• No results found

The Fatigue Strength of AISI 430—304 Stainless Steels Welded by CO₂ Laser Beam Welding

N/A
N/A
Protected

Academic year: 2021

Share "The Fatigue Strength of AISI 430—304 Stainless Steels Welded by CO₂ Laser Beam Welding"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

839

PACSnumbers:06.60.Vz,42.62.Cf,62.20.me,62.20.mm,81.20.Vj,81.40.Np,81.70.Bt

The

Fatigue

Strength

of

AISI

430—304

Stainless

Steels

Welded

by

CO

2

Laser

Beam

Welding

U.Caligulu,M.Turkmen*,A.Ozer**,M.Taskin,andM.Ozer***

FiratUniversity,FacultyofTechnology, DepartmentofMet.andMaterialsEng., 23119Elazig,Turkey

*KocaeliUniversity, HerekeVocationalSchool, 41800Kocaeli,Turkey **

GaziUniversityTechnicalSciencesVocationalSchool,

OstimYenimahelle,Ankara,Turkey

***

GaziUniversity,TechnologyFaculty,

DepartmentofMet.andMaterialsEng., 06500Besevler,Ankara,Turkey

Inthisstudy,thefatiguestrengthofAISI430—304stainlesssteelsweldedby

CO2 laser beam welding (LBW) is investigated. Laser welding experiments

are carried under helium atmosphere at 2000, 2250 and 2500 W welding

powerswith100cm/minweldingspeed.Theweldingzonesareexaminedby

optical microscopy, scanning electron microscopy, and energy dispersive

spectroscopyanalysis.Fatiguetestsareperformedusinganaxialfatiguetest

machine,andthefatiguestrengthisanalyseddrawingS—Ncurvesand

criti-cally observingfatiguefracture surfacesof thetestedsamples. The

experi-mental resultsindicatethatmechanical propertiesandmicrostructural

fea-tures are affected significantly bywelding power. The fatigue strength of

CO2 laserweldedsamplesincreaseduetohigherdeeppenetrationinwelding

zonewithincreasingweldingpowerinchosenconditions.Thebestproperties

are observed with the specimens welded at 2500 W heat input and 100

cm/minweldingspeed.

ВційроботідослідженовтомнуміцністьнеіржавійнихсталейAISI430— 304,зваренихпроменемCO2-лазера.Експериментизлазерного зварюван-ня виконувалися в атмосфері гелію за потужности зварювання у 2000, 2250 і2500 Втіз швидкістюзварювання у 100 см/хв.Зонизварювання досліджувалися методами оптичної мікроскопії, сканівної електронної мікроскопії та енергодисперсійноїспектроскопії. Дослідженняна втому виконувалисязвикористанняммашинидлявипробуваньнавіснувтому, автомнаміцністьаналізувалася шляхом побудови S—N-кривихта крити-Фотокопирование разрешено только в соответствии с лицензией Напечатано в Украине.

(2)

чногоспостереженняповерхоньвтомногоруйнуваннядосліджених зраз-ків. Експериментальні результати показують,що механічні властивості та мікроструктурні особливості значно залежать від потужности зварю-вання. Втомнаміцність зразків, зварених CO2-лазером,зростає завдяки збільшеннюглибинипроникненнявзонізварюваннязізбільшенням по-тужностизварюваннязаобранихумов.Найкращівластивості спостеріга-лисяузразків,зваренихзапідведеноїтеплотипри2500Втташвидкости зварюванняу100см/хв. Вданнойработеисследованаусталостнаяпрочностьнержавеющихсталей AISI 430—304, сваренныхлучомCO2-лазера. Экспериментыпо лазерной сваркевыполнялисьватмосферегелияпримощностяхсварки2000,2250 и2500Втискоростисварки100см/мин.Зонысваркиисследовались ме-тодами оптической микроскопии, сканирующейэлектронной микроско-пиииэнергодисперсионнойспектроскопии.Испытаниянаусталость про-изводились с использованием машины для испытаний на осевую уста-лость,аусталостнаяпрочностьанализироваласьпутёмпостроения S—N-кривыхикритическогонаблюденияповерхностейусталостного разруше-ния исследованныхобразцов.Экспериментальныерезультаты показыва-ют, чтомеханические свойстваи микроструктурныеособенности значи-тельно зависят от мощности сварки. Усталостная прочность образцов, сваренных CO2-лазером, возрастаетблагодаряувеличению глубины про-никновенияв зоне сваркис увеличениеммощности сварки при выбран-ныхусловиях.Наилучшиесвойстванаблюдалисьуобразцов,сваренных приподводимойтеплотес2500Втискоростисварки100см/мин.

