• No results found

Olazipinium nicotinate

N/A
N/A
Protected

Academic year: 2020

Share "Olazipinium nicotinate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Olazipinium nicotinate

K. Ravikumar,a* G. Y. S. K. Swamy,aB. Sridharaand S. Roopab

aLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, andbBioinformatics Programme, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: ravikumar_iict@yahoo.co.in

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.063

wRfactor = 0.141

Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The crystal structure of the title compound, C17H21N4S +

-C6H4NO2

, [systematic name: 1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4-yl)hexahydropyrazin-1-ium nicotinate] is reported. The central seven-membered hetero-cycle is in a boat conformation, while the piperazine ring displays a chair conformation with its methyl group oriented equatorially. The coulombic interaction between olanzapi-nium and nicotinate ions is supplemented by intra- and intermolecular N—H O hydrogen bonds, forming infinite chains along thecaxis.

Comment

Olanzapine, the pharmaceutically active component of the title compound, a thienobenzodiazepine derivative, along with clozapine, quetiapine, risperidone and ziprasidone, belongs to the newer generation of atypical antipsychotic agents (Chak-rabartiet al., 1980; Callaghanet al., 1999; Kennedyet al., 2001; Tandon & Jibson, 2003). These atypical antipsychotic agents, in comparison with the older generation, show greater efficacy against both positive and negative symptoms of schizophrenia (a debilitating mental disorder) as well as associated cognitive deficits and are virtually devoid of extrapyramidal symptoms (Tandon, 2002). The therapeutic action of olanzapine against the symptoms of schizophrenia is thought to be due to its high affinity for dopaminergic D2 and serotonergic 5-HT2A receptor systems implicated in the pathogenesis of this disease (Bever & Perry, 1998). Recently, it was reported that increasing experience with atypical antipsychotics in real-world clinical settings demonstrated that the use of these drugs could be associated with adverse metabolic changes, including diabetes mellitus (Wilsonet al., 2003; Mir & Taylor, 2001) weight gain (Wirshing, 2001) and dyslipidemia (Osseret al., 1999). Switching or combining agents may be sufficient in some cases, but in many instances additional drug treatment would be required. This includes oral antidiabetics, and agents to treat hyperlipidaemia and hypertension among others. Numerous pharmacokinetic and pharmacodynamic inter-actions with antipsychotics are possible. Nicotinic acid or niacin, the water-soluble B vitamin, which improves all lipo-proteins when given in doses well above the vitamin requirement, is claimed to treat hyperlipidaemia in patients with schizophrenia (Hoffer, 1998; Baptistaet al., 2004). It is believed that the vitamin works by reducing the amount of oxidized adrenaline in the body, called adrenochome, which seems to be at least partially responsible for schizophrenia. Our particular interest lies in the crystalline complex of olanzapine with nicotinic acid, providing a means both for a structural study of this important drug and for examining the interactions between the components.

(2)

The structure of the title compound, (I), reveals a proton-transfer complex as a well defined salt of a nicotinate anion and an olanzapinium cation (Fig. 1). The expected proton transfer from nicotinic acid to olanzapine occurs at atom N3 of the piperazine ring. Consequently, atom N3 shows quaternary character and bears a positive charge in a tetrahedral config-uration with bond angles ranging from 110.9 (2) to 111.5 (2). The C7—N2 distance, 1.382 (3) A˚ , suggests partial double-bond character of this double-bond. The increasedsp2character of the N atom has no effect on the conformation of the piperazine ring, which adopts the expected chair conformation [asym-metry parameter C2(N2—C18) = 0.008 (1); Nardelli, 1983]. Incidentally, the protonation at N3 has no effect on the orientation of the C19 methyl group (attached to N3), which is equatorial in (I) as well as in olanzapine free base (Wawrzycka et al., 2004).

