptedlimitsinagriculturallands.

Considering the target values for remediation developed by

NigerianDepartmentofPetroleumResources(DPR),Pb,Cu,Crand

Cdwerealsoabovethetargetvalues(Table1).

Distributionofheavymetalconcentrationsinsoilaccordingto

theaxesarepresentedinFigure2.Nosampleswerecollectedat

thenorthduetothepresenceofswamp.ThepHofsoilwasslightly

acidicinallthestudiedaxes(east,westandsouthaxes)ofthe

cementfactorywithoutanysignificantdifference(p<0.05)whereas

thesoilshowedhighfertilityintheeastaxiswiththepattern:

southчwestчeast(Figure2aand2b).

Nosignificantdifference(p<0.05)wasobservedinthemean

Pb,Cu,CrandCdconcentrationsofthesoilintheeast,westand

southaxes(Figures2c–2f).Thisshowsthatprobablythesoilin

eachofthecardinaldirectionsreceivedthesimilaramountof

pollutantdeposition.Thereportedmetalconcentrationsinthesoil

werehigherthanthefindingsofAddoetal.(2012)wherehighconͲ

centrationsofPb,Cu,CrandZnwereobservedatthesoutheastof

DiamondcementfactoryinGhana.MeanconcentrationsofZnin

thesoiloftheeastandthewestwerethestatisticallysamebut

significantlyhigherthanthesoilcontentofthesouth(p<0.05)

(Figure2g).Thisisbecausethewestaxisofthefactoryiswherethe

productionactivitiesarecarriedout(OgunkunleandFatoba,2013)

andcoupledwithdifferentvehicularactivitiesduetotheseveral

intersectionsofroadsnetworksatthewesternend.Gbadeboand

Bankole(2007)alsoreportedhighconcentrationsofZnintheair

samplesanddustofthewesternendofthefactory.Theeastern

endisafallowlandofpreviousquarryactivitiesbutonewould

haveexpectedhigherZnconcentrationinsoilofthesouthernaxis

thataccommodatethepresentquarrywhereactiveminingisbeing

carriedout.

Table1.Descriptivestatisticsoftotalmetalcontents(mg/kg)ofthesoilofthestudyarea

Metal n Minimum Maximum Mean SD Skewness Kurtosis Referencelimitsc

Targetvalued pH 38 5.1 8.5 6.5 1.1 0.650 –0.721 NA NA O.M(%)b 38 1.3 15.0 5.6 3.1 1.284 1.793 NA NA Pb(mg/kg) 38 99.8 992.1 469.2a 291.1 0.436 –1.240 70 35 Cu(mg/kg) 38 41.4 999.2 404.4a 313.7 0.768 –1.115 63 0.30 Cr(mg/kg) 38 18.8 362.1 186.2a 90.0 0.074 –0.889 64 20 Cd(mg/kg) 38 4.2 962.1 298.9a 326.0 0.491 –1.472 1.4 100 Zn(mg/kg) 38 56.1 509.2 168.1a 109.9 1.755 2.438 200 a valueswithdifferentletterswithinthesamecolumnaresignificantlydifferentatP<0.05 b referstoorganicmattercontent;valueswithdifferentletterswithinthesamecolumnaresignificantlydifferentatp<0.05 c CCME(2007) d DPRͲEGASPIN(2002)

Table2.Spearman'scorrelationcoefficientsamongheavymetalsinthetopsoil

Correlations pH OM Pb Cu Cr Cd Zn pH CorrelationCoefficient 1.000 Sig.(2–tailed) OM CorrelationCoefficient 0.450 a 1.000 Sig.(2–tailed) 0.005 Pb CorrelationCoefficient –0.614 a –0.212 1.000 Sig.(2–tailed) 0.000 0.201 Cu CorrelationCoefficient –0.529 a –0.264 0.482a 1.000 Sig.(2–tailed) 0.001 0.110 0.002 Cr CorrelationCoefficient 0.211 0.167 –0.232 –0.540 a 1.000 Sig.(2–tailed) 0.205 0.316 0.160 0.000 Cd CorrelationCoefficient –0.685 a –0.367b 0.554a 0.662a –0.383b 1.000 Sig.(2–tailed) 0.000 0.023 0.000 0.000 0.018 Zn CorrelationCoefficient –0.029 0.026 –0.047 –0.034 –0.152 0.099 1.000 Sig.(2–tailed) 0.865 0.877 0.779 0.840 0.363 0.555 a Correlationissignificantatthe0.01level(2–tailed). b Correlationissignificantatthe0.05level(2–tailed).