Key words:fatiguestrength,weldingzone,stainlesssteels,AISI430, AISI

304,CO2 LBW.

(ReceivedDecember2,2014; in final version, April 16, 2015)

1.INTRODUCTION

Stainlesssteelsareiron-basealloyscontaining8—25%nickelandmore

chromium thanthe 12%necessarytoproduce passivitybutless than

30%.Thesteelsresistbothcorrosionandhightemperature.Stainless

steelscanbedividedintofivetypesasferritic,austenitic,martensitic,

duplex,andprecipitation-hardening.Ferriticstainlesssteelsare

wide-lyusedduetothefactthattheircorrosionresistanceishigheratroom

temperatureandtheyaremuchcheaperthantheotherstainlesssteels.

Ferriticstainlesssteelscontain16—30%Crwithintheirstructuresin

respect of additionofthe alloy element. Thistypeof thesteel canbe

shapedeasilyandresistatmosphericcorrosionwellandthankstothese

characteristics,ithasawiderangeofapplicationinarchitecture,

inte-riorandexterior decoration,kitchenutensils,manufacturingofwash

boilersanddryingmachines,foodindustry,automotiveindustry,and

(3)

Austenitic-stainless steel is preferred more than other

stainless-steel types due to easiness in welding process. Then, some negative

metallurgic changes are taken into consideration in welding of the

steels.Thesearethe following ones:deltaferritephase,sigmaphase,

stress-corrosion cracking, and chrome—carbide precipitate between

grainboundariesat450—850CofCr—Niausteniticsteelssuchas18/8

joinedbyfusionweldinginlongwaitingtime.Stainlesssteelscan

gen-erally be welded with all methods of fusion welding and solid state

welding.Outofthefusionweldingmethods,electricarcwelding,

sub-merged arc welding, MIG, TIG,plasma welding, electron beam

weld-ing,resistancewelding,andlaserwelding,etc.arewidelyused.Inthe

fusionweldingmethodsforjoiningstainlesssteel,brittleintermetallic

compounds phases are producedinthe fusionzone,which reduce the

strength of theweldingjoint.However,inthe LBWjoining of

stain-less steel, because these phases are reduced, it improves the

perfor-manceofthestainlesssteeljoint[5—10].

Laser beam welding, using laser beam of high energy density as a

heat source, is a highly efficient and precise weldingmethod. It has

someexcellences,suchashighenergydensity,focalization,deep

pene-tration, high efficiency and strong applicability, and itis widely

ap-plied to welding zone requiring the high precision and high quality,

including aviation and space flights, automobile, microelectronics,

lightindustry,medicaltreatmentandnuclearindustry.Aslaserbeam

weldingis afast butunbalancedheat-circulation process,larger

tem-peraturedegreesappeararoundtheweld,thereforetheresidualstress

anddeformationofdifferentextentcanalsoappearinthepostwelding

structure.Allofthesephenomenabecomeimportantfactors,

influenc-ingthequalityofweldingstructureandtheusablecapability.

Under-standing thethermal processofwelding iscrucial toanalyse the

me-chanicalweldingstructureandmicrostructureaswellascontrollingof

weldingquality[11—14].