The central 1,5-diazepine ring adopts a boat conformation and may be described by three planes: a bow plane (C3/C4/ N5), a central plane (C2/C3/C5/C6) and a stern plane (C2/N1/ C7/C6). This enables the tricyclic thienobenzodiazepine ring skeleton to form an extended V-shaped conformation. Inter-estingly, a similar conformation can also be observed (Fig. 2) in the crystal structures of olanzapine free base, and the related antipsychotic agents clozapine (Petcher & Weber, 1974), loxapine and amoxapine (Cosulich & Lovell, 1977). Such a conformation may facilitate the drug-receptor binding interactions. The dihedral angle between the planes of the two aromatic rings (benzene and thiophene) flanking the diaze-pine ring is 119.9 (1). The corresponding angles have been reported as 127.2for olanzapine free base, 115for clozapine, 113.7 for loxapine and 119.5 for amoxapine. However,

molecular modelling of olanzapine using HYPERCHEM

predicts this angle as 135(Lienet al., 1996). The orientation of the piperazine ring with respect to the diazepine ring is defined by the torsion angle N1—C7—N2—C18 = 2.3 (4), while in the olazanpine free base it is 11.8. The dihedral angles between the plane of the four C atoms in the piperazine ring and the planes of the benzene and thiophene rings are 32.3 (1) and 34.5 (1), respectively.

The structural features within the nicotinate ion are similar to those of nicotinic acid (Kutoglu & Scheringer, 1983). The deprotonated carboxylate group is essentially coplanar [O1—

C25—C20—C21 = 179.2 (3)] with the pyridine ring. The olazanpinium and nicotinate ions in (I) are linked by N— H O hydrogen bonds between alternating cations and anions. This arrangement results in a chain of ions extending along thecaxis. The piperazine ring is connected to a planar pyridine ring of the nicotinate anion by N—H O hydrogen bonds (Table 2). The quarternary atom N3 acts as a donor to both the O atoms, O1 and O2, of the nicotinate anion, a consequence of a three-centred hydrogen bond (Jeffrey &

organic papers

Acta Cryst.(2005). E61, o2720–o2723 Ravikumaret al. C

[image:2.610.315.564.74.239.2]

17H21N4S+C6H4NO2

o2721

Figure 1

[image:2.610.369.524.291.615.2]

A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen bond is shown dashed.

Figure 2

(3)

Saenger, 1991). The crystal packing is further stabilized by C— H O and weak C—H (thiophene) interactions (Table 2).

Experimental

Olanzapine and nicotinic acid were mixed in the stoichiometic ratio 1:1 and dissolved in aqueous methanol solution (90%, 10 ml) to obtain crystals by slow evaporation.

Crystal data

C17H21N4S+C6H4NO2

Mr= 435.54 Triclinic,P1 a= 9.2565 (10) A˚ b= 11.2224 (12) A˚ c= 12.0629 (13) A˚ = 63.164 (2)

= 87.485 (2)

= 83.735 (2)

V= 1111.4 (2) A˚3

Z= 2

Dx= 1.301 Mg m

3

MoKradiation Cell parameters from 1483

reflections = 2.2–21.2

= 0.18 mm1 T= 273 (2) K Block, pale yellow 0.230.120.09 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer !scans

Absorption correction: none 8110 measured reflections 3894 independent reflections

2885 reflections withI> 2(I) Rint= 0.034

max= 25.0

h=10!10 k=13!13 l=14!13

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.063

wR(F2) = 0.141 S= 1.06 3894 reflections 290 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0569P)2

+ 0.338P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.32 e A˚

3

min=0.21 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

S1—C5 1.734 (3)

S1—C9 1.736 (3)

N1—C7 1.285 (3)

N1—C2 1.409 (3)

N3—C19 1.483 (4)

N3—C16 1.489 (4)

N3—C17 1.493 (4)

N4—C5 1.400 (3)

N4—C3 1.421 (4)

N5—C23 1.349 (5)

N5—C24 1.354 (5)

O1—C25 1.261 (3)

O2—C25 1.233 (3)

C7—N1—C2 123.1 (2) C15—N2—C18 110.6 (2) C19—N3—C16 111.5 (2) C19—N3—C17 111.2 (2) C16—N3—C17 110.9 (2) C5—N4—C3 113.3 (2) C23—N5—C24 115.9 (3)

N1—C7—N2 118.4 (2) N1—C7—C6 126.0 (2) N2—C7—C6 115.4 (2) O2—C25—O1 124.5 (3) O2—C25—C20 118.7 (3) O1—C25—C20 116.8 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H3N O1i

1.00 (3) 1.63 (3) 2.628 (3) 175 (3) N3—H3N O2i

1.00 (3) 2.57 (3) 3.219 (3) 122 (2) N4—H4N O2 0.81 (3) 2.12 (3) 2.922 (3) 170 (3) C19—H19A O2i

0.96 2.54 3.173 (4) 124 C17—H17B Cg1ii

0.97 2.72 3.55 144

Symmetry codes: (i)x;y;z1; (ii)xþ1;yþ1;z.

