• No results found

Hepta­aqua­[tetra­chloro­phthalato(2–)]praseodymium(III) tetra­chloro­phthalate(–) tetra­chloro­phthalic acid monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Hepta­aqua­[tetra­chloro­phthalato(2–)]praseodymium(III) tetra­chloro­phthalate(–) tetra­chloro­phthalic acid monohydrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1272

Naet al. [Pr(C

8Cl4O4)(H2O)7](C8HCl4O4)C8H2Cl4O4H2O doi:10.1107/S1600536805017071Acta Cryst.(2005). E61, m1272–m1274 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Heptaaqua[tetrachlorophthalato(2–)]-praseodymium(III) tetrachlorophthalate(–)

tetrachlorophthalic acid monohydrate

Na Xu, Yan Ouyang, Dai-Zheng Liao* and Zong-Hui Jiang

Department of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China

Correspondence e-mail: coord@nankai.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.023

wRfactor = 0.057

Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The title complex, [Pr(C8Cl4O4)(H2O)7](C8HCl4O4)

-C8H2Cl4O4H2O, has been synthesized and structurally

characterized. The praseodymium(III) ion is coordinated by an O atom of a tetrachlorophthalate ligand and seven O atoms of water molecules. The molecular packing is reinforced by an extensive network of O—H O hydrogen bonds.

Comment

Owing to their variety of structures and unusual properties, transition metal complexes of benzenedicarboxylate dianions are of great interest (Jianet al., 1993; Bakalbassiset al., 1998; Lewinskiet al., 1998; Yanget al., 2002). To date, most of the published work concerns transition metal phthalate complexes. An interesting example of a lanthanide–tetra-chlorophthalate coordination polymer has been reported (Liang et al., 2004). We combined praseodymium(III) and tetrachlorophthalic acid (H2tcph), and the title complex, (I)

(Fig. 1), was obtained.

Compound (I) consists of a [Pr(tcph)(H2O)7]+ cation, a

neutral (H2tcph) molecule, an (Htcph)

anion and an unco-ordinated water molecule. The PrIII atom is surrounded by eight O atoms, one from a tcph ligand and the others from coordinated water molecules. The Pr—O bond distances (Table 1) range from 2.424 (2) to 2.507 (2) A˚ .

Two adjacent [Pr(tcph)(H2O)7] +

cations are linked by two short hydrogen bonds [O O = 2.732 (4) A˚ ] between uncoordinated carboxylate O atoms and coordinated water

(2)

molecules, as shown in Fig. 2. In addition, the packing of the molecules in (I) involves intermolecular hydrogen bonding (Table 2), also involving the other uncoordinated carboxylate O atoms and water molecules [O O distances range from 2.558 (3) to 3.171 (4) A˚ ].

Experimental

A solution of Pr(ClO4)3(0.1 mmol) in H2O (10 ml) was added to a

suspension of H2tcph (0.1 mmol) in H2O (10 ml). The mixture was

stirred at room temperature for 30 min. After filtration, the solution was left undisturbed and green crystals of (I) were obtained after several days. Analysis calculated for C24H19Cl12O20Pr: C 24.12, H 1.59,

Cl 35.68 O 26.80%; found: C 24.19, H 1.62%.

Crystal data

[Pr(C8Cl4O4)(H2O)7](C8HCl4O4)

-C8H2Cl4O4H2O

Mr= 1193.70 Triclinic,P1 a= 6.9395 (5) A˚ b= 16.2519 (13) A˚ c= 19.1287 (15) A˚ = 67.382 (1)

= 86.524 (1)

= 81.535 (1)

V= 1969.7 (3) A˚3

Z= 2

Dx= 2.013 Mg m

3

MoKradiation Cell parameters from 5233

reflections = 2.2–27.7

= 2.13 mm1

T= 293 (2) K Block, green

0.420.280.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin= 0.414,Tmax= 0.711

10795 measured reflections

6883 independent reflections 6066 reflections withI> 2(I) Rint= 0.017

max= 25.0

h=8!7 k=17!19 l=21!22

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.023

wR(F2) = 0.057 S= 1.07 6883 reflections 518 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0273P)2

+ 0.4655P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002 max= 0.54 e A˚

3 min=0.50 e A˚

3

Extinction correction:SHELXL97 (Sheldrick, 1997)

[image:2.610.78.265.73.191.2]

Extinction coefficient: 0.0061 (3)

Table 1

Selected bond lengths (A˚ ).

