• No results found

Bis{[tris­­(1H benzimidazol 2 ylmeth­yl)­amine]­chloro­cobalt(II)} tetra­chloro­cobaltate(II) methanol tetra­solvate

N/A
N/A
Protected

Academic year: 2020

Share "Bis{[tris­­(1H benzimidazol 2 ylmeth­yl)­amine]­chloro­cobalt(II)} tetra­chloro­cobaltate(II) methanol tetra­solvate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1067–m1069 doi:10.1107/S1600536805014066 Liet al. [CoCl(C

24H21N7)]2[CoCl4]4CH4O

m1067

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis{[tris(1

H

-benzimidazol-2-ylmethyl)amine]-chlorocobalt(II)} tetrachlorocobaltate(II) methanol

tetrasolvate

Xue-Mei Li,a,bSi-Si Feng,a Hong-Mei Zhang,aYing-Lan Su,aShi-Dong Qin,aLi-Ping Lu,a* Wan-Hua Xuecand Miao-Li Zhua*

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China,bDepartment of Chemistry, Yanbei Normal University, Datong, Shanxi 037009, People’s Republic of China, andcInstitute of Applied Chemistry, Yanbei Normal University, Datong, Shanxi 037009, People’s Republic of China

Correspondence e-mail:

luliping@sxu.edu.cn, miaoli@sxu.edu.cn

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.018 A˚ Rfactor = 0.092 wRfactor = 0.259

Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [CoCl(C24H21N7)]2[CoCl4]4CH3OH,

the crystal packing is stabilized by O—H Cl, N—H Cl and

N—H O hydrogen bonds, weak C—H Cl interactions, and

–stacking. The anion lies on a twofold rotation axis.

Comment

Imidazole (Im) and benzimidazole (Bzim) are common species in biological and biochemical structure and function (Sundberget al.,1977; Santoro et al., 2000). Their derivatives have also found application in drug design in the form of

antitumour (Arrowsmithet al., 2002) and anticancer (Hayet

al., 2003) agents. In an effort to explore these types of species in more detail, we have synthesized tris(benzimidazol-2-ylmethyl)amine (NTB), which contains three benzimidazole rings, and report one of its complexes here.

The molecular structure of the title compound, (I), is shown in Fig. 1 and selected geometric data are listed in Table 1. The

asymmetric unit consists of a [Co(NTB)Cl]+cation, half of a

[CoCl4]2 anion and two solvent methanol molecules. The

complete tetrachlorocobaltate anion is generated by twofold symmetry (atom Co2 lies on the twofold axis). The cation has a trigonal–bipyramidal coordination geometry around the Co1 centre, and the three benzimidazolyl N atoms make up the

trigonal plane. The apical N atom of NTB and the Clanion

occupy the axial positions (Table 1). The dihedral angles

between the Bzim rings are 111.9 (2) between plane 1 (C2–

C8/N2/N3) and plane 2 (C10–C16/N4/N5), 125.5 (3)between

plane 2 and plane 3 (C19–C24/N6/N7), and 118.6 (2)between

planes 1 and 3. The Co—N(Bzim) bond lengths range from 2.016 (8) to 2.053 (7) A˚ , which is slightly longer than in related structures [2.008 (2)–2.031 (2) A˚ ; Hammes et al., 2002]. This difference may be a consequence of the steric constraint imposed by the chelate coordination.

As shown in Table 2 and Fig. 2, the crystal packing of (I) is

stabilized by O—H Cl, N—H Cl and N—H O hydrogen

(2)

bonds, and weak C—H Cl interactions. In addition,

neigh-bouring aromatic rings interact by way of – stacking

interactions, with distances of 3.54 (2) [plane 1/plane 1(1 2x, 1

2y, 1z)] and 3.58 (2) A˚ [plane 2/plane 2(x, 1y,

1z)].

Experimental

All chemicals were of reagent grade and commercially available, and were used without further purification. Nitrilotriacetic acid (0.4790 g, 2.5 mmol) and 1,2-diaminobenzene (0.8123 g, 7.5 mmol) and 10 ml of glycol were mixed in 250 ml beaker. The mixture was irradiated for 15 min intermittently with a WP700 LG microwave oven (output power 350 W), and then cooled to room temperature. Distilled water (about 80 ml) was added and a yellow precipitate formed immedi-ately; this was filtered off and washed with distilled water, yielding a light-yellow product of tris(benzimidazol-2-ylmethyl)amine. CoCl26H2O (0.0602 g, 14mmol) was added to a solution of NTB

(0.0510 g, 1

8mmol) in a mixture of methanol (5 ml) and absolute

ethanol (5 ml), and stirred at room temperature for 2 h. The deep-red solution was left at room temperature and black crystals of (I) were obtained by slow evaporation of the solvent over several days.