Fatigue is progressive localized permanent structural change that

occurs in a material subjected to repeated or fluctuating strains at

stresses havingamaximumvaluelessthanthetensilestrengthofthe

material.It hasbeenestimatedthat 90%ofthefailures,whichoccur

inengineeringcomponents,canbeattributedtofatigueandhigh

por-tionofthefatiguefailuresareassociatedwithaweldmentwithstress

concentrations and possible weld defects [15]. Fatigue affecting

fac-tors are the following: material type, the effects of composition and

structure,theeffectsofsurfaceproperties,theeffectofthenotch,the

effectsofstrains,theeffectofthecorrosion,theeffectoftheworking

environment,constructionandmontageerrors,theeffectof

tempera-ture, the effect of frequency (test speed), and dimensional factors.

Stresses,to beapplied topartsduring operation, may bedifferent in

(4)

typesoffatiguetestspecies.Theyareaxial,bending,torsionand

com-pound fatiguetests. Fatigue, crackinitiation, crack propagationand

breakage occur in three stages. Fatigue does not cause a significant

plasticdeformationofthematerial.Fatiguecracksoccurinsuch

plac-es, wherestress concentration,sharp edges,scratches,nicks and

cor-rosionandfatiguemoveatcertainspeedsandcausethefailureof

ma-terial. Therefore, the design of parts working under dynamic loads

shouldavoidsharpedges,whichcausestressconcentrationand

notch-es. Inaddition, thepolishedsurfaces ofcomponentsexposedtocyclic

loadingcanextendfatiguelife[16—18].

Inordertooptimizeweldingconditionsformaterialswithdifferent

propertiesoradvancedmaterials,experimentalinvestigationsarestill

required.Alongwithagreatdealofresearchesdevotedtothe

weldabil-ityof dissimilarmaterialsand propertiesestimationforwelding

pro-cess, the further investigation on practical applications of failure is

alsobecomingconsiderablyimportantandurgent.Itiswellknownthat

themajority offailuresthatoccur inthestructuresare caused by

fa-tigue failureinweldments duetofatiguetypeofloading experienced

bythestructures[19].Veryfewstudieshavebeencarriedoutto

evalu-atethefatiguepropertiesofAISI430ferriticstainlesssteelweld[20].

The fatigue processand its mechanism are largely influencedby the

presence of materialnon-homogeneities. Ithas beenfoundby several

researchers that generallyfatigue cracks originateeither in theheat

affectedzoneorintheweldmaterialsduetofatigueloadingandcould

be the potential source of catastrophic failures in some unfortunate

situations[21].

Curcio et al. [22] analysed the parameters of various materials at

laserweldingandreportedthatweldingpower,weldingspeed,

shield-ing gas,gasnozzle,andtheprocessoffocusingwereamongthese

pa-rameters. Zambonet al.[23] analysedthe microstructureand tensile

stages of AISI904L super austenitic stainless steel during CO2 laser

weldingandreportedthat therewasadecreaseinflowresistanceand

detachtensileanddependingonthistherewasanincreaseinhardness

valuebecauseofrapidcoolingofthefusionzoneduring welding.

Ber-trandetal.[24]analysedtheNd:YAGlaserweldingparametersofthe

stainlesssteelandreportedthatlaserpowerwas600—2700Wandthe

weldingspeedwas3—10m/minandflowspeedoftheshieldinggaswas

similartothesurfacecontaminationor itchangeddepending on

vari-oussurfacetensions.El-Batahgy[25]analysedtheeffectsofaustenitic

stainlesssteelsonsurfaceofhardnessandfusionzoneoflaserwelding

parametersand reportedthatpenetrationincreaseddependingonthe

increasedweldingpowerandweldingspeed,therewasnotasignificant

difference betweenheliumandargonshieldinggases,andmechanical

features(tension,hardness,bending)andfusionzonewerenot

(5)