Pr1—O1 2.424 (2)

Pr1—O11 2.432 (2)

Pr1—O10 2.451 (2)

Pr1—O8 2.466 (3)

Pr1—O6 2.486 (2)

Pr1—O5 2.491 (2)

Pr1—O9 2.505 (2)

Pr1—O7 2.507 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O5—H5A O3i 0.85 1.92 2.727 (4) 158

O5—H5B O19ii

0.85 1.95 2.791 (4) 172

O6—H6A O17ii

0.85 1.89 2.732 (4) 170

O7—H7A O19ii

0.85 2.25 3.034 (4) 153

O7—H7B O14iii

0.85 2.05 2.897 (3) 172

O8—H8A O20iv

0.85 1.88 2.715 (4) 167

O8—H8B O16iv

0.85 2.15 2.760 (4) 129

O9—H9A O20iv 0.85 1.95 2.787 (4) 166

O9—H9B O2v

0.85 2.10 2.916 (4) 161

O10—H10A O4vi

0.85 1.90 2.736 (3) 168

O10—H10B O3 0.85 2.03 2.858 (3) 164

O11—H11A O2v

0.85 1.87 2.716 (4) 174

O11—H11B O3i

0.85 1.89 2.692 (3) 158

O13—H13 O4vii

0.82 1.75 2.558 (3) 167

O15—H15 O16viii

0.82 1.78 2.590 (3) 168

O18—H18 O17ix

0.82 1.78 2.580 (3) 166

O20—H20A O14ii

0.85 2.05 2.817 (4) 149

O20—H20B O13viii 0.85 2.18 2.850 (4) 135

O20—H20B O15viii

0.85 2.59 3.171 (4) 127

Symmetry codes: (i) xþ1;y;z; (ii) xþ1;yþ1;zþ1; (iii)

xþ1;yþ1;zþ2; (iv) x;y;zþ1; (v) xþ1;yþ2;zþ2; (vi)

x;yþ2;zþ2; (vii)x;y1;z; (viii)x;yþ1;zþ1; (ix)x;yþ1;z.

metal-organic papers

Acta Cryst.(2005). E61, m1272–m1274 Naet al. [Pr(C

8Cl4O4)(H2O)7](C8HCl4O4)C8H2Cl4O4H2O

m1273

Figure 1

A view of the [Pr(tcph)(H2O)7]+cation in (I), showing 30% probability

[image:2.610.79.268.234.365.2]

displacement ellipsoids.

Figure 2

A fragment of (I), showing the hydrogen-bonded (dashed lines) dimer of [Pr(tcph)(H2O)7]

+

units. The atom labels of the asymmetric unit have

suffix A and those atoms generated by the symmetry operation (x, 2

y, 2z) have suffix B.

Figure 3

[image:2.610.55.279.428.591.2]
(3)

All H atoms were located in difference Fourier maps, relocated in idealized positions (O—H = 0.82–0.85 A˚ ) and refined as riding, with Uiso(H) = 1.5Ueq(O).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication:SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 20471031 and 20331010) and the Natural Science Key Foundation of Tianjin.

References

Bakalbassis, E. G., Paschalidis, D. G., Raptopoulou, C. P. & Tangouis, V. (1998). Inorg. Chem.37, 4735–4737.

Bruker (1998).SMART,SAINT,SADABSand SHELXTL. Bruker AXS, Madison, Wisconsin, USA.

Jiang, Z.-H., Ma, S.-L., Liao, D.-Z., Yan, S.-P., Wang, G.-L., Yao, X.-K. & Wang, R.-J. (1993).J. Chem. Soc. Chem. Commun.pp. 745–747

Lewinski, J., Zachara, J. & Justyniak, I. (1998).Inorg. Chem.37, 2575–2577 Liang, M., Sun, Y.-Q., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2004).J.

Coord. Chem.57, 275–280.