Crystal data

[CoCl(C24H21N7)]2[CoCl4]4CH4O Mr= 1332.61

Monoclinic,C2=c a= 23.432 (7) A˚

b= 16.752 (5) A˚

c= 16.134 (5) A˚

= 94.372 (5)

V= 6315 (3) A˚3 Z= 4

Dx= 1.402 Mg m

3

MoKradiation Cell parameters from 1380

reflections

= 2.7–16.1 = 1.09 mm1 T= 298 (2) K Block, black

0.300.200.10 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2000)

Tmin= 0.737,Tmax= 0.899 15 114 measured reflections

5539 independent reflections 2235 reflections withI> 2(I)

Rint= 0.085 max= 25.0 h=27!24

k=14!19

l=19!18

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.092 wR(F2) = 0.259

S= 0.94 5539 reflections 361 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1169P)2]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.002

max= 0.70 e A˚

3

min=0.64 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Co1—N6 2.016 (8)

Co1—N4 2.019 (7)

Co1—N2 2.053 (7)

Co1—Cl1 2.269 (3)

Co1—N1 2.375 (7)

Co2—Cl3 2.214 (5) Co2—Cl2 2.248 (3)

N6—Co1—N4 113.7 (3) N6—Co1—N2 115.8 (3) N4—Co1—N2 112.2 (3) N6—Co1—Cl1 102.9 (3) N4—Co1—Cl1 107.3 (3)

N2—Co1—Cl1 103.6 (2) N6—Co1—N1 76.0 (3) N4—Co1—N1 76.2 (3) N2—Co1—N1 74.1 (3) Cl1—Co1—N1 176.44 (19)

N6—Co1—N2—C3 133.0 (7) N2—Co1—N4—C11 124.0 (8)

N4—Co1—N6—C19 129.1 (9)

metal-organic papers

m1068

Liet al. [CoCl(C

[image:2.610.294.560.67.329.2]

24H21N7)]2[CoCl4]4CH4O Acta Cryst.(2005). E61, m1067–m1069

Figure 2

[image:2.610.45.556.69.336.2]

The packing in (I), showing intermolecular interactions as dashed lines. Figure 1

View of (I), showing 50% displacement ellipsoids (arbitrary spheres for H atoms). Atoms with the suffixAare generated by the symmetry operation (2x,y,1

(3)
[image:3.610.43.297.111.200.2]

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 Cl1i

0.82 2.41 3.152 (8) 152 N7—H7 Cl2ii

0.86 2.31 3.145 (11) 163 N5—H5 O2iii

0.86 1.93 2.786 (12) 178 N3—H3 O1 0.86 1.89 2.706 (12) 158 C8—H8 Cl1 0.93 2.81 3.545 (12) 137 C16—H16 Cl1 0.93 2.85 3.616 (10) 140 C24—H24 Cl1 0.93 2.73 3.477 (13) 138 C16—H16 C16iv 0.93 2.90 3.357 (18) 112

Symmetry codes: (i) xþ1

2;yþ12;zþ1; (ii)x1;y1;z; (iii)x1;y;z; (iv)

x;y;zþ1 2.

H atoms were placed in geometrically idealized positions with C— H = 0.93–0.97 A˚ , N—H = 0.86 A˚ and O—H = 0.82 A˚, and refined as riding with the constraint Uiso(H) = 1.2Ueq(NTB carrier) or

1.5Ueq(methanol carrier) applied.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL/PC(Sheldrick, 1999); software used to prepare material for publication:SHELXTL/PC.

This work is supported financially by the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2002 (for MLZ).

References

Arrowsmith, J., Jennings, S. A., Clark, A. S. & Stevens, M. F. G. (2002).J. Med. Chem.45, 5458–5470.

Bruker (2000).SMART(Version 5.0) andSAINT(Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Hammes, B. S., Kieber-Emmons, M. T., Sommer, R. & Rheingold, A. L. (2002).

Inorg. Chem.41, 1351–1353.

Hay, M. P., Anderson, R. F., Ferry, D. M., Wilson, W. R. & Denny, W. A. (2003).

