• No results found

Crystal structure of catena poly[[[tri­aqua­(4 cyano­benzoato κO)nickel(II)] μ 4,4′ bi­pyridine κ2N:N′] 4 cyano­benzoate]

N/A
N/A
Protected

Academic year: 2020

Share "Crystal structure of catena poly[[[tri­aqua­(4 cyano­benzoato κO)nickel(II)] μ 4,4′ bi­pyridine κ2N:N′] 4 cyano­benzoate]"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Crystal structure of

catena

-poly[[[tri-aqua(4-cyanobenzoato-

j

O

)nickel(II)]-

l

-4,4

000

-bipyridine-

j

2

N

:

N

000

] 4-cyanobenzoate]

Alfredo A. Morales-Tapia,aRau´l Colorado-Peralta,a Ange´lica M. Duarte-Herna´ndez,bAngelina Flores-Parrab and Jose´ Marı´a Riveraa*

a

Facultad de Ciencias Quı´micas, Universidad Veracruzana, Prolongacio´n Oriente 6, No. 1009, Colonia Rafael Alvarado, CP 94340, Orizaba, Veracruz, Mexico, and

b

Departamento de Quı´mica, Centro de Investigacio´n y de Estudios Avanzados del Instituto Polite´cnico Nacional, CP 07360, Me´xico, D.F., Mexico. *Correspondence e-mail: chemax7@yahoo.com.mx

Received 23 September 2015; accepted 30 September 2015

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

In the title polymeric complex salt, {[Ni(C8H4NO2

)-(C10H8N2)(H2O)3](C8H4NO2)}n, the Ni II

cation is coordinated by a 4-cyanobenzoate anion, two 4,40-bipyridine ligands and

three water molecules in a distorted N2O4 octahedral

geometry. The 4,40-bipyridine ligands bridge the NiII

cations to form polymeric chains of the title complex cations, propagating along the c-axis direction. The dihedral angle between the pyridine rings of the 4,40-bipyridine ligand is 24.9 (6). In the crystal, the uncoordinating 4-cyanobenzoate

anions link with the complex cationsviaO—H O hydrogen bonds into a three-dimensional supramolecular architecture. Weak C—H O, C—H N interactions and – stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) A˚ ] are also observed in the crystal.

Keywords:crystal structure; nickel(II); 4-cyanobenzoate; 4,40-bipyridine; polymeric complex salt; hydrogen bonding;–stacking.

CCDC reference:1428986

1. Related literature

For polymer structures reported with monodentate 4-cyano-benzoate and 4,40-bipyridyl ligands coordinating to cobalt(II)

and copper(II), see: Heet al.(2003); He & Zhu (2003). For metal–organic structures with monodentate benzoato and 4,40

-bipyridyl ligands coordinating to nickel(II), see: Biradhaet al. (1999); Songet al.(2009). For potential applications of the title compound, see: Pen˜a-Rodrı´guez et al. (2014); Song et al. (2009).

2. Experimental

2.1. Crystal data

[Ni(C8H4NO2)(C10H8N2)(H2O)3

]-(C8H4NO2)

Mr= 561.19

Monoclinic,P21=c

a= 7.176 (5) A˚

b= 21.373 (9) A˚

c= 17.032 (9) A˚

= 110.32 (3)

V= 2450 (2) A˚3

Z= 4

MoKradiation

= 0.85 mm1

T= 293 K

0.100.050.05 mm

2.2. Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan

(Northet al., 1968)

Tmin= 0.872,Tmax= 0.969

19002 measured reflections 5632 independent reflections 2419 reflections withI> 2(I)

Rint= 0.143

2.3. Refinement

R[F2> 2(F2)] = 0.062

wR(F2) = 0.126

S= 0.97 5632 reflections 367 parameters 6 restraints

H atoms treated by a mixture of independent and constrained refinement

max= 0.38 e A˚

3 min=0.38 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1A O3i

0.85 (1) 1.88 (1) 2.715 (5) 167 (4)

O1—H1B O2 0.84 (4) 2.09 (4) 2.882 (5) 156 (4)

O7—H7A O2i

0.84 (2) 1.94 (2) 2.777 (5) 172 (4)

O7—H7B O3 0.83 (7) 1.97 (7) 2.761 (5) 157 (8)

O8—H8A O2ii

0.85 (5) 2.07 (5) 2.901 (5) 165 (6)

O8—H8B O4 0.84 (4) 1.81 (5) 2.619 (5) 162 (7)

C32—H32 N1iii

0.93 2.43 3.121 (8) 131

C35—H35 O4iv

0.93 2.42 3.234 (7) 146

Symmetry codes: (i)xþ2;yþ1;zþ1; (ii)x1;y;z; (iii)xþ2;yþ1 2;zþ

1 2; (iv)xþ1;y;z.