Yang, S.-Y., Long, L.-S., Wu, Z.-Y., Zhan, M.-X., Huang, R.-B. & Zheng, L.-S. (2002).Transition Met. Chem.27, 546–549.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

m1274

Naet al. [Pr(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1272–m1274

supporting information

Acta Cryst. (2005). E61, m1272–m1274 [https://doi.org/10.1107/S1600536805017071]

Heptaaqua[tetrachlorophthalato(2

)]praseodymium(III) tetrachlorophthalate(

)

tetrachlorophthalic acid monohydrate

Na Xu, Yan Ouyang, Dai-Zheng Liao and Zong-Hui Jiang

Heptaaqua[tetrachlorophthalato(2-)]praseodymium(III) tetrachlorophthalate(-) tetrachlorophthalic acid

monohydrate

Crystal data

[Pr(C8Cl4O4)(H2O)7](C8HCl4O4)·C8H2Cl4O4·H2O Mr = 1193.70

Triclinic, P1 Hall symbol: -P 1

a = 6.9395 (5) Å

b = 16.2519 (13) Å

c = 19.1287 (15) Å

α = 67.382 (1)°

β = 86.524 (1)°

γ = 81.535 (1)°

V = 1969.7 (3) Å3

Z = 2

F(000) = 1172

Dx = 2.013 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5233 reflections

θ = 2.2–27.7°

µ = 2.13 mm−1 T = 293 K Block, green

0.42 × 0.28 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin = 0.414, Tmax = 0.711

10795 measured reflections 6883 independent reflections 6066 reflections with I > 2σ(I)

Rint = 0.017

θmax = 25.0°, θmin = 2.1° h = −8→7

k = −17→19

l = −21→22

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.023 wR(F2) = 0.057 S = 1.07 6883 reflections 518 parameters 25 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0273P)2 + 0.4655P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.54 e Å−3

Δρmin = −0.50 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1272–m1274

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1272–m1274

O11 0.6984 (3) 0.92930 (15) 1.00936 (12) 0.0333 (5) H11A 0.6604 0.9508 1.0427 0.050* H11B 0.7608 0.9628 0.9722 0.050* O12 0.3227 (3) 0.22452 (16) 0.71844 (14) 0.0424 (6) O13 0.0242 (3) 0.28455 (15) 0.73729 (13) 0.0366 (5) H13 0.0217 0.2352 0.7717 0.055* O14 0.2471 (3) 0.42153 (18) 0.77746 (13) 0.0448 (6) O15 −0.0601 (3) 0.47471 (16) 0.74075 (12) 0.0341 (5) H15 −0.0760 0.4698 0.7849 0.051* O16 0.1635 (3) 0.54179 (14) 0.12264 (12) 0.0303 (5) O17 0.2886 (3) 0.46216 (14) 0.05436 (11) 0.0313 (5) O18 −0.1692 (4) 0.44973 (15) 0.08293 (12) 0.0378 (5) H18 −0.2042 0.4692 0.0387 0.057* O19 −0.0785 (4) 0.32278 (16) 0.06411 (13) 0.0424 (6) C1 −0.0143 (4) 1.0642 (2) 0.84322 (16) 0.0228 (6) C2 0.0691 (4) 1.05582 (19) 0.77073 (16) 0.0215 (6) C3 −0.0379 (4) 1.0915 (2) 0.70466 (17) 0.0264 (7) C4 0.0398 (5) 1.0814 (2) 0.63917 (17) 0.0304 (7) C5 0.2272 (5) 1.0370 (2) 0.64015 (17) 0.0311 (7) C6 0.3333 (4) 1.0000 (2) 0.70718 (17) 0.0257 (7) C7 0.2535 (4) 1.00799 (19) 0.77301 (16) 0.0224 (6) C8 0.3599 (4) 0.9641 (2) 0.84727 (18) 0.0324 (8) C9 0.1210 (4) 0.4488 (2) 0.72980 (16) 0.0242 (6) C10 0.1668 (4) 0.4538 (2) 0.65050 (16) 0.0232 (6) C11 0.1804 (4) 0.5357 (2) 0.59125 (17) 0.0261 (7) C12 0.2280 (4) 0.5391 (2) 0.51856 (17) 0.0273 (7) C13 0.2626 (4) 0.4600 (2) 0.50535 (16) 0.0272 (7) C14 0.2521 (4) 0.3775 (2) 0.56480 (17) 0.0262 (7) C15 0.2045 (4) 0.3739 (2) 0.63771 (16) 0.0229 (6) C16 0.1927 (4) 0.2858 (2) 0.70175 (17) 0.0251 (7) C17 −0.0786 (4) 0.3685 (2) 0.10117 (17) 0.0273 (7) C18 0.0334 (4) 0.33665 (19) 0.17400 (16) 0.0237 (6) C19 −0.0042 (5) 0.2603 (2) 0.23492 (17) 0.0291 (7) C20 0.1071 (5) 0.2289 (2) 0.30072 (17) 0.0316 (7) C21 0.2616 (5) 0.2730 (2) 0.30373 (17) 0.0311 (7) C22 0.2967 (4) 0.3504 (2) 0.24271 (17) 0.0281 (7) C23 0.1823 (4) 0.38345 (19) 0.17852 (16) 0.0234 (6) C24 0.2144 (4) 0.4695 (2) 0.11321 (16) 0.0244 (6) O20 0.3702 (4) 0.65970 (18) 0.23256 (16) 0.0558 (7) H20A 0.4690 0.6194 0.2442 0.084* H20B 0.2671 0.6457 0.2581 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1272–m1274