microstructural characteristicsof lowcarbonsteelsonNd:YAGlaser

weldingandreportedthatdependingontheincreasedenergyinputand

processspeed,thehardnessvalueofthematerialatweldingzonealso

increased.Vuraletal.[27]analysedtheeffectofweldingnugget

diam-eteronthefatiguestrengthoftheresistancespotweldedjointsof

dif-ferent steel sheetsand reportedthat galvanized steelsheet

combina-tion has the highest fatigue limit and crack growth rate of the spot

welded galvanized AISI 304 joining type is slower than that of base

metals given in literature. C and m coefficients of Paris—Erdogan

equation for spot welded AISI 304 galvanized steel sheet joints were

obtained. Yuri et al.[28]analysed theeffect ofwelding structureon

high-cycle andlowcyclefatiguepropertiesforMIGweldedA5083

al-uminium alloys at cryogenic temperatures and reported that in the

high-cycle fatigue tests the ratios of 106 fatigue strength to tensile

strengthforA5183weldmetalswereslightlylowerthanA5083,inthe

low-cyclefatiguetestsfatiguelivesforA5183weldmetalswere

slight-lyshorterthanthoseforA5083.Jangetal.[29]analysedtheeffectsof

microstructureandresidualstressonfatiguecrackgrowthofstainless

steelnarrowgapweldsandreportedthatthefatiguecrackgrowthrate

depended onbothdendrite alignment andresidualstressdistribution

intheweld,sothefatiguecrackgrowthrateswerethehighestnearthe

boundary between theinner weld deposit andthe outer weld deposit,

where the dendrites were well aligned and the high tensile residual

stressexisted.Tabanetal.[30]analysedthelaserweldingofmodified

12%Crstainlesssteel,regardingstrength,fatigue,toughness,

micro-structure,and corrosion properties,andreported thatfatigue

behav-iour ofclean1.4003ferritic stainlesssteelweldis excellentprovided

welddefectsareomittedandallexcessofweldmetalisremoved

appro-priately or atleast the transition from weld tobase metalis suitably

smoothened. Under these conditions, the fatigue strength of butt

weldsiscomparablewiththatofthebasemetal.Themajorwithdrawal

ofthestainlesssteelisthetendencytograincoarseningattheHTHAZ.

Inthisstudy,thefatiguestrength ofAISI430—304stainlesssteels

weldedbyCO2 laserbeamweldingisinvestigated.

2.EXPERIMENTAL

AISI430steelscompriseapproximatelyone-halfoftheSAE-AISItype

400seriesstainlesssteels.Theyare knownwiththeirexcellentstress

corrosion crackingresistanceandgoodresistancetopittingand

crev-ice corrosion in chlorine environments. Welding is known to reduce

toughness, ductility and corrosion resistance because of the grain

coarsening and carbide precipitations. The grain size gradually

in-creases from the edge of Heat Effected Zone (HAZ) to the fusion

(6)

post-weld heattreatmenttominimizestressthatcanleadtocracking[31].

AISI304steelscompriseapproximatelyone-halfoftheSAE-AISItype

300seriesstainlesssteels.Theyare knownwiththeirexcellentstress

corrosion crackingresistanceandgoodresistancetopittingand

crev-ice corrosion in chlorine environments. Austenitic-stainless steel is

preferredmorethanotherstainless-steeltypesduetoeasinessin

weld-ing process. Then, somenegative metallurgic changes are taken into

consideration in welding of the steels. These are delta ferrite phase,

sigma phase, stress-corrosion cracking, chrome-carbide precipitate

betweengrainboundariesat450—850CofCr—Niausteniticsteelssuch

as18/8joinedbyfusionweldinginlongwaitingtime.Weldingof300

series usually requirespreheatandpost-weldheat treatmentto

mini-mize stress that canleadtocracking [32,33].Thechemical

composi-tions,mechanicalpropertiesandphysicalpropertiesofbothsteelsare

giveninTables1,2,and3,respectively.

Steel plates to be joined were cut at 45904 mm3 dimensions. 45

mmwidthisselectedtoachievethestandardlengthof90mmfatigue

TABLE1.ChemicalcompositionofAISI430ferriticstainlesssteelandAISI

304austeniticstainlesssteel.