J. Med. Chem.46, 5533–5545.

Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. (2000).J. Am. Chem. Soc.122, 2433–2439.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1999).SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2000).SADABS. University of Go¨ttingen, Germany. Sundberg, R. J., Yilmaz, I. & Mente, D. C. (1977).Inorg. Chem.16, 1470–

1476.

metal-organic papers

Acta Cryst.(2005). E61, m1067–m1069 Liet al. [CoCl(C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m1067–m1069

supporting information

Acta Cryst. (2005). E61, m1067–m1069 [https://doi.org/10.1107/S1600536805014066]

Bis{[tris(1

H

-benzimidazol-2-ylmethyl)amine]chlorocobalt(II)}

tetrachloro-cobaltate(II) methanol tetrasolvate

Xue-Mei Li, Si-Si Feng, Hong-Mei Zhang, Ying-Lan Su, Shi-Dong Qin, Li-Ping Lu, Wan-Hua Xue

and Miao-Li Zhu

Bis{chloro[tris(1H-benzimidazol-2-ylmethyl)amine]cobalt(II)} tetrachlorocobalt(II) methanol tetrasolvate

Crystal data

[CoCl(C24H21N7)]2[CoCl4]·4CH4O

Mr = 1332.61

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 23.432 (7) Å

b = 16.752 (5) Å

c = 16.134 (5) Å

β = 94.372 (5)°

V = 6315 (3) Å3

Z = 4

F(000) = 2732

Dx = 1.402 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1380 reflections

θ = 2.7–16.1°

µ = 1.09 mm−1

T = 298 K Block, black

0.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2000)

Tmin = 0.737, Tmax = 0.899

15114 measured reflections 5539 independent reflections 2235 reflections with I > 2σ(I)

Rint = 0.085

θmax = 25.0°, θmin = 1.5°

h = −27→24

k = −14→19

l = −19→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.092

wR(F2) = 0.259

S = 0.94 5539 reflections 361 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1169P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.70 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m1067–m1069

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.09552 (5) 0.31455 (8) 0.38875 (7) 0.0626 (5) Cl1 0.13355 (11) 0.40684 (18) 0.30595 (17) 0.0977 (10) N1 0.0612 (3) 0.2136 (5) 0.4755 (4) 0.066 (2) N2 0.1573 (3) 0.3009 (5) 0.4850 (4) 0.063 (2) N3 0.1940 (4) 0.2464 (6) 0.6001 (5) 0.080 (2)

H3 0.1990 0.2125 0.6400 0.096*

N4 0.0225 (3) 0.3610 (5) 0.4270 (4) 0.063 (2) N5 −0.0538 (3) 0.3597 (5) 0.4986 (5) 0.074 (2) H5 −0.0776 0.3436 0.5331 0.089* N6 0.0829 (3) 0.2197 (6) 0.3126 (5) 0.069 (2) N7 0.0641 (4) 0.0889 (6) 0.2933 (6) 0.096 (3)

H7 0.0532 0.0411 0.3037 0.116*

C1 0.1101 (4) 0.1807 (6) 0.5248 (6) 0.076 (3) H1A 0.0986 0.1619 0.5779 0.091* H1B 0.1259 0.1360 0.4959 0.091* C2 0.1528 (4) 0.2433 (6) 0.5377 (5) 0.057 (2) C3 0.2030 (4) 0.3486 (6) 0.5168 (6) 0.066 (3) C4 0.2262 (5) 0.3122 (8) 0.5895 (6) 0.079 (3) C5 0.2729 (5) 0.3460 (9) 0.6369 (8) 0.103 (4) H5A 0.2886 0.3218 0.6852 0.124* C6 0.2934 (5) 0.4136 (11) 0.6098 (9) 0.112 (5)

H6 0.3239 0.4371 0.6411 0.134*

C7 0.2724 (5) 0.4521 (8) 0.5373 (10) 0.112 (5) H7A 0.2891 0.4994 0.5213 0.135* C8 0.2266 (4) 0.4200 (7) 0.4892 (7) 0.084 (3)

H8 0.2120 0.4448 0.4405 0.101*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m1067–m1069