(5)

Figure2.Meanvaluesof(a)pH,(b)organicmattercontent,(c)Pb,(d)Cu,(e)Cr,(f)Cdand(g)Znatvariousaxessurroundingthecementfactory.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(6)

3.2.Contaminationlevelsofthesoilbyheavymetalsaroundthe

cementfactory

PercentagecontaminationdomainofPb,Cu,Cr,CdandZn

whichistheratiooffrequencyofeachcontaminationdomainand

totalfrequencyofalldomainsmultipliedby100arepresentedin

Figure3.LargestcontaminationdomainsforPbaresevereand

moderatecontaminationthattook37%eachofallthesample

locationswhilesuspectedandslightlycontaminationdomainsare

13%each(Figure3a).ThesamepatternisalsoevidentforCu

contaminationofthesoilaroundthecementfactory;largest

percentageofdomainwasalsorecordedsevereandmoderate

contaminations(32%and34%respectively)(Figure3b).Thisisan

evidenceofthehighpollutionstatusofthesoilaroundthecement

factorybyPbandCuandthereisneedforremediationactions.Cr

posedlittlepollutionstatustothesoilbecauselargerpercentage

of the contamination domain was recorded for slightly and

suspectedcontamination(40%and26%respectively)(Figure3c).

ThisimpliesthatCrcontentinthesoilposelittleconcernfor

remediationofthesurroundingofthefactory.PercentagecontamͲ

inationdomainsofCdinallthesamplinglocationsshowedthat

extremecontamination(55%)doubledtheseverecontamination

levelandtripledthemoderatecontaminationlevel(Figure3d).

ThisisanindicationofseriouspotentialecologicaldisasterfromCd

levelinthesoil.Morethan50%ofthecontaminationdomains

correspondedtoextremecontaminationbyCdwhichisrecognized

asverymobileinair–soil–plantsystem(Wieczoreketal.,2005).Zn

contaminationofthesoilposenotoxicologicalconcernsincethe

largestpercentagedomainwassuspectedcontamination(78%)

whichindicatesnoimpendingdangerfromZn(Figure3e).

Though,thefactoryhasimprovedontheirairpollutioncontrol

systembyreplacingtheelectrostaticprecipitatorwithafilterbay

dustcollectionsystemin2011butitisstillhighlyimportantthat

remediationofthesoilshouldbedonetoavertanypotential

ecologicalorhealthhazardsfromCd,PbandCupollution.

3.3.Spatialmappingoftheheavymetaldistributionsinthe

topsoilaroundthecementfactory

InterpolationmappingofspatialspreadofPb,Cu,Cr,Cdand

ZnusingInverseDistanceWeightedtechniqueofArcGIS10is

showninFigure4.Asshowninthemaps,similarpatternof

hotspots (high soil metalconcentrations)aroundthe cement

factoryisobservedinthespatialdistributionofallthemetals

exceptZn.HighconcentrationsofPbandCuwereobservedinthe

soilatthesoutheastandsouthwestofthefactory,someinthe

immediatevicinitywhilesomearefarawayfromthefactory

(Figure4aand4b).Thisisapointertothefactthatthesourceof

highPbandCupollutionaroundthecementfactorycannotbe

limitedtothereleasefromthecementproductionbutcouldalso

Figure3.Percentagecontaminationlevelsof(a)Pb,(b)Cu,(c)Cr,(d)Cdand(e)Zninthesoilaroundthecementfactory. 13%

13%

37% 37%

Suspectedcontamination Slightcontamination Moderatecontamination Severecontamination

D

3E

5% 5%

24%

34% 32%

Nocontamination Suspectedcontamination Slightcontamination Moderatecontamination

E

&X

5%

26%

40% 29%

Nocontamination Suspectedcontamination Slightcontamination Moderatecontamination

F

&U

3% 16%

26% 55%

Suspectedcontamination Moderatecontamination Severecontamination Extremecontamination