Weight(%)Composition

Materials Fe C Si Mn P S Cr Ni

AISI430 Balance 0.055 0.045 0.420 0.031 0.008 17.0 —

AISI304 Balance 0.08 1.00 2.00 0.045 0.03 20.0 10.0

TABLE2.MechanicalpropertiesofAISI430ferriticstainlesssteelandAISI

304austeniticstainlesssteel.

Materials TensileStrength,

MPa YieldStrength 0.2%(MPa) Elongation, % Microhardness (RockwellB) AISI430 527 316 30 170 AISI304 590 295 55 130—180

TABLE3.PhysicalpropertiesofAISI430ferriticstainlesssteelandAISI304

austeniticstainlesssteel: –thermalexpansioncoefficient(20—800C), –

thermalconductivity(20C),–electricalresistance(20C),E–elastic

mod-ulus(20C).

Materials ,106 ,W/(m·C) ,nm E,kN/mm2

AISI430 13 24 600 225

(7)

test piece. The laser welding experiments were carried under helium

atmosphere with Trumpf Lazercell 1005 laser welding machine at

2000, 2250 and 2500 W heat inputs, 100 cm/min welding speed.

SchematicillustrationofLBWisgiveninFig.1[20].

TheLaserBeamWeldingwascarriedoutunderheliumatmosphere,

2000, 2250 and 2500 W different heat inputs and 100 cm/min

con-stantweldingspeed.Theweldedspecimenswerecutperpendicularlyto

theweldingzoneforpostevaluationsofweldintegrity.Afterthe

pro-cess,thesamplesweregroundtoan80—1200-gritandetchedby

polish-ingthemwith0.3mAl2O3 diamondpasteandaquaregion,

respective-ly. For microstructural examination, AISI 430 material was etched

electrolyticallyinasolutionof30%HCl10%HNO3 30%H2O

solu-tionandAISI304materialwasetchedelectrolyticallyinasolutionof

50%HNO3 50%H2O solution. Then, the microstructures of welds

were studied by means of scanning electron microscopy (SEM)

equipped with energy depressive spectrometer (EDS). XRD analysis

wasperformedtoidentifythestructuralphases.

Bendingfatiguetestswereconductedusingasinusoidalloadof

fre-quency50HzandloadratioR1,atroomtemperature,considering

asfatiguestrength(Fig.2).Sixgroupsoffatiguespecimenswere

pre-pared toobtainS—Ncurves. Theweldedinterfacewasthencut

longi-tudinallyforinvestigation ofthestructuralproperties (Fig.3).

Frac-tography was also employed in evaluation of the fractured fatigue

specimens.

3.RESULTSANDDISCUSSIONS

3.1.Microstructure

SEM imagesofwelded jointsunder heliumatmosphereat2000,2250

and 2500 W heat inputs and at 100cm/minconstant welding speeds

(8)

are presented inFigs. 4, a—c, respectively. Grain coarsening was

ob-served atHAZatbothsidesofweldinterfaceandfinecracks wereno

tracedatAISI430ferriticstainlessand AISI304austeniticstainless

steel side. Naturally, thearea ofweld (width) and heat-affected zone

haveincreasedatincreasedpowersbecauseofhighheatinputatweld

seam.SimilarresultswereachievedattheresearchofKaraaslanetal.

andKönigetal.[31,36].

ItwasdeterminedthatinthejointofAISI430ferriticstainlessand

AISI304austeniticstainlesssteelsampleswithlaserbeamweldingat

2500W weldingpower,at100cm/min weldingspeed,and under

heli-um shielding gas atmospheres, the penetration was completed and

blanksorporositiesintheweldwerenotobserved.Ahomogeneous

dis-persionwith smallgrainsbeginningfromthezonewithcoarse grains

on both sides appropriate for the original structure of the materials

wasalsoobserved.GraincoarseningwasobservedatHAZatbothsides

Fig. 2.Schematicillustration of fatigue test apparatus [34].