H14 −0.1173 0.5887 0.3816 0.108* C15 −0.0426 (5) 0.5495 (7) 0.3451 (6) 0.093 (3) H15 −0.0371 0.5920 0.3094 0.112* C16 −0.0025 (4) 0.4900 (7) 0.3537 (6) 0.081 (3) H16 0.0302 0.4925 0.3246 0.097* C17 0.0334 (4) 0.1539 (7) 0.4207 (6) 0.086 (3) H17A −0.0070 0.1662 0.4105 0.103* H17B 0.0369 0.1015 0.4463 0.103* C18 0.0614 (4) 0.1543 (8) 0.3412 (7) 0.085 (3) C19 0.0999 (4) 0.1966 (9) 0.2356 (7) 0.083 (3) C20 0.0890 (5) 0.1170 (11) 0.2227 (8) 0.098 (4) C21 0.1019 (6) 0.0718 (12) 0.1496 (10) 0.140 (7) H21 0.0945 0.0175 0.1427 0.167* C22 0.1259 (8) 0.1175 (16) 0.0931 (12) 0.171 (11) H22 0.1357 0.0925 0.0447 0.206* C23 0.1374 (6) 0.1990 (13) 0.1003 (9) 0.138 (7) H23 0.1533 0.2259 0.0572 0.166* C24 0.1247 (4) 0.2418 (9) 0.1749 (7) 0.104 (4) H24 0.1326 0.2959 0.1820 0.125* C25 0.2215 (8) 0.1046 (11) 0.7871 (11) 0.210 (8) H25A 0.2373 0.1289 0.8376 0.315* H25B 0.2341 0.0501 0.7849 0.315* H25C 0.1805 0.1060 0.7855 0.315* O1 0.2399 (4) 0.1464 (8) 0.7189 (6) 0.161 (4)

H1 0.2749 0.1479 0.7220 0.242*

C26 0.8202 (10) 0.3701 (10) 0.6502 (13) 0.249 (10) H26A 0.8176 0.3566 0.7076 0.374* H26B 0.7830 0.3656 0.6210 0.374* H26C 0.8338 0.4239 0.6461 0.374* O2 0.8674 (6) 0.3052 (7) 0.6065 (6) 0.180 (4)

H2 0.8805 0.2737 0.6420 0.271*

Co2 1.0000 0.85514 (13) 0.2500 0.1017 (8) Cl2 1.0145 (3) 0.9309 (2) 0.36469 (19) 0.222 (3) Cl3 0.9242 (2) 0.7777 (4) 0.2594 (2) 0.231 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m1067–m1069

C2 0.056 (6) 0.065 (7) 0.049 (5) 0.020 (5) 0.003 (5) 0.002 (5) C3 0.056 (6) 0.065 (7) 0.077 (7) 0.019 (6) 0.008 (5) −0.020 (6) C4 0.066 (7) 0.106 (10) 0.065 (7) 0.039 (7) 0.008 (6) −0.010 (7) C5 0.055 (8) 0.163 (14) 0.088 (8) 0.038 (8) −0.008 (7) −0.024 (10) C6 0.062 (9) 0.164 (16) 0.107 (11) 0.009 (9) −0.008 (7) −0.039 (11) C7 0.056 (8) 0.096 (10) 0.189 (14) −0.010 (7) 0.037 (9) −0.053 (11) C8 0.054 (7) 0.096 (9) 0.105 (8) 0.012 (6) 0.013 (6) −0.015 (8) C9 0.070 (6) 0.072 (7) 0.067 (6) 0.004 (5) 0.015 (5) 0.005 (6) C10 0.061 (6) 0.061 (7) 0.070 (6) 0.006 (6) 0.014 (5) −0.003 (6) C11 0.056 (6) 0.077 (8) 0.055 (6) 0.015 (6) −0.002 (5) −0.011 (6) C12 0.078 (7) 0.067 (8) 0.062 (6) 0.013 (6) −0.003 (5) −0.011 (6) C13 0.085 (8) 0.097 (9) 0.091 (8) 0.026 (7) 0.002 (6) −0.022 (8) C14 0.107 (9) 0.085 (9) 0.077 (7) 0.043 (7) 0.000 (7) 0.001 (7) C15 0.106 (9) 0.110 (10) 0.064 (7) 0.030 (8) 0.009 (6) 0.002 (7) C16 0.089 (8) 0.090 (8) 0.064 (6) 0.038 (7) 0.006 (5) 0.014 (6) C17 0.079 (7) 0.097 (9) 0.084 (7) 0.005 (6) 0.022 (6) 0.005 (7) C18 0.064 (7) 0.097 (10) 0.092 (9) 0.012 (7) −0.021 (6) −0.039 (8) C19 0.059 (7) 0.119 (11) 0.073 (8) 0.008 (7) 0.006 (6) −0.003 (8) C20 0.060 (7) 0.154 (14) 0.078 (9) 0.022 (8) 0.000 (6) −0.024 (10) C21 0.101 (11) 0.194 (19) 0.118 (12) 0.046 (11) −0.025 (9) −0.074 (14) C22 0.132 (16) 0.27 (3) 0.112 (14) 0.10 (2) −0.001 (11) −0.06 (2) C23 0.100 (10) 0.24 (2) 0.073 (9) 0.075 (14) 0.023 (7) 0.009 (13) C24 0.069 (7) 0.161 (13) 0.081 (8) 0.032 (8) −0.008 (6) −0.017 (9) C25 0.200 (11) 0.217 (11) 0.217 (11) 0.005 (9) 0.045 (9) 0.044 (9) O1 0.111 (6) 0.246 (11) 0.131 (7) 0.074 (8) 0.040 (6) 0.091 (8) C26 0.32 (3) 0.155 (17) 0.28 (2) 0.056 (18) 0.06 (2) 0.052 (18) O2 0.195 (11) 0.209 (13) 0.148 (8) 0.008 (9) 0.088 (8) 0.041 (8) Co2 0.155 (2) 0.0885 (17) 0.0637 (12) 0.000 0.0255 (13) 0.000 Cl2 0.514 (9) 0.084 (3) 0.065 (2) −0.016 (4) 0.006 (3) −0.0075 (19) Cl3 0.173 (4) 0.418 (8) 0.099 (3) −0.111 (5) −0.005 (3) 0.019 (4)