H atoms on N atoms were located in a difference density map and refined freely. All other H atoms were positioned geometrically and treated as riding atoms, with C—H distances in the range 0.93–0.97 A˚ and withUiso(H) values of 1.5Ueq(C) for methyl H and 1.2Ueq(C) for

other H atoms. The methyl groups were allowed to rotate but not to tip.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT (Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC(Sheldrick, 1990); software used to prepare material for publication:SHELXL97.

The authors thank Dr J. S. Yadav, Director of IICT, for his kind encouragement and support.

References

Baptista, T., Ng Ying Kin, N. M. K. & Beaulieu, S. (2004).Clin. Pharmacokinet.

43, 1–15.

Bever, K. A. & Perry, P. J. (1998).Am. J. Health Syst. Pharm.55, 1003–1016. Bruker (2001).SAINT(Version 6.28a) andSMART(Version 5.625). Bruker

[image:3.610.48.294.71.414.2]

AXS Inc., Madison, Wisconsin, USA.

Figure 3

(4)

Callaghan, J. T., Bergstrom, R. F., Ptak, L. R. & Beasley, C. M. (1999).Clin. Pharm.37, 177–193.

Chakrabarti, J. K., Horsman, L., Hotten, T. M., Pullar, I. A., Tupper, D. E. & Wright, F. C. (1980).J. Med. Chem.23, 878–884.

Cosulich, D. P. & Lovell, F. M. (1977).Acta Cryst.B33, 1147–1154. Hoffer, A. (1998). Vitamin B-3 and Schizophrenia: Discovery, Recovery,

Controversy. Kingston, Ontario Canada: Quarry Press.

Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer Verlag.

Kennedy, J. S., Bymaster, F. P., Schuh, L., Calligaro, D. O., Nomikos, G., Felder, C. C., Bernauer, M., Kinon, B. J., Baker, R. W., Hay, D., Roth, H. J., Dossenbach, M., Kaiser, C., Beasley, C. M., Holcombe, J. H., Effron, M. B. & Breier, A. (2001).Int. J. Geriatr. Psychiatry Suppl.1, S33–S61.

Kutoglu, A. & Scheringer, C. (1983).Acta Cryst.C39, 232–234. Lien, E. J., Das, A. & Lien, L. I. (1996).Chin. Pharm. J.48, 387–396. Mir, S. & Taylor, D. (2001).Int. Clin. Psychopharmacol.16, 13–73.

Nardelli, M. (1983).Acta Cryst.C39, 1141–1142.

Osser, D. N., Najarian, D. M. & Dufresne, R. L. (1999).J. Clin. Psychiatry,60, 767–770.

Petcher, T. J. & Weber, H. P. (1974).J. Chem. Soc. Perkin Trans. 2, pp. 1415– 1420.

Sheldrick, G. M. (1990).SHELXTL/PC. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Tandon, R. (2002).Psychiatr. Q.73, 297–311.

Tandon, R. & Jibson, M. D. (2003).Psychoneuroendocrinology,28, 9–26. Wawrzycka, I., Koziol, A. E., Jlice, M. & Cybulski, J. (2004).Acta Cryst.E60,

o66–o68.

Wilson, D. R., D’Souza, L., Sarkar, N. & Newton, M. (2003).Schizophr. Res.

59, 1–6.