(9)

ofweldinterfaceatAISI430ferriticandAISI304austeniticstainless

steels sideat200—300mdistances. Ingeneral, coefficientof

ther-malexpansionofausteniticstainlesssteelishigherthanthatof

ferrit-ic stainlesssteel. Therefore, onbothsides oftheweldingseam, there

wasnoaspecificgrainhypertrophy,deformationandcrackformation

onthemainmaterials.TheSEMphotographsindicatethat

microstruc-tural features are affected significantly by welding power. The best

propertieswereobservedatthespecimensweldedat2500Wheatinput

andat100cm/minweldingspeed.

3.2.FatigueTest

Fatigue fractures, plastic deformation, tensile stress and fatigue

cy-cledstressesalsooccurbytheaction.Therefore,astoavoidthe

occur-renceofthesethreefactors,fatiguecrackswillnotoccur.Undera

giv-enappliedstressamplitudecycles,theinitiationofcracksinthe

mate-rial deformation and the tensile stress occurring in intermittent

Fig.4.SEMimagesofweldedsamplesjoinedatheatinput:2000W(a),2250

(10)

treatment is effective intheprogression ofcracks. Therefore,one of

the mainfactors affectingfatigue mechanismis plasticdeformation.

Figure 5shows fatigue test results forlaser beam welded joints.

Ac-cording to the fatigue test results, the fatigue endurance increased

withincreasingtheweldingpower.AISI430—304/2500Wjoint

exhib-itedbetterfatiguedatafromotherweldedjointtypes.Fatiguetestwas

conductedunderyieldstresses.

3.3.Fractography

Plastic deformation detected in the specimens after the welding was

notobserved.Thisbehaviourcanalsobeseeninthemicrographsofthe

fracturedsurfaces (Figs.6,a—c).Atfatigue strengthtests, fractures

were observedatAISI430sideclose tointerface.Afterwelding, itis

seenthatfatigueendurancecanbeincreasedwithincreasingthe

weld-ingpower,mainlyinbrittlefracturemannerbecauseAISI430steelis

a brittlesteel (Figs.6, a—c).Under givenconditions(2000, 2250and

2500 W heat inputs, 100 cm/min welding speed) fatigue strengths

Fig.5.Fatiguetestresultsforweldedjoints.

Fig.6.Micrographsofthefatiguefracturesurfacesofthespecimensobserved

(11)

wereclosetoparentmaterial,andslightlyincreasedatincreased

weld-ingpowers.

Thiscanbeexplainedwiththeincreasedheatinput.Thediffusionof

carbon toAISI430sidecauses totheformationofchromiumcarbide

precipitation atthegrainboundaries,whichare knowntobe

deleteri-oustothefatiguelifeofmaterial.Thecarbidesatthegrainboundaries

provide preferential sites for cavity nucleation in ferritic stainless

steels under fatigue conditions, thereby reducing the fatigue life [5,

20].

3.4.EDSAnalysis

IntheEDSanalysis,inthe200mdistance,fromAISI304austenitic

stainless steel to AISI 430 ferritic stainless steel 16% Chromium,

1.5% Carbon and 1% Nickel diffusion, the equal distance occurred

fromAISI430steeltoAISI304steelchromiumandcarbondiffusion.

As carbon is an interstitial element, stainless steel side will diffuse

more easily. It is seen that chromium—nickel diffusion can be

de-creasedbydecreasingtheweldingpower(Fig.7).

IntheXRDanalysis,likeFe, Ni—Cr—Fe,Fe—Cr—Co—Ni—Mo—Wand

Cr2Fe6.7Mo0.1Ni1.3Si0.3 phases were determined (Fig. 8). Intermetallic

phaselikeCr23C6 (chromium carbur),-ferriteand sigmawere not

ob-served.

4.CONCLUSIONS

In this study, the fatigue strength of AISI 430—304 stainless steels

weldedby CO2 laserbeamweldingwasinvestigated.Thefollowing

re-sultswereobtained.