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:SHELXL97(Sheldrick, 2008);

data reports

Acta Cryst.(2015).E71, m197–m198 doi:10.1107/S2056989015018344 Morales-Tapiaet al.

m197

(2)

molecular graphics:Mercury(Macraeet al., 2006); software used to prepare material for publication:WinGX(Farrugia, 2012),enCIFer (Allenet al., 2004) andpublCIF(Westrip, 2010).

Acknowledgements

The authors acknowledge financial support from Universidad Veracruzana and the Centro de Investigacio´n y de Estudios Avanzados.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5875).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004).J. Appl. Cryst.37, 335–338.

Biradha, K., Seward, C. & Zaworotko, M. J. (1999).Angew. Chem. Int. Ed.38, 492–495.

Bruker (2004).COLLECT.Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (2012).J. Appl. Cryst.45, 849–854.

He, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003).Acta Cryst.E59, m333–m335. He, H.-Y. & Zhu, L.-G. (2003).Acta Cryst.E59, o174–o176.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006).J. Appl. Cryst.39, 453–457. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pen˜a-Rodrı´guez, R., Rivera, J. M., Colorado-Peralta, R., Duarte-Herna´ndez, A. M. & Flores-Parra, A. (2014).Acta Cryst.E70, m21–m22.

Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

(3)

supporting information

sup-1 Acta Cryst. (2015). E71, m197–m198

supporting information

Acta Cryst. (2015). E71, m197–m198 [https://doi.org/10.1107/S2056989015018344]

Crystal structure of

catena

-poly[[[triaqua(4-cyanobenzoato-

κ

O

)nickel(II)]-µ

-4,4

-bipyridine-

κ

2

N

:

N

] 4-cyanobenzoate]

Alfredo A. Morales-Tapia, Ra

ú

l Colorado-Peralta, Ang

é

lica M. Duarte-Hern

á

ndez, Angelina

Flores-Parra and Jos

é

Mar

í

a Rivera

S1. Comment

The design of metal-organic frameworks is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Peña-Rodríguez et al., 2014; Song et al. 2009). In the field of crystal engineering, 4,4′-bipyridine has been extensively used to construct novel one-, two-, and three dimensional coordination polymers with potential applications as functional materials. The combination of 4,4′-bipyridine and carb-oxylic acid is largely directed toward interesting topologies (Biradha et al. 1999). 4-cyanobenzoic acid has been used to develop fluorescent materials (He & Zhu 2003a,b).

4,4′-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic frameworks due to its various coordinative modes with metal ions. Currently all the metal-organic coordination compounds obtained with cyanobenzoic acid and 4,4′-bipyridine contain the cyanobenzoato group as mono- or bidentate ligand, the title compound is the first example of a polymeric structure with cyanobenzoate as a counter ion.

The title compound is a nickel(II) polymeric complex cation (Fig. 1) together with four cyanobenzoate counter ions in the unit cell. Each nickel(II) ion displays a distorted octahedral coordination geometry being surrounded by three O -donor molecules of water, one O-donor molecule of 4-cyanobenzoato and two N-donor molecules trans-disposed of 4,4′-bipyridyl. The dihedral angle between the aromatic rings of the 4,4′-bipyridine ligand is 24.9 (6)° (ligand containing N3 and N4).

In the crystal, the uncoordinate 4-cyanobenzoate anions link with the complex cations via O—H···O hydrogen bonds into the three dimensional supramolecular architecture. Weak C—H···O, C—H···N and π-π stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.