G

&G

18%

74% 8%

Nocontamination Suspectedcontamination Slightcontamination

(7)

involveseveralothersourceslikevehicularactivities.Thespatial

mappingofthedistributionofPbandCucorroboratedtheearly

submissionthatofseveralsourcesofpollutionfortheseheavy

metals.ThesamepatternalsoappliedtoCrbutmajorityofthe

hotspotslocatedatthesoutheastofthefactorywhilethelowCr

concentration(<101.1mg/kg)werefoundaroundthewesternaxis

(Figure4c).ThedistributionoflowCrconcentrationsaroundthe

westernaxiscanonlyadjudgedtopollutionfromtheproduction

lineofcementplusthevehicularactivitieswhilehotspotsatthefar

endofthesoutheastofthefactorymaybeduetogeogenicrelease

ofCrfromparentrock.Asearlierstated,Crareusuallyreleasedin

largeamountfromparentrocks(Facchinellietal.,2001;Takacet

al.,2009)andrapidweatheringofthisparentrocksmaybe

implicatedinthehotpotsofCratthefarsoutheastendofthe

factory.HighconcentrationsofCd(>348.8mg/kg)wereevenly

distributionaroundtheimmediatevicinityofthecementfactory

whilelowlevelofsoilCd(<87.3mg/kg)werewithin2kmdistance

fromthecementfactorytowardsthesoutheastandthesouthwest

(Figure4d).ThisfindingofevenspatialdistributionofCdinthesoil

showedthatthemainsourceofthepollutionisthroughaerial

depositionandtheonlyrouteforthishighamountofCdcanonly

befromthecementproductionthroughthestack.Itisalso

importanttonotethathotspotswerealsoevenlydistributedfar

beyondseveralkilometersatthesouthwesternend,probably

aidedbywinddirectionandvelocity.Thispossiblyindicatedaerial

depositionofCdintothesoilasthemainpossiblerouteofsoil

contamination.Thisruledoutagriculturalactivitiesaspossible

collaboratorintheenrichmentofthesoilwithCdbecauseifthe

enrichmentcamefromfertilizerapplications,scatteredhotspots

shouldhavebeenobservedaroundthearea.Theevenspatial

distributionmayalsobeenhancedbythereleasefromtheparent

rocksincethesoilisferraliticwhichisasourceofCdenrichmentof

soil(Olaide,1987).Theimmediatesurroundingsofthecement

factorycontainlowZnconcentrations(<124.4mg/kg)withhotͲ

spotslocatedfarawayfromthecementfactorytowardsthe

southeastandsouthwest,probablyduetowinddispersionofdust.

The even distribution of soil Zn concentrations in the

immediatevicinityofthefactoryshowedthatenrichmentcould

onlybefromtheactivitiessurroundingcementproductionand

probablybecausetheZnisinlargerparticles,solateraldispersion

islow(Abbasietal.,2012).

(8)

Figure4b.SpatialdistributionofCuinsoilsusingInverseDistanceWeightedtechnique(ArcGIS10).
(9)

Figure4c.SpatialdistributionofCrinsoilsusingInverseDistanceWeightedtechnique(ArcGIS10).
(10)

Figure4d.SpatialdistributionofCdinsoilsusingInverseDistanceWeightedtechnique(ArcGIS10).
(11)

Figure4e.SpatialdistributionofZninsoilsusingInverseDistanceWeightedtechnique(ArcGIS10).

4.

Conclusion

Thisinvestigationoflevelsofheavymetalsinsoilaroundthe

Lafarge–CementWAPCOfactoryhasrevealedextremecontamͲ

inationbyCdandseverecontaminationsbyPbandCu.Fromthe

spatialmapping,itwasclearthatenrichmentofthesoilbyCd

around the cement factory was due to cement production

activitieswhiletherewasasynergisticcontributionfromboth

cementproductionandvehicularactivitiesintheenrichment/

contaminationofthesoilbyPbandCu.Apparently,CrandZnpose

noenvironmentalconcernbecauseoftheirrelativelylowerlevels

inthesoil.

References

Abbasi,M.N.,Ahmad,I.,Tufail,M.,2012.DispersionofCd,Cr,Cu,Ni,Pb andZnparticlesinaturbulentairflow.WorldAppliedSciencesJournal 20,864–869.

Achternbosch,M.,Brautigam,K.R.,Hartlieb,N.,Kupsch,R.,Richers,U., Stemmermann,P.,2003.HeavyMetalsinCementandConcrete ResultingfromtheCo–incinerationofWastesinCementKilnswith RegardtotheLegitimacyofWasteUtilization,MitgliedderHermann vonnHelmholtz–GemeinschaftDeutscherForschungszentren,ISSN 0947–8620,pp.22–23.

(12)

Adamson,K.Y.,1996.TowardsanEnvironmentalActionPlanforOgun State.WorldBankAssistedProjectReport,Abuja,Nigeria,139pages. Adegoke,O.S.,1969.EocenestratigraphyofsouthernNigeria.Bulleting

BureaudeResearchGeologicETMinersMemoirs69,22–43.