Wirshing, D. A. (2001).J. Clin. Psychiarity,62, 7–10.

organic papers

Acta Cryst.(2005). E61, o2720–o2723 Ravikumaret al. C

(5)

sup-1 Acta Cryst. (2005). E61, o2720–o2723

supporting information

Acta Cryst. (2005). E61, o2720–o2723 [https://doi.org/10.1107/S160053680502369X]

Olazipinium nicotinate

K. Ravikumar, G. Y. S. K. Swamy, B. Sridhar and S. Roopa

1-methyl-4-(2-methyl-10H-thieno[2,3-b][1,5]benzodiazepin-4- yl)hexahydropyrazin-1-ium nicotinate

Crystal data

C17H21N4S+·C6H4NO2− Mr = 435.54

Triclinic, P1 Hall symbol: -P 1

a = 9.2565 (10) Å

b = 11.2224 (12) Å

c = 12.0629 (13) Å

α = 63.164 (2)°

β = 87.485 (2)°

γ = 83.735 (2)°

V = 1111.4 (2) Å3

Z = 2

F(000) = 460

Dx = 1.301 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1483 reflections

θ = 2.2–21.2°

µ = 0.18 mm−1 T = 273 K

Needle, pale yellow 0.23 × 0.12 × 0.09 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

8110 measured reflections 3894 independent reflections

2885 reflections with I > 2σ(I)

Rint = 0.034

θmax = 25.0°, θmin = 1.9° h = −10→10

k = −13→13

l = −14→13

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.063 wR(F2) = 0.141 S = 1.06 3894 reflections 290 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0569P)2 + 0.338P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.32 e Å−3 Δρmin = −0.21 e Å−3

Special details

(6)

supporting information

sup-2 Acta Cryst. (2005). E61, o2720–o2723

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.59536 (8) 0.24922 (8) 0.40971 (7) 0.0450 (3)

N1 0.2341 (2) 0.4088 (2) 0.1008 (2) 0.0355 (6)

N2 0.3996 (2) 0.3091 (2) 0.0135 (2) 0.0361 (6)

N3 0.4853 (3) 0.2493 (3) −0.1872 (2) 0.0402 (6)

H3N 0.417 (3) 0.182 (3) −0.178 (3) 0.058 (9)*

N4 0.2996 (3) 0.2773 (3) 0.3677 (2) 0.0420 (7)

H4N 0.293 (3) 0.244 (3) 0.443 (3) 0.029 (8)*

N5 −0.0937 (4) −0.0773 (4) 0.8549 (4) 0.0990 (13)

C2 0.1899 (3) 0.4651 (3) 0.1817 (3) 0.0348 (7)

C3 0.2153 (3) 0.4037 (3) 0.3109 (3) 0.0370 (7)

C5 0.4409 (3) 0.2794 (3) 0.3209 (2) 0.0326 (7)

C6 0.4739 (3) 0.3157 (3) 0.1998 (2) 0.0309 (6)

C7 0.3603 (3) 0.3456 (3) 0.1067 (2) 0.0309 (6)

C8 0.6275 (3) 0.3206 (3) 0.1787 (3) 0.0361 (7)

H8 0.6686 0.3444 0.1007 0.043*

C9 0.7071 (3) 0.2877 (3) 0.2811 (3) 0.0389 (7)

C10 0.8684 (3) 0.2870 (4) 0.2919 (3) 0.0556 (9)

H10A 0.9129 0.3068 0.2129 0.083*

H10B 0.9080 0.2001 0.3526 0.083*

H10C 0.8873 0.3536 0.3172 0.083*

C11 0.1548 (3) 0.4658 (3) 0.3813 (3) 0.0485 (8)

H11 0.1719 0.4250 0.4665 0.058*

C12 0.0698 (3) 0.5868 (4) 0.3273 (3) 0.0541 (9)

H12 0.0293 0.6264 0.3761 0.065*

C13 0.0452 (3) 0.6487 (3) 0.2010 (3) 0.0507 (8)

H13 −0.0099 0.7315 0.1637 0.061*

C14 0.1027 (3) 0.5873 (3) 0.1300 (3) 0.0419 (7)

H14 0.0828 0.6285 0.0452 0.050*

C15 0.4882 (3) 0.1845 (3) 0.0371 (3) 0.0384 (7)

H15A 0.4259 0.1137 0.0563 0.046*

H15B 0.5513 0.1586 0.1080 0.046*

C16 0.5780 (3) 0.2023 (3) −0.0746 (3) 0.0424 (8)