— AISI430ferritic stainless steelcan bejoinedwithAISI 304

aus-tenitic stainless steel by laser welding process using helium

atmos-phere, at 2000, 2250 and 2500 W heat inputs, and 100 cm/min

con-stantweldingspeed.

— Atfatigue tests, fractureswere observed close toAISI 430side.

Afterwelding,itwasseenthatfatigueendurancedecreasedduetothe

decreasing oftheweldingpower. Thisis causedby thefactthat AISI

430 is brittlesteel.However,fatigue endurance increaseddueto the

increasingtheheatinput.

—Thefatiguestrengthincreasesduetohigherdeeppenetrationwith

increasing welding power. The best properties were observed at the

specimens welded at 2500 W heat input and at100 cm/min welding

speed.

— It was determined that the fusion zone was on average 1000—

(12)

mindepth.

— Coefficient of thermal expansion of austenitic stainless steel is

higherthanthatofferriticstainlesssteel.Therefore,onbothsidesof

the welding seam, there was no specific grain hypertrophy,

defor-mationandcrackformationonthemainmaterials.Thebestproperties

in terms of microstructure were observedat the specimen bonded at

2500 Wheatinput,at100cm/min.weldingspeedandhelium

(13)

inggas.

—IntheEDSanalysis,inthe200mdistancefromAISI304

austen-iticstainless steeltoAISI430ferriticstainless steel16%chromium,

1.5% carbon and 1% Nickel diffusion, the equal distance occurred

fromAISI430steeltoAISI304steelchromiumandcarbondiffusion.

As carbon is an interstitial element, stainless steel side will diffuse

more easily. It is seen that chromium—nickel diffusion can be

de-creasedbydecreasingtheweldingpower.

— In the XRD analysis, like Fe, Ni—Cr—Fe, Fe—Cr—Co—Ni—Mo—W,

andCr2Fe6.7Mo0.1Ni1.3Si0.3 phasesweredetermined(Fig.8).

Intermetal-lic phaselikeCr23C6 (chromium carbur),-ferriteand sigmawere not

observed.

ACKNOWLEDGEMENTS

The research was supported by the Scientific and Technological

Re-search Council of Turkey (Project No: TUBITAK-108M401 and

FUBAP:1566).

REFERENCES

1. L.Yi-ChunandY.Ming-Huei,J.Mater.Process.Technol.,190:102(2007). 2. M.Taskin,S.Ozan,andS.Kolukisa,PracticalMetallography,43:293(2006). 3. S.Ozan,M.Taskin,andS.Kolukisa,PracticalMetallography,43:575(2006). 4. A.Hascalik,E.Unal,andN.Ozdemir,J.Mater.Sci.,41:3233(2006).

5. U.Caligulu,H.Dikbas,andM.Taskin,GaziUniversityJ.Sci.,25:35(2012). 6. P.HussainandA.Isnin,J.Mater.Process.Technol.,113:222(2001).

7. C.-C.Hsieh,D.-Y.Lin,M.-C.Chen,andW.Wu,Mater.Sci.Eng.A,477:328 (2008).

(14)

8. W.ErtleandR.J.Rockwell,TheFabricator(May15,2001).

9. B.S.Yilbas,M.Sami,J.Nickel,A.Coban,andS.A.M.Said,J.Mater.Process.

Technol.,82:13(1998).

10. B.S.Yilbas,S.Z.Shuja,A.Arif,andM.A.Gondal,J.Mater.Process.Technol.,

135:6(2003).

11. B.S.Yilbas,J.Mater.Process.Technol.,70:264(1997).

12. E.Bayraktar,D.Kaplan,andB.S.Yilbas,J.Mater.Process.Technol.,204:440 (2008).

13. H.GuoMing,Z.Jian,andL.JianQang,Mater.Design,28:240(2007). 14. K.Y.Benyounis,A.G.Olabi,andM.S.J.Hashmi,J.Mater.Process.Technol.,

164—165:978(2005).