Adejumo,J.,Obioh,I.,Ogunsola,O.,Akeredolu,F.,Olaniyi,H.,Asubiojo,O., Oluwole,A.,Akanle,O.,Spyrou,N.,1994.Theatmosphericdeposition ofmajor,minorandtraceelementswithinandaroundthreecement factories.JournalofRadioanalyticalandNuclearChemistry179,195– 204.

Adekola,F.A.,Inyinbo,A.A.,Abdul–Raheem,A.M.O.,2012.Heavymetals distributionandspeciationinsoilsaroundamegacementfactoryin north–centralNigeria.EthiopianJournalofEnvironmentalStudiesand Management5,11–19.

Addo,M.A.,Darko,E.O.,Gordon,C.,Nyarko,B.J.B.,Gbadago,J.K.,Nyarko, E.,Affum,H.A.,Botwe,B.O.,2012.Evaluationofheavymetals contaminationofsoilandvegetationinthevicinityofacementfactory intheVoltaregion,Ghana.InternationalJournalofScienceand Technology2,40–50.

Agbaje,N.G.,2009.GeologyandMineralResourcesofNigeria,Springer, 221pages.

ATSDR (Agency for Toxic Substances and Disease Registry), 2000. ToxicologicalProfileforChromium,U.S.DepartmentofHealthand HumanServices,Atlanta,Georgia,pp.1–9.

Akanni,C.O.,1992.Climate,inOgunStateinMaps,editedbyOnakomaya, S.O.,Oyesiku,K.,Jegede,J.,Ibadan,RexCharlesPublisher,187pages. Al–Khashman,O.A.,2004.Heavymetaldistributionindust,streetdustand

soils from the work place in Karak Industrial Estate, Jordan.

AtmosphericEnvironment38,6803–6812.

Al–Khashman,O.A.,Shawabkeh,R.A.,2006.Metalsdistributioninsoils aroundthecementfactoryinsouthernJordan.EnvironmentalPollution 140,387–394.

Aweto,A.O.,1981.FallowingandsoilfertilityrestorationinSouth–west Nigeria.MalaysianJournalofTropicalGeography3,1–6.

Banat,K.M.,Howari,F.M.,Al–Hamad,A.A.,2005.Heavymetalsinurban soilsofcentralJordan:Shouldweworryabouttheirenvironmental risks?EnvironmentalResearch97,258–273.

Bi,X.Y.,Feng,X.B.,Yang,Y.G.,Qiu,G.L.,Li,G.H.,Li,F.L.,Liu,T.Z.,Fu,Z.Y., Jin,Z.S.,2006.Environmentalcontaminationofheavymetalsfromzinc smelting areas in Hezhang County, Western Guizhou, China.

EnvironmentInternational32,883–890.

Carreras,H.A.,Pignata,M.L.,2002.Biomonitoringofheavymetalsandair quality in Cordoba City, Argentina, using transplanted lichens.

EnvironmentalPollution117,77–87.

CCME(CanadianCouncilofMinistersoftheEnvironment),2007.Canadian SoilQualityGuidelinesfortheProtectionofEnvironmentalandHuman Health,NationalGuidelinesandStandardsOffice,Quebec,Publication No.1299,pp.1–7.

CPCB(CentralPollutionControlBoard),2007.AssessmentofFugitive EmissionsandDevelopmentofEnvironmentalGuidelinesforControlof FugitiveEmissionsinCementManufacturingIndustries,Programme ObjectivesSeriesProbes/118/2007,Delhi,India,pp.34–110.

DPR–EGASPIN,2002.EnvironmentalGuidelinesandStandardsforthe PetroleumIndustryinNigeria(EGASPIN),DepartmentofPetroleum Resources,Lagos,Nigeria.

Emmanuel,E.,Pierre,M.G.,Perrodin,Y.,2009.Groundwatercontamination bymicrobiologicalandchemicalsubstancesreleasedfromhospital wastewater:Healthriskassessmentfordrinkingwaterconsumers.

EnvironmentInternational35,718–726.

Facchinelli,A.,Sacchi,E.,Mallen,L.,2001.MultivariatestatisticalandGIS– basedapproachtoidentifyheavymetalsourcesinsoils.Environmental Pollution114,313–324.

Farmaki,E.G.,Thomaidis,N.S.,2008.Currentstatusofthemetalpollution oftheenvironmentofGreece–areview.GlobalNestJournal10,366– 375.