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1272–m1274

C20 0.048 (2) 0.0203 (16) 0.0211 (16) 0.0017 (14) 0.0082 (14) −0.0051 (14) C21 0.0416 (19) 0.0280 (17) 0.0199 (16) 0.0090 (14) −0.0036 (13) −0.0093 (14) C22 0.0335 (17) 0.0266 (17) 0.0257 (17) 0.0013 (13) −0.0018 (13) −0.0134 (14) C23 0.0295 (16) 0.0204 (15) 0.0199 (15) 0.0013 (12) 0.0008 (12) −0.0090 (13) C24 0.0234 (15) 0.0239 (16) 0.0242 (16) −0.0015 (12) −0.0038 (12) −0.0074 (14) O20 0.0344 (14) 0.0505 (17) 0.0646 (18) −0.0028 (12) 0.0126 (12) −0.0052 (14)

Geometric parameters (Å, º)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1272–m1274

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1272–m1274

Pr1—O11—H11B 121.0 C21—C20—Cl10 120.3 (3) H11A—O11—H11B 115.4 C19—C20—Cl10 120.1 (3) C16—O13—H13 109.5 C20—C21—C22 119.5 (3) C9—O15—H15 109.5 C20—C21—Cl11 120.2 (2) C17—O18—H18 109.5 C22—C21—Cl11 120.3 (3) O4—C1—O3 124.6 (3) C23—C22—C21 121.1 (3) O4—C1—C2 118.8 (3) C23—C22—Cl12 118.7 (2) O3—C1—C2 116.5 (3) C21—C22—Cl12 120.3 (2) C3—C2—C7 120.5 (3) C22—C23—C18 119.4 (3) C3—C2—C1 121.1 (3) C22—C23—C24 121.4 (3) C7—C2—C1 118.3 (2) C18—C23—C24 119.2 (2) C2—C3—C4 120.1 (3) O17—C24—O16 125.8 (3) C2—C3—Cl1 120.1 (2) O17—C24—C23 117.0 (3) C4—C3—Cl1 119.7 (2) O16—C24—C23 117.2 (3) C5—C4—C3 119.6 (3) H20A—O20—H20B 116.1

(11)