S2. Experimental

(4)

S3. Refinement

The water H atoms were located in a difference Fourier map and refined with a distance restraint O—H = 0.84 Å, Uiso(H)

= 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model approximation with distance

[image:4.610.136.476.142.361.2]

C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Figure 1

The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are omitted for clarity.

catena-Poly[[[triaqua(4-cyanobenzoato-κO)nickel(II)]-µ-4,4′-bipyridine-κ2N:N′] 4-cyanobenzoate]

Crystal data

[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2)

Mr = 561.19

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 7.176 (5) Å

b = 21.373 (9) Å

c = 17.032 (9) Å

β = 110.32 (3)°

V = 2450 (2) Å3

Z = 4

F(000) = 1160

Dx = 1.521 Mg m−3

Melting point: 350 K

Mo radiation, λ = 0.71073 Å Cell parameters from 10938 reflections

θ = 2.9–27.5°

µ = 0.85 mm−1

T = 293 K Needle, blue

0.1 × 0.05 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: Enraf Nonius FR590 Graphite monochromator

Detector resolution: 9 pixels mm-1

CCD rotation images, thick slices scans Absorption correction: multi-scan

(North et al., 1968)

Tmin = 0.872, Tmax = 0.969

19002 measured reflections 5632 independent reflections 2419 reflections with I > 2σ(I)

Rint = 0.143

θmax = 27.6°, θmin = 3.2°

h = −9→9

k = −27→24

(5)

supporting information

sup-3 Acta Cryst. (2015). E71, m197–m198

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.062

wR(F2) = 0.126

S = 0.97 5632 reflections 367 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0333P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.38 e Å−3

Δρmin = −0.38 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.8802 (7) 0.3998 (2) −0.0400 (3) 0.0443 (13) C9 0.7907 (7) 0.42600 (19) 0.0174 (3) 0.0360 (11) C10 0.8269 (7) 0.48622 (18) 0.1392 (3) 0.0353 (12)

H10 0.9042 0.5118 0.1824 0.042*

C12 0.5875 (7) 0.73382 (18) 0.1336 (3) 0.0317 (11) C16 0.6335 (7) 0.47103 (18) 0.1338 (3) 0.0318 (11) C17 0.5189 (7) 0.43439 (19) 0.0674 (3) 0.0386 (12)

H17 0.3888 0.4248 0.0623 0.046*

C20 0.4377 (7) 0.68161 (19) 0.2211 (3) 0.0400 (12)

H20 0.3264 0.6758 0.2363 0.048*

C21 0.4258 (7) 0.72438 (18) 0.1591 (3) 0.0362 (11)

H21 0.3094 0.747 0.1343 0.043*

C22 0.7544 (7) 0.69861 (19) 0.1740 (3) 0.0393 (12)

H22 0.8665 0.703 0.159 0.047*

C25 0.5952 (7) 0.41170 (19) 0.0083 (3) 0.0407 (12)

H25 0.5172 0.3875 −0.0365 0.049*

C26 0.4655 (7) 0.63031 (18) 0.4810 (3) 0.0367 (12)

H26 0.3831 0.5954 0.4691 0.044*

C28 0.7576 (7) 0.65723 (19) 0.2359 (3) 0.0411 (12)

H28 0.8733 0.6346 0.2621 0.049*

C30 0.5515 (8) 0.49599 (19) 0.1980 (3) 0.0346 (11) C32 0.6965 (8) 0.6908 (2) 0.4545 (3) 0.0463 (14)

H32 0.779 0.6986 0.4239 0.056*

(6)

H35 1.033 0.4738 0.0852 0.046* C40 0.4596 (7) 0.67016 (18) 0.5451 (3) 0.0369 (12)

H40 0.3754 0.6615 0.5747 0.044*

C41 0.6984 (8) 0.7328 (2) 0.5164 (3) 0.0472 (14)