H16A 0.6466 0.2672 −0.0887 0.051*

H16B 0.6330 0.1177 −0.0593 0.051*

C17 0.3870 (3) 0.3715 (3) −0.2055 (3) 0.0430 (8)

H17A 0.3214 0.3953 −0.2745 0.052*

H17B 0.4444 0.4460 −0.2259 0.052*

C18 0.3002 (3) 0.3476 (3) −0.0901 (2) 0.0392 (7)

H18A 0.2390 0.4286 −0.1027 0.047*

H18B 0.2382 0.2768 −0.0721 0.047*

C19 0.5742 (4) 0.2733 (4) −0.2993 (3) 0.0647 (10)

H19A 0.5113 0.3011 −0.3697 0.097*

H19B 0.6328 0.1921 −0.2865 0.097*

H19C 0.6360 0.3424 −0.3143 0.097*

(7)

sup-3 Acta Cryst. (2005). E61, o2720–o2723

O2 0.2842 (3) 0.1911 (3) 0.6352 (2) 0.0734 (8)

C20 0.0985 (3) 0.0536 (3) 0.7389 (3) 0.0384 (7)

C21 0.0265 (4) 0.0805 (4) 0.6313 (3) 0.0564 (9)

H21 0.0660 0.1344 0.5549 0.068*

C22 −0.1005 (4) 0.0299 (4) 0.6347 (4) 0.0634 (10)

H22 −0.1482 0.0484 0.5617 0.076*

C23 −0.1560 (4) −0.0472 (5) 0.7451 (5) 0.0826 (13)

H23 −0.2429 −0.0823 0.7464 0.099*

C24 0.0345 (4) −0.0269 (4) 0.8485 (3) 0.0658 (10)

H24 0.0818 −0.0481 0.9224 0.079*

C25 0.2379 (3) 0.1118 (3) 0.7362 (3) 0.0389 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0424 (5) 0.0602 (5) 0.0305 (4) −0.0003 (4) −0.0061 (3) −0.0192 (4)

N1 0.0336 (14) 0.0405 (14) 0.0328 (13) −0.0025 (11) 0.0012 (10) −0.0172 (11)

N2 0.0391 (14) 0.0419 (14) 0.0312 (13) 0.0070 (11) −0.0074 (10) −0.0216 (11)

N3 0.0460 (15) 0.0469 (15) 0.0373 (14) −0.0121 (13) 0.0057 (12) −0.0263 (12)

N4 0.0415 (15) 0.0510 (17) 0.0273 (15) −0.0091 (12) 0.0067 (12) −0.0118 (13)

N5 0.096 (3) 0.112 (3) 0.093 (3) −0.062 (3) 0.033 (2) −0.042 (3)

C2 0.0263 (15) 0.0451 (18) 0.0363 (16) −0.0060 (13) 0.0051 (12) −0.0211 (14)

C3 0.0290 (15) 0.0470 (18) 0.0357 (17) −0.0108 (13) 0.0074 (13) −0.0182 (15)

C5 0.0340 (16) 0.0347 (16) 0.0286 (15) −0.0041 (12) 0.0008 (12) −0.0137 (13)

C6 0.0309 (15) 0.0329 (15) 0.0291 (15) −0.0031 (12) 0.0021 (12) −0.0142 (13)

C7 0.0342 (16) 0.0319 (15) 0.0257 (14) −0.0055 (13) 0.0025 (12) −0.0119 (12)

C8 0.0374 (17) 0.0394 (17) 0.0342 (16) −0.0031 (13) 0.0031 (13) −0.0193 (14)

C9 0.0336 (16) 0.0453 (18) 0.0393 (17) 0.0011 (13) −0.0029 (13) −0.0210 (15)

C10 0.0375 (19) 0.071 (2) 0.058 (2) 0.0010 (16) −0.0084 (16) −0.0291 (19)

C11 0.0398 (18) 0.073 (2) 0.0432 (19) −0.0126 (17) 0.0113 (15) −0.0351 (18)

C12 0.0416 (19) 0.074 (2) 0.065 (2) −0.0051 (18) 0.0126 (17) −0.049 (2)