supporting information

sup-8

Acta Cryst. (2005). E61, m1272–m1274

C1—C2—C7—C6 −179.6 (3) C19—C20—C21—C22 3.4 (4) C3—C2—C7—C8 −175.5 (3) Cl10—C20—C21—C22 −175.8 (2) C1—C2—C7—C8 2.0 (4) C19—C20—C21—Cl11 −177.3 (2) Pr1—O1—C8—O2 0.9 (4) Cl10—C20—C21—Cl11 3.6 (4) Pr1—O1—C8—C7 −177.05 (19) C20—C21—C22—C23 −1.1 (4) C6—C7—C8—O2 114.8 (3) Cl11—C21—C22—C23 179.5 (2) C2—C7—C8—O2 −66.8 (4) C20—C21—C22—Cl12 −179.7 (2) C6—C7—C8—O1 −67.1 (4) Cl11—C21—C22—Cl12 0.9 (4) C2—C7—C8—O1 111.3 (3) C21—C22—C23—C18 −2.1 (4) O14—C9—C10—C11 −105.4 (3) Cl12—C22—C23—C18 176.5 (2) O15—C9—C10—C11 75.3 (3) C21—C22—C23—C24 177.6 (3) O14—C9—C10—C15 71.8 (4) Cl12—C22—C23—C24 −3.7 (4) O15—C9—C10—C15 −107.5 (3) C19—C18—C23—C22 3.1 (4) C15—C10—C11—C12 1.2 (4) C17—C18—C23—C22 −174.5 (3) C9—C10—C11—C12 178.3 (3) C19—C18—C23—C24 −176.7 (3) C15—C10—C11—Cl5 −177.7 (2) C17—C18—C23—C24 5.7 (4) C9—C10—C11—Cl5 −0.6 (4) C22—C23—C24—O17 107.5 (3) C10—C11—C12—C13 −0.2 (4) C18—C23—C24—O17 −72.8 (4) Cl5—C11—C12—C13 178.7 (2) C22—C23—C24—O16 −72.9 (4) C10—C11—C12—Cl6 −179.7 (2) C18—C23—C24—O16 106.9 (3) Cl5—C11—C12—Cl6 −0.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O5—H5A···O3i 0.85 1.92 2.727 (4) 158

O5—H5B···O19ii 0.85 1.95 2.791 (4) 172

O6—H6A···O17ii 0.85 1.89 2.732 (4) 170

O7—H7A···O19ii 0.85 2.25 3.034 (4) 153

O7—H7B···O14iii 0.85 2.05 2.897 (3) 172

O8—H8A···O20iv 0.85 1.88 2.715 (4) 167

O8—H8B···O16iv 0.85 2.15 2.760 (4) 129

O9—H9A···O20iv 0.85 1.95 2.787 (4) 166

O9—H9B···O2v 0.85 2.10 2.916 (4) 161

O10—H10A···O4vi 0.85 1.90 2.736 (3) 168

O10—H10B···O3 0.85 2.03 2.858 (3) 164 O11—H11A···O2v 0.85 1.87 2.716 (4) 174

O11—H11B···O3i 0.85 1.89 2.692 (3) 158

O13—H13···O4vii 0.82 1.75 2.558 (3) 167

O15—H15···O16viii 0.82 1.78 2.590 (3) 168

O18—H18···O17ix 0.82 1.78 2.580 (3) 166

O20—H20A···O14ii 0.85 2.05 2.817 (4) 149

O20—H20B···O13viii 0.85 2.18 2.850 (4) 135

O20—H20B···O15viii 0.85 2.59 3.171 (4) 127

Figure

Figure 1

References

Related documents

The results indicate that delta embedding learn- ing does not require the decision to fix the embed- ding or not in an NLP task, as delta embedding learning always harvests the

In the current study, Ki67 immunostaining was detected in high grade and late stage ovarian carcinomas which was statistically significant (p=0.001 and p<0.001, respectively),

Traditional Thai Massage (TTM) is one of the most popular alternative treatments in Thailand to relieve psychological stresses and anxiety which may be reflected

The spinal manipulation with ergonomic advice showed a greater improvement in postural sway (centre of foot pressure), pain sensitivity PPT, and quality of life compared

The data are mapped at an urban LAU1 level which is equivalent to NUTS4 regions (http://ec.europa.eu/eurostat/web/nuts/local- administrative-units). The time

In this study, a systemic review of 12 RCTs with a total of 460 patches or patients were summarised and a meta-analysis was carried out to compare the efficacy of combination

Most importantly, the com- bination of the use of half of the visit notes (used to predict Patient Context Vectors) and the first half of the patient ICD codes produced the best

Aim: This study evaluated and compared gingival microleakage at tooth restoration interface in deep Class II composite closed sandwich restorations (mesio-occlusal) using