H41 0.7795 0.768 0.5261 0.057*

C42 0.5795 (7) 0.77749 (18) 0.0643 (3) 0.0333 (11) N2 0.9595 (7) 0.3780 (2) −0.0811 (3) 0.0675 (14) N3 0.5819 (6) 0.63939 (14) 0.4361 (2) 0.0325 (9) N4 0.6007 (6) 0.64792 (14) 0.2606 (2) 0.0309 (9) O1 0.9251 (5) 0.58567 (15) 0.40016 (19) 0.0365 (8) O4 0.3679 (6) 0.49516 (16) 0.1789 (2) 0.0592 (10) O5 0.6741 (4) 0.51639 (12) 0.26558 (18) 0.0354 (8) O7 0.6401 (5) 0.50203 (15) 0.4306 (2) 0.0378 (8) O8 0.3102 (5) 0.55901 (15) 0.2997 (2) 0.0384 (8) Ni1 0.61430 (9) 0.57627 (2) 0.34785 (3) 0.02972 (18) C13 0.9693 (8) 0.3155 (2) 0.1751 (3) 0.0431 (13) C15 1.0418 (7) 0.4313 (2) 0.3870 (3) 0.0391 (12) C19 1.1431 (8) 0.3493 (2) 0.2086 (3) 0.0467 (13)

H19 1.2423 0.3469 0.1853 0.056*

C23 1.0206 (8) 0.3895 (2) 0.3140 (3) 0.0392 (12) C27 0.8511 (8) 0.3536 (2) 0.2800 (3) 0.0495 (14)

H27 0.7541 0.3541 0.3046 0.059*

C29 0.8237 (8) 0.3171 (2) 0.2105 (3) 0.0530 (14)

H29 0.708 0.2938 0.1876 0.064*

C31 0.9341 (8) 0.2797 (2) 0.0993 (3) 0.0526 (14) C36 1.1666 (7) 0.3871 (2) 0.2782 (3) 0.0431 (12)

H36 1.2813 0.411 0.3007 0.052*

N1 0.9046 (7) 0.2533 (2) 0.0379 (3) 0.0686 (14) O2 1.1613 (5) 0.47669 (14) 0.39992 (19) 0.0476 (9) O3 0.9334 (5) 0.41867 (13) 0.42993 (18) 0.0440 (8) H1A 0.963 (6) 0.5900 (19) 0.4528 (7) 0.048 (15)* H1B 0.974 (7) 0.5543 (14) 0.385 (3) 0.065 (18)* H7A 0.691 (6) 0.5104 (19) 0.4819 (9) 0.048 (15)* H7B 0.716 (9) 0.479 (3) 0.416 (5) 0.16 (3)* H8A 0.287 (9) 0.536 (2) 0.336 (3) 0.10 (2)* H8B 0.303 (10) 0.537 (2) 0.258 (2) 0.11 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-5 Acta Cryst. (2015). E71, m197–m198