C13 0.0373 (18) 0.055 (2) 0.066 (2) 0.0009 (15) 0.0044 (16) −0.0340 (19)

C14 0.0317 (16) 0.0500 (19) 0.0435 (18) −0.0025 (14) −0.0001 (14) −0.0209 (16)

C15 0.0443 (18) 0.0379 (17) 0.0363 (17) 0.0027 (14) −0.0069 (14) −0.0203 (14)

C16 0.0400 (18) 0.0478 (19) 0.0496 (19) −0.0004 (14) −0.0042 (15) −0.0313 (16)

C17 0.058 (2) 0.0409 (18) 0.0305 (16) −0.0007 (15) −0.0066 (14) −0.0163 (14)

C18 0.0418 (18) 0.0445 (18) 0.0341 (16) 0.0027 (14) −0.0072 (13) −0.0211 (14)

C19 0.065 (2) 0.090 (3) 0.053 (2) −0.021 (2) 0.0233 (18) −0.044 (2)

O1 0.0657 (15) 0.0473 (13) 0.0374 (12) −0.0137 (11) −0.0109 (11) −0.0133 (10)

O2 0.0767 (17) 0.102 (2) 0.0333 (13) −0.0479 (16) 0.0054 (12) −0.0149 (13)

C20 0.0457 (18) 0.0351 (17) 0.0362 (17) −0.0033 (14) 0.0013 (14) −0.0178 (14)

C21 0.053 (2) 0.067 (2) 0.047 (2) −0.0154 (18) −0.0005 (17) −0.0219 (18)

C22 0.048 (2) 0.081 (3) 0.069 (3) −0.010 (2) −0.0118 (19) −0.040 (2)

C23 0.057 (3) 0.089 (3) 0.123 (4) −0.027 (2) 0.009 (3) −0.063 (3)

C24 0.080 (3) 0.071 (3) 0.046 (2) −0.031 (2) 0.0079 (19) −0.0220 (19)

(8)

supporting information

sup-4 Acta Cryst. (2005). E61, o2720–o2723

Geometric parameters (Å, º)

S1—C5 1.734 (3) C12—C13 1.377 (4)

S1—C9 1.736 (3) C12—H12 0.9300

N1—C7 1.285 (3) C13—C14 1.380 (4)

N1—C2 1.409 (3) C13—H13 0.9300

N2—C7 1.382 (3) C14—H14 0.9300

N2—C15 1.456 (3) C15—C16 1.496 (4)

N2—C18 1.456 (3) C15—H15A 0.9700

N3—C19 1.483 (4) C15—H15B 0.9700

N3—C16 1.489 (4) C16—H16A 0.9700

N3—C17 1.493 (4) C16—H16B 0.9700

N3—H3N 1.00 (3) C17—C18 1.506 (4)

N4—C5 1.400 (3) C17—H17A 0.9700

N4—C3 1.421 (4) C17—H17B 0.9700

N4—H4N 0.81 (3) C18—H18A 0.9700

N5—C23 1.349 (5) C18—H18B 0.9700

N5—C24 1.354 (5) C19—H19A 0.9600

C2—C14 1.396 (4) C19—H19B 0.9600

C2—C3 1.409 (4) C19—H19C 0.9600

C3—C11 1.389 (4) O1—C25 1.261 (3)

C5—C6 1.358 (4) O2—C25 1.233 (3)

C6—C8 1.435 (4) C20—C24 1.373 (4)

C6—C7 1.473 (4) C20—C21 1.378 (4)

C8—C9 1.347 (4) C20—C25 1.501 (4)

C8—H8 0.9300 C21—C22 1.351 (5)

C9—C10 1.504 (4) C21—H21 0.9300

C10—H10A 0.9600 C22—C23 1.336 (5)

C10—H10B 0.9600 C22—H22 0.9300

C10—H10C 0.9600 C23—H23 0.9300

C11—C12 1.378 (4) C24—H24 0.9300

C11—H11 0.9300

C5—S1—C9 91.83 (13) C13—C14—C2 122.0 (3)

C7—N1—C2 123.1 (2) C13—C14—H14 119.0

C7—N2—C15 122.5 (2) C2—C14—H14 119.0

C7—N2—C18 119.4 (2) N2—C15—C16 110.1 (2)