Gbadebo,A.M.,Bankole,O.D.,2007.Analysisofpotentiallytoxicmetalsin airbornecementdustaroundSagamu,southwesternNigeria.Applied Science7,35–40.

GonzalezͲMiqueo,L.,Elustondo,D.,Lasheras,E.,Santamaria,J.M.,2010. Useofnativemossesasbiomonitorsofheavymetalsandnitrogen depositioninthesurroundingoftwosteelworks.Chemosphere78, 965Ͳ971.

Guo,G.,Wu,F.,Xie,F.,Zhang,R.,2012.Spatialdistributionandpollution assessmentofheavymetalsinurbansoilsfromsouthwestChina.

JournalofEnvironmentalSciences24,410–418.

Hakanson,L.,1980.Anecologicalriskindexforaquaticpollution–control– asedimentologicalapproach.WaterResearch14,975–1001.

Harrison,R.M.,Laxen,D.P.H.,Wilson,S.J.,1981.Chemicalassociationsof lead,cadmium,copper,andzincinstreetdustsandroadsidesoils.

EnvironmentalScience&Technology15,1378–1383.

Ilalokhoin,P.O.,Otaru,A.J.,Odigure,J.O.,Abdulkareem,A.S.,Okafor,J.O., 2013.Environmentalimpactassessmentofaproposedcementplantin southwestern Nigeria. IOSR Journal of Environmental Science, ToxicologyandFoodTechnology3,83–99.

Isikli,B.,Demir,T.A.,Akar,T.,Berber,A.,Urer,S.M.,Kalyoncu,C.,Canbek, M.,2006.Cadmiumexposurefromthecementdustemissions:Afield studyinaruralresidence.Chemosphere63,1546–1552.

Jiang, Y.F., Wang, X.T., Wu, M.H., Sheng, G.Y., Fu, J.M., 2011. Contamination,sourceidentification,andriskassessmentofpolycyclic aromatic hydrocarbons in agricultural soil of Shanghai, China.

EnvironmentalMonitoringandAssessment183,139–150.

Kabata–Pendias,A.,Mukherjee,A.B.,2007.TraceElementsfromSoilto Human,Springer–Verlag,Berlin,pp.1–48.

Kakareka,S.,Kukharchyk,T.,2011.Towardsimprovementofheavymetals emission assessment methodology from cement production in EMEP/EEA AEI Guidebook. Proceedings 12th

Joint TFEIP/EIONET Meeting,May2–3,2011,Stockholm,Sweden.

LafargeCementWAPCOPLC,2011.LafargeWAPCO:SupportingNigeria’s development,AnnualReport–LafargeCementWAPCOPLC,pp.2–4. Li,X.D.,Poon,C.S.,Liu,P.S.,2001.Heavymetalcontaminationofurbansoils

andstreetdustsinHongKong.AppliedGeochemistry16,1361–1368. Mandal,A.,Voutchkov,M.,2011.Heavymetalsinsoilsaroundthecement

factory in Rockfort, Kingston, Jamaica. International Journal of Geoscience2,48–54.

Manta,D.S.,Angelone,M.,Bellanca,A.,Neri,R.,Sprovieri,M.,2002.Heavy metalsinurbansoils:AcasestudyfromthecityofPalermo(Sicily), Italy.ScienceoftheTotalEnvironment300,229–243.

Ndiokwere,C.L.,1984.Astudyofheavy–metalpollutionfrommotor– vehicleemissionsanditseffectonroadsidesoil,vegetationandcrops inNigeria.EnvironmentalPollutionSeriesB–ChemicalandPhysical7, 35–42.

NIMET(NigerianMeteorologicalAgency),2012.SeasonalRainfallPrediction andSocio–economicImplicationsforNigeria.FederalGovernmentof Nigeria, Abuja, Nigeria, http://nimet.gov.ng/sites/default/files/ publications/2012–seasonal–rainfall–prediction.pdf, accessed in January2013.

Ogunkunle,C.O.,Fatoba,P.O.,2013.Pollutionloadsandtheecologicalrisk assessmentofsoilheavymetalsaroundamegacementfactoryin southwestNigeria.PolishJournalofEnvironmentalStudies22,487– 493.

Olaide,M.A.,1987.Dispersionofcadmium,leadandzincinsoilsand sedimentsofhumidtropicalecosystemofNigeria,inLead,Mercury, CadmiumandArsenicintheEnvironment,editedbyHutchinson,T.C., Meema,K.M.,JohnWileyandSonsLtd,pp.303–313.