C22 0.041 (3) 0.047 (3) 0.035 (3) 0.003 (2) 0.020 (3) 0.007 (2) C25 0.046 (4) 0.039 (3) 0.034 (3) −0.004 (2) 0.010 (3) −0.013 (2) C26 0.044 (3) 0.030 (2) 0.040 (3) −0.009 (2) 0.019 (3) −0.004 (2) C28 0.038 (3) 0.045 (3) 0.039 (3) 0.006 (2) 0.012 (3) 0.008 (2) C30 0.032 (3) 0.040 (3) 0.034 (3) −0.002 (2) 0.015 (3) 0.000 (2) C32 0.059 (4) 0.046 (3) 0.046 (3) −0.019 (3) 0.034 (3) −0.014 (2) C35 0.039 (3) 0.043 (3) 0.034 (3) −0.001 (2) 0.013 (3) −0.004 (2) C40 0.041 (3) 0.043 (3) 0.031 (3) −0.006 (2) 0.019 (3) −0.004 (2) C41 0.066 (4) 0.040 (3) 0.045 (3) −0.021 (2) 0.032 (3) −0.013 (2) C42 0.036 (3) 0.030 (2) 0.034 (3) −0.003 (2) 0.011 (2) −0.003 (2) N2 0.075 (4) 0.069 (3) 0.078 (4) −0.002 (3) 0.050 (3) −0.022 (3) N3 0.043 (3) 0.030 (2) 0.028 (2) −0.0065 (18) 0.017 (2) −0.0009 (16) N4 0.038 (3) 0.029 (2) 0.028 (2) −0.0038 (18) 0.014 (2) −0.0007 (16) O1 0.039 (2) 0.042 (2) 0.026 (2) −0.0005 (16) 0.0079 (17) −0.0057 (15) O4 0.042 (3) 0.095 (3) 0.045 (2) −0.013 (2) 0.020 (2) −0.0303 (19) O5 0.036 (2) 0.0409 (17) 0.0245 (18) 0.0034 (14) 0.0047 (16) −0.0058 (14) O7 0.048 (2) 0.0384 (19) 0.028 (2) −0.0040 (17) 0.0141 (19) 0.0000 (15) O8 0.038 (2) 0.047 (2) 0.033 (2) −0.0018 (16) 0.0160 (18) −0.0056 (17) Ni1 0.0363 (4) 0.0297 (3) 0.0249 (3) −0.0020 (3) 0.0128 (3) −0.0014 (3) C13 0.057 (4) 0.035 (3) 0.039 (3) 0.005 (3) 0.018 (3) 0.000 (2) C15 0.041 (3) 0.047 (3) 0.028 (3) 0.012 (3) 0.010 (2) 0.007 (2) C19 0.047 (4) 0.049 (3) 0.050 (3) 0.005 (3) 0.025 (3) 0.000 (3) C23 0.050 (4) 0.041 (3) 0.027 (3) 0.006 (3) 0.014 (3) 0.006 (2) C27 0.057 (4) 0.055 (3) 0.043 (3) −0.011 (3) 0.025 (3) −0.005 (3) C29 0.064 (4) 0.050 (3) 0.044 (3) −0.011 (3) 0.017 (3) −0.007 (2) C31 0.045 (4) 0.057 (3) 0.050 (4) 0.009 (3) 0.009 (3) −0.004 (3) C36 0.040 (4) 0.044 (3) 0.040 (3) 0.004 (2) 0.007 (3) 0.000 (2) N1 0.060 (4) 0.080 (3) 0.064 (3) 0.006 (3) 0.019 (3) −0.027 (3) O2 0.057 (3) 0.051 (2) 0.039 (2) −0.0047 (18) 0.0220 (19) −0.0062 (16) O3 0.051 (2) 0.0528 (19) 0.0325 (18) 0.0030 (17) 0.0202 (17) 0.0022 (15)

Geometric parameters (Å, º)

C1—N2 1.144 (5) C40—H40 0.93

C1—C9 1.455 (6) C41—C42i 1.388 (6)

C9—C35 1.367 (6) C41—H41 0.93

C9—C25 1.391 (6) C42—C40ii 1.379 (5)

C10—C35 1.379 (5) C42—C41ii 1.388 (6)

C10—C16 1.397 (6) N3—Ni1 2.092 (3)

C10—H10 0.93 N4—Ni1 2.113 (3)

C12—C22 1.379 (6) O1—Ni1 2.104 (3)

C12—C21 1.388 (5) O1—H1A 0.846 (10)

C12—C42 1.490 (5) O1—H1B 0.840 (10)

C16—C17 1.387 (6) O5—Ni1 2.050 (3)

C16—C30 1.507 (6) O7—Ni1 2.088 (3)

C17—C25 1.390 (5) O7—H7A 0.840 (10)

C17—H17 0.93 O7—H7B 0.838 (10)

(8)

C20—C21 1.376 (5) O8—H8A 0.842 (10)

C20—H20 0.93 O8—H8B 0.839 (10)

C21—H21 0.93 C13—C29 1.376 (6)

C22—C28 1.370 (5) C13—C19 1.381 (6)

C22—H22 0.93 C13—C31 1.445 (7)

C25—H25 0.93 C15—O2 1.262 (5)

C26—N3 1.329 (5) C15—O3 1.267 (5)

C26—C40 1.397 (5) C15—C23 1.496 (6)

C26—H26 0.93 C19—C36 1.396 (6)

C28—N4 1.346 (5) C19—H19 0.93

C28—H28 0.93 C23—C27 1.384 (6)

C30—O4 1.243 (5) C23—C36 1.384 (6)

C30—O5 1.259 (5) C27—C29 1.373 (6)

C32—N3 1.343 (5) C27—H27 0.93

C32—C41 1.382 (6) C29—H29 0.93

C32—H32 0.93 C31—N1 1.141 (6)

C35—H35 0.93 C36—H36 0.93

C40—C42i 1.379 (6)