C15—N2—C18 110.6 (2) N2—C15—H15A 109.6

C19—N3—C16 111.5 (2) C16—C15—H15A 109.6

C19—N3—C17 111.2 (2) N2—C15—H15B 109.6

C16—N3—C17 110.9 (2) C16—C15—H15B 109.6

C19—N3—H3N 107.5 (17) H15A—C15—H15B 108.2

C16—N3—H3N 111.4 (17) N3—C16—C15 111.3 (2)

C17—N3—H3N 104.1 (17) N3—C16—H16A 109.4

C5—N4—C3 113.3 (2) C15—C16—H16A 109.4

C5—N4—H4N 115.6 (19) N3—C16—H16B 109.4

C3—N4—H4N 111.3 (19) C15—C16—H16B 109.4

(9)

sup-5 Acta Cryst. (2005). E61, o2720–o2723

C14—C2—N1 116.4 (2) N3—C17—C18 110.9 (2)

C14—C2—C3 117.7 (3) N3—C17—H17A 109.5

N1—C2—C3 125.7 (3) C18—C17—H17A 109.5

C11—C3—C2 119.6 (3) N3—C17—H17B 109.5

C11—C3—N4 120.9 (3) C18—C17—H17B 109.5

C2—C3—N4 119.4 (3) H17A—C17—H17B 108.1

C6—C5—N4 124.7 (2) N2—C18—C17 109.1 (2)

C6—C5—S1 111.7 (2) N2—C18—H18A 109.9

N4—C5—S1 123.4 (2) C17—C18—H18A 109.9

C5—C6—C8 111.6 (2) N2—C18—H18B 109.9

C5—C6—C7 121.5 (2) C17—C18—H18B 109.9

C8—C6—C7 126.9 (2) H18A—C18—H18B 108.3

N1—C7—N2 118.4 (2) N3—C19—H19A 109.5

N1—C7—C6 126.0 (2) N3—C19—H19B 109.5

N2—C7—C6 115.4 (2) H19A—C19—H19B 109.5

C9—C8—C6 114.5 (3) N3—C19—H19C 109.5

C9—C8—H8 122.7 H19A—C19—H19C 109.5

C6—C8—H8 122.7 H19B—C19—H19C 109.5

C8—C9—C10 128.6 (3) C24—C20—C21 116.4 (3)

C8—C9—S1 110.4 (2) C24—C20—C25 121.9 (3)

C10—C9—S1 120.9 (2) C21—C20—C25 121.7 (3)

C9—C10—H10A 109.5 C22—C21—C20 121.2 (3)

C9—C10—H10B 109.5 C22—C21—H21 119.4

H10A—C10—H10B 109.5 C20—C21—H21 119.4

C9—C10—H10C 109.5 C23—C22—C21 118.7 (4)

H10A—C10—H10C 109.5 C23—C22—H22 120.6

H10B—C10—H10C 109.5 C21—C22—H22 120.6

C12—C11—C3 121.3 (3) C22—C23—N5 124.0 (4)

C12—C11—H11 119.4 C22—C23—H23 118.0

C3—C11—H11 119.4 N5—C23—H23 118.0

C13—C12—C11 119.8 (3) N5—C24—C20 123.7 (3)

C13—C12—H12 120.1 N5—C24—H24 118.2

C11—C12—H12 120.1 C20—C24—H24 118.2

C12—C13—C14 119.6 (3) O2—C25—O1 124.5 (3)

C12—C13—H13 120.2 O2—C25—C20 118.7 (3)

C14—C13—H13 120.2 O1—C25—C20 116.8 (3)

C7—N1—C2—C14 143.1 (3) C5—S1—C9—C10 177.4 (3)

C7—N1—C2—C3 −42.8 (4) C2—C3—C11—C12 0.1 (4)

C14—C2—C3—C11 −0.5 (4) N4—C3—C11—C12 −178.3 (3)

N1—C2—C3—C11 −174.5 (3) C3—C11—C12—C13 −0.7 (5)

C14—C2—C3—N4 178.0 (2) C11—C12—C13—C14 1.7 (5)

N1—C2—C3—N4 4.0 (4) C12—C13—C14—C2 −2.1 (5)