Peltola,P.,Astrom,M.,2003.Urbangeochemistry:Amultimediaand multielement survey of a small town in northern Europe.

EnvironmentalGeochemistryandHealth25,397–419.

Rashed,M.N.,2010.Monitoringofcontaminatedtoxicandheavymetals, fromminetailingsthroughageaccumulation,insoilandsomewild

(13)

plantsatSoutheastEgypt.JournalofHazardousMaterials178,739– 746.

Reddy,K.R.,Hettiarachci,H.,Gangathulasi,J.,Bogner,J.E.,Lagier,T., 2009.Geotechnical properties ofsyntheticmunicipal solidwaste.

InternationalJournalofGeotechnicalEngineering3,429–438. Reimann,C.,Filzmoser,P.,2000.Normalandlognormaldatadistributionin

geochemistry:Deathofamyth.Consequencesforthestatistical treatmentofgeochemicalandenvironmentaldata.Environmental Geology39,1001–1014.

Schuhmacher, M., Nadal, M., Domingo, J.L., 2009. Environmental monitoringofPCDD/Fsandmetalsinthevicinityofacementplant afterusingsewagesludgeasasecondaryfuel.Chemosphere74,1502– 1508.

Schuhmacher,M.,Domingo,J.L.,Garreta,J.,2004.Pollutantsemittedbya cement plant: Health risks for the population living in the neighborhood.EnvironmentalResearch95,198–206.

Scoullos, M.J., 2001. Mercury, Cadmium, and Lead: Handbook for SustainableHeavyMetalspolicyandRegulation,Springer,pp.71–72.

Takac,P.,Szabova,T.,Kozakova,L.,Benkova,M.,2009.Heavymetalsand theirbioavailabilityfromsoilsinthelong–termpollutedCentralSpis regionofSR.PlantSoilandEnvironment55,167–172.

Turner, A.H., 2009. Urban Agriculture and Soil Contamination: An IntroductiontoUrbanGardening,EnvironmentalFinanceCentre,EPA Region5,UniversityofLouisville,pp.1–17.

Wang,Z.M.,Song,K.S.,Zhang,B.,Liu,D.W.,Ren,C.Y.,Zhang,S.M.,Luo,L., Zhang,C.H.,2009.Spatialvariabilityandaffectingfactorsofsoil nutrientsincropslandofNortheastChina.Plant,SoilEnvironment55, 110–120.

Watson,D.F.,Philip,G.M.,1985.Arefinementofinversedistanceweighted interpolation.Geo–Processing2,315–327.

Wieczorek,J.,Wieczorek,Z.,Bieniaszewski,T.,2005.Cadmiumandlead contentincerealgrainsandsoilfromcroplandadjacenttoroadways.

PolishJournalofEnvironmentalStudies14,535–540.

Wu,Y.G.,Xu,Y.N.,Zhang,J.H.,Hu,S.H.,2010.Evaluationofecologicalrisk andprimaryempiricalresearchonheavymetalsinpollutedsoilover Xiaoqinling gold mining region, Shaanxi, China. Transactions of NonferrousMetalsSocietyofChina20,688–694.

References

Related documents

Both our result and [ 3 ] yield similar error bounds (ours are somewhat tighter), but in this sense apply to incomparable settings: [ 3 ] show that product states nearly match

common with a lot of farce pieces, there is a great deal of going on and off stage through doors. and windows, along with props being switched

A post hoc Bonferroni analysis revealed that overexpression of Rac1-CA significantly decreased the total spine density (p&lt;0.001, Rac1-CA METH vs. eGFP saline

Survivors of alleged sexual assault who self- presented to Lagos State University Teaching Hospital (LASUTH), Ikeja during the study period of January 2008 to December 2012 were

Shojaeizadeh D, Alizadeh M.[A comparative study on the health status (physical and mental) of elderly based on age groups of 60 years and above in the population covered by

ANOVA: Analysis of variance; BAr/Tar: Quantification of the trabecular bone fraction bone area/total area; BDI: Butan-Diisocyanat-hydrogel; BMD: Bone mineral density; BMP-7:

Among the 151 probands included in the study we identified pathogenic variants in 39 patients (25.8%), likely pathogenic variants in three patients (2%), variants of

Results suggest that combining group mentoring with collaborative knowledge modeling is a promising strategy to foster the elicitation of professional expertise and thus support