N2—C1—C9 176.0 (5) C26—N3—Ni1 124.6 (3) C35—C9—C25 121.1 (4) C32—N3—Ni1 118.9 (3) C35—C9—C1 118.6 (4) C20—N4—C28 116.3 (4) C25—C9—C1 120.3 (4) C20—N4—Ni1 124.2 (3) C35—C10—C16 120.5 (4) C28—N4—Ni1 119.2 (3)

C35—C10—H10 119.7 Ni1—O1—H1A 111 (3)

C16—C10—H10 119.7 Ni1—O1—H1B 107 (4)

C22—C12—C21 116.1 (4) H1A—O1—H1B 114 (4) C22—C12—C42 121.7 (4) C30—O5—Ni1 126.5 (3) C21—C12—C42 122.2 (4) Ni1—O7—H7A 116 (3) C17—C16—C10 118.6 (4) Ni1—O7—H7B 99 (5) C17—C16—C30 121.4 (4) H7A—O7—H7B 110 (6) C10—C16—C30 119.9 (4) Ni1—O8—H8A 105 (4) C16—C17—C25 121.1 (4) Ni1—O8—H8B 100 (5)

C16—C17—H17 119.4 H8A—O8—H8B 108 (5)

C25—C17—H17 119.4 O5—Ni1—O8 93.42 (12)

N4—C20—C21 123.6 (4) O5—Ni1—O7 89.81 (12)

N4—C20—H20 118.2 O8—Ni1—O7 88.07 (13)

C21—C20—H20 118.2 O5—Ni1—N3 174.58 (14) C20—C21—C12 120.1 (4) O8—Ni1—N3 91.99 (14)

C20—C21—H21 120 O7—Ni1—N3 90.62 (13)

C12—C21—H21 120 O5—Ni1—O1 84.62 (12)

C28—C22—C12 121.1 (4) O8—Ni1—O1 175.05 (13)

C28—C22—H22 119.5 O7—Ni1—O1 87.38 (13)

C12—C22—H22 119.5 N3—Ni1—O1 90.01 (14)

C17—C25—C9 118.5 (4) O5—Ni1—N4 86.63 (11)

C17—C25—H25 120.7 O8—Ni1—N4 93.74 (14)

C9—C25—H25 120.7 O7—Ni1—N4 176.10 (14)

(9)

supporting information

sup-7 Acta Cryst. (2015). E71, m197–m198

N3—C26—H26 118.1 O1—Ni1—N4 90.69 (13)

C40—C26—H26 118.1 C29—C13—C19 121.3 (4) N4—C28—C22 122.9 (4) C29—C13—C31 118.7 (5) N4—C28—H28 118.6 C19—C13—C31 119.9 (5)

C22—C28—H28 118.6 O2—C15—O3 125.4 (4)

O4—C30—O5 125.8 (4) O2—C15—C23 118.1 (4) O4—C30—C16 116.8 (4) O3—C15—C23 116.5 (4) O5—C30—C16 117.4 (4) C13—C19—C36 118.6 (4) N3—C32—C41 123.6 (4) C13—C19—H19 120.7

N3—C32—H32 118.2 C36—C19—H19 120.7

C41—C32—H32 118.2 C27—C23—C36 119.0 (4) C9—C35—C10 120.0 (4) C27—C23—C15 120.0 (4)

C9—C35—H35 120 C36—C23—C15 120.9 (4)

C10—C35—H35 120 C29—C27—C23 121.2 (5)

C42i—C40—C26 119.6 (4) C29—C27—H27 119.4

C42i—C40—H40 120.2 C23—C27—H27 119.4

C26—C40—H40 120.2 C27—C29—C13 119.2 (5) C32—C41—C42i 120.0 (4) C27—C29—H29 120.4

C32—C41—H41 120 C13—C29—H29 120.4

C42i—C41—H41 120 N1—C31—C13 177.6 (6)

C40ii—C42—C41ii 116.7 (4) C23—C36—C19 120.6 (5)

C40ii—C42—C12 123.0 (4) C23—C36—H36 119.7

C41ii—C42—C12 120.2 (4) C19—C36—H36 119.7

C26—N3—C32 116.2 (4)

(10)

N3—C32—C41—C42i 0.9 (8) C29—C13—C19—C36 −2.0 (7)