C5—N4—C3—C11 −121.8 (3) N1—C2—C14—C13 176.0 (3)

C5—N4—C3—C2 59.7 (3) C3—C2—C14—C13 1.5 (4)

C3—N4—C5—C6 −58.2 (4) C7—N2—C15—C16 −149.3 (2)

C3—N4—C5—S1 116.2 (3) C18—N2—C15—C16 61.3 (3)

(10)

supporting information

sup-6 Acta Cryst. (2005). E61, o2720–o2723

C9—S1—C5—N4 −174.4 (2) C17—N3—C16—C15 52.8 (3)

N4—C5—C6—C8 174.2 (2) N2—C15—C16—N3 −56.3 (3)

S1—C5—C6—C8 −0.7 (3) C19—N3—C17—C18 −178.4 (2)

N4—C5—C6—C7 −5.5 (4) C16—N3—C17—C18 −53.7 (3)

S1—C5—C6—C7 179.6 (2) C7—N2—C18—C17 147.6 (2)

C2—N1—C7—N2 −171.9 (2) C15—N2—C18—C17 −61.9 (3)

C2—N1—C7—C6 3.4 (4) N3—C17—C18—N2 57.9 (3)

C15—N2—C7—N1 −144.5 (3) C24—C20—C21—C22 0.2 (5)

C18—N2—C7—N1 2.3 (4) C25—C20—C21—C22 −178.6 (3)

C15—N2—C7—C6 39.8 (4) C20—C21—C22—C23 0.1 (6)

C18—N2—C7—C6 −173.4 (2) C21—C22—C23—N5 0.7 (7)

C5—C6—C7—N1 39.0 (4) C24—N5—C23—C22 −1.7 (7)

C8—C6—C7—N1 −140.7 (3) C23—N5—C24—C20 2.0 (6)

C5—C6—C7—N2 −145.6 (3) C21—C20—C24—N5 −1.3 (5)

C8—C6—C7—N2 34.7 (4) C25—C20—C24—N5 177.5 (3)

C5—C6—C8—C9 0.6 (4) C24—C20—C25—O2 −174.8 (3)

C7—C6—C8—C9 −179.7 (3) C21—C20—C25—O2 4.0 (5)

C6—C8—C9—C10 −177.6 (3) C24—C20—C25—O1 2.1 (4)

C6—C8—C9—S1 −0.1 (3) C21—C20—C25—O1 −179.2 (3)

C5—S1—C9—C8 −0.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3N···O1i 1.00 (3) 1.63 (3) 2.628 (3) 175 (3)

N3—H3N···O2i 1.00 (3) 2.57 (3) 3.219 (3) 122 (2)

N4—H4N···O2 0.81 (3) 2.12 (3) 2.922 (3) 170 (3)

C19—H19A···O2i 0.96 2.54 3.173 (4) 124

C17—H17B···Cg1ii 0.97 2.72 3.55 144

Figure

Figure 2
Figure 3D—H� � �A view of the packing, showing the chains running along the c axis.A

References

Related documents

1) Data Privacy against Outside Adversaries: Recently, an attack on hash-as-a-proof method in popular cloud storage service like Dropbox and MozyHome is pro- posed [25, 19]: If

Cases are patients with LC and COPD assessed in the Lung Cancer Rapid Diagnosis Unit (LCRDU), included in the study at the time of LC diagnosis, while controls were

is a public Big Data of the health care system including the health insurance sample cohorts collected by the National Health Insurance Corp., the patient dataset managed by

However, there are studies that present data in variation in body size, function, and sport-specific skills associated with maturity status in adolescent male young

In this paper the problem of constraining and summarizing different algorithms of data mining used in the field of medical prediction are discussed. The focus is

observations from the Ascalon inves- tigation. Prevailing winter winds from the northwest possibly account for these observations. Prevailing southwest summer winds

The results showed a positive and significant direct relationship between the components of knowledge management (acquiring KM / KM influence / CRM technology /

G.S.Karthick is a Ph.D Research Scholar in the Department of Computer Science, Bharathiar University, Coimbatore, TamilNadu. He has received Master of Science (M.Sc.) in