15. Y.CuiandC.D.Lundin,Mater.Letters,59:2942(2005).

16. M.VuralandA.Akkus,J.Mater.Process.Technol.,153—154:1(2004). 17. S.Y.Sirin,K.Sirin,andE.Kaluc,Mater.Characterization,59:351(2008). 18. L.W.Tsay,M.C.Young,andC.Chen,CorrosionSci.,45:1985(2003). 19. A.-M.El-Batahgy,Mater.Letters,32:155(1997).

20. M.Taskin,U.Caligulu,andS.Kolukisa,PracticalMetallography,46:598 (2009).

21. U.Caligulu,M.Taskin,H.Dikbas,andA.K.Gur,1stIntern.Conferenceon

WeldingTechnologies(June11—13,2009)(Ankara:GaziUniversity:2009),

p.674.

22. F.Curcio,G.Daurelio,F.M.C.Minutolo,andF.Caiazzo,J.Mater.Process.

Technol.,175:83(2006).

23. A.Zambon,P.Ferro,andF.Bonollo,Mater.Sci.Eng.A,424:117(2006). 24. P.Bertrand,I.Smurov,andG.Grevey,Appl.Surf.Sci.,No.168(2000). 25. A.-M.El-Batahgy,Mater.Lett.,32:155(1997).

26. F.M.Ghaini,M.J.Hamedi,M.J.Torkamany,andJ.Sabbaghzadeh,

Scr.Mater.,56:955(2007).

27. M.Vural,A.Akkus,andB.Eryurek,J.Mater.Process.Technol.,176:127 (2006).

28. T.Yuri,T.Ogata,M.Saito,andY.Hirayama,Cryogenics,41:475(2001). 29. C.Jang,P.-Y.Cho,M.Kim,S.-J.Oh,andJ.-S.Yang,Mater.Design,31:1862

(2010).

30. E.Taban,E.Deleu,A.Dhooge,andE.Kaluc,Mater.Design,30:1193(2009). 31. A.Karaaslan,N.Sonmez,andA.Topuz,2ndIntern.WeldingTechnol.

Conference(June,1998,Istanbul,Turkey)(inTurkish).

32. M.Sahin,Mater.Design,28:2244(2007).

33. M.SahinandH.E.Akata,Indust.LubricateTribol.,No.56:2(2004).

34. A.Sik,FatigueTestMachine,Patent2008/04670(GaziUniversity,Facultyof Architecture,DepartmentofIndustrialDesign,Ankara,Turkey:2008)(in Turkish).

35. E.S.Kayali,C.Ensari,andF.Dikec,MetalikMalzemelerinMekanikDeneyleri

(ITULibrary:1983)(inTurkish).

36. R.KonigandN.Otmanboluk,2ndIntern.WeldingTechnol.Conference(June,

References

Related documents

Microwave imagery at frequencies of 19.35 GHz and 85.5 GHz are used to define convective and stratiform cloud areal amounts, percent coverage, and time-integrated rain rates..

Table 1: Linerar Model Feature Analysis ...19 Table 2: Percentage variance captured using PCA for different rock formations ...36 Table 3: Summary of ROP prediction using

The absolute growth and daily growth rate of juvenile milkfish that were increased in all treatments showed that life feed grown had been useful for the

First Experience in Management of Coronavirus Disease 2019 (COVID-19) in Kidney Transplant Patient – Case Report.. Galina Severova 1 *, Igor Nikolov 1 , Lada Trajceska 1 ,

In many SDN deploy- ments, the controllers run distributed protocols (e.g., dis- tributed consensus protocols such as Paxos [14]) to en- sure they have a consistent view of

Students who miss an exam and wish to write a make-up must contact the professor within 24 hours after the exam and must provide proper documentation for a reasonable

The Excel Add-In consists of a custom ribbon for the user interface, a change event model, and a component for handling user interface events (e.g. button clicks). When the tool is