C22—C12—C42—C40ii −153.1 (4) C31—C13—C19—C36 175.3 (4)

C21—C12—C42—C40ii 29.4 (6) O2—C15—C23—C27 −158.1 (4)

C22—C12—C42—C41ii 25.7 (6) O3—C15—C23—C27 20.4 (6)

C21—C12—C42—C41ii −151.8 (4) O2—C15—C23—C36 20.3 (6)

C40—C26—N3—C32 −0.9 (7) O3—C15—C23—C36 −161.2 (4) C40—C26—N3—Ni1 173.8 (3) C36—C23—C27—C29 −1.7 (7) C41—C32—N3—C26 0.4 (7) C15—C23—C27—C29 176.8 (4) C41—C32—N3—Ni1 −174.6 (4) C23—C27—C29—C13 1.2 (8) C21—C20—N4—C28 −0.7 (6) C19—C13—C29—C27 0.6 (7) C21—C20—N4—Ni1 −174.2 (3) C31—C13—C29—C27 −176.7 (5) C22—C28—N4—C20 0.0 (6) C29—C13—C31—N1 100 (14) C22—C28—N4—Ni1 173.8 (3) C19—C13—C31—N1 −77 (14) O4—C30—O5—Ni1 −19.4 (6) C27—C23—C36—C19 0.3 (7) C16—C30—O5—Ni1 159.8 (3) C15—C23—C36—C19 −178.2 (4) C30—O5—Ni1—O8 18.3 (3) C13—C19—C36—C23 1.5 (7) C30—O5—Ni1—O7 106.3 (3)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1A···O3iii 0.85 (1) 1.88 (1) 2.715 (5) 167 (4)

O1—H1B···O2 0.84 (4) 2.09 (4) 2.882 (5) 156 (4) O7—H7A···O2iii 0.84 (2) 1.94 (2) 2.777 (5) 172 (4)

O7—H7B···O3 0.83 (7) 1.97 (7) 2.761 (5) 157 (8) O8—H8A···O2iv 0.85 (5) 2.07 (5) 2.901 (5) 165 (6)

O8—H8B···O4 0.84 (4) 1.81 (5) 2.619 (5) 162 (7) C32—H32···N1v 0.93 2.43 3.121 (8) 131

C35—H35···O4vi 0.93 2.42 3.234 (7) 146

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004).J. 492–495. Bruker (2004).COLLECT. 45, 849–854. He, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003).Acta Cryst. He, H.-Y. & Zhu, L.-G. (2003).Acta Cryst. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,R., Towler, M. & van de Streek, J. (2006). North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst. Otwinowski, Z. & Minor, W. (1997).Methods in Enzymology Pen˜a-Rodrı´guez, R., Rivera, J. M., Colorado-Peralta, R., Duarte-Herna´ndez,A. M. & Flores-Parra, A. (2014). Sheldrick, G. M. (2008).Acta Cryst. Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y.,Yu, S. M., Kim, C., Kim, S. J. & Kim, Y. (2009). 43, 920–925.

Figure

Figure 1The molecular structure of the title compound, showing the atom-labelling scheme

References

Related documents

A process was developed to identify potential defects in previous layers of Selective Laser Melting (SLM) Powder Bed Fusion (PBF) 3D printed metal parts using a mid-IR thermal camera

The aim of this paper was to explore the effects on the French forest sector of three policies to mitigate climate change: a fuelwood consumption subsidy (substitution), a payment

Make  changes  to  section  on  agreements  to   reflect  emphasis  of  agreements  in  new

potential photonics-related research and innovation topics as input to the Societal Challenges work programme or for joint programme activities.?. Aim of the

q w e r t y Description Rod cover Head cover Cylinder tube Piston rod Piston Bushing Cushion valve Snap ring Tie rod Tie rod nut Wear rod Rod end nut Back up O ring Rod seal Piston

Electron micrographs of mannonamide aggregates from water (a-e) or xylene (f): (a and b) details of aged fiber aggregates of D-mannonamide 2 negatively stained

The testimony of the State Department employee was brought to public hearings in hope that he turned out to be a communist, showing that even in a case potentially dealing

A ft er pro fi le creation, the data (network packets) obtained from that virtual machine is looked for attacks whose signatures are present in VM pro fi le database and match them