Geometric parameters (Å, º)

Co1—N6 2.016 (8) C9—H9B 0.9700

Co1—N4 2.019 (7) C11—C16 1.374 (12)

Co1—N2 2.053 (7) C11—C12 1.381 (11)

Co1—Cl1 2.269 (3) C12—C13 1.402 (13)

Co1—N1 2.375 (7) C13—C14 1.363 (13)

N1—C1 1.453 (10) C13—H13 0.9300

N1—C17 1.456 (11) C14—C15 1.374 (13)

N1—C9 1.485 (10) C14—H14 0.9300

N2—C2 1.296 (10) C15—C16 1.369 (13)

N2—C3 1.402 (11) C15—H15 0.9300

N3—C2 1.342 (11) C16—H16 0.9300

N3—C4 1.353 (12) C17—C18 1.485 (14)

N3—H3 0.8600 C17—H17A 0.9700

N4—C10 1.297 (10) C17—H17B 0.9700

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m1067–m1069

N5—C10 1.337 (10) C19—C24 1.399 (14) N5—C12 1.363 (11) C20—C21 1.453 (17)

N5—H5 0.8600 C21—C22 1.35 (2)

N6—C18 1.305 (13) C21—H21 0.9300

N6—C19 1.389 (12) C22—C23 1.39 (2)

N7—C18 1.345 (12) C22—H22 0.9300

N7—C20 1.400 (13) C23—C24 1.452 (17)

N7—H7 0.8600 C23—H23 0.9300

C1—C2 1.452 (12) C24—H24 0.9300

C1—H1A 0.9700 C25—O1 1.400 (16)

C1—H1B 0.9700 C25—H25A 0.9600

C3—C4 1.395 (13) C25—H25B 0.9600

C3—C8 1.405 (13) C25—H25C 0.9600

C4—C5 1.406 (16) O1—H1 0.8200

C5—C6 1.318 (16) C26—O2 1.739 (19)

C5—H5A 0.9300 C26—H26A 0.9600

C6—C7 1.392 (17) C26—H26B 0.9600

C6—H6 0.9300 C26—H26C 0.9600

C7—C8 1.384 (14) O2—H2 0.8200

C7—H7A 0.9300 Co2—Cl3i 2.214 (5)

C8—H8 0.9300 Co2—Cl3 2.214 (5)

C9—C10 1.493 (12) Co2—Cl2 2.248 (3)

C9—H9A 0.9700 Co2—Cl2i 2.248 (3)

N6—Co1—N4 113.7 (3) N4—C10—C9 122.0 (8) N6—Co1—N2 115.8 (3) N5—C10—C9 124.4 (9) N4—Co1—N2 112.2 (3) C16—C11—N4 131.7 (9) N6—Co1—Cl1 102.9 (3) C16—C11—C12 118.6 (10) N4—Co1—Cl1 107.3 (3) N4—C11—C12 109.5 (9) N2—Co1—Cl1 103.6 (2) N5—C12—C11 105.3 (9) N6—Co1—N1 76.0 (3) N5—C12—C13 132.5 (11) N4—Co1—N1 76.2 (3) C11—C12—C13 122.2 (11) N2—Co1—N1 74.1 (3) C14—C13—C12 117.0 (11) Cl1—Co1—N1 176.44 (19) C14—C13—H13 121.5 C1—N1—C17 111.7 (8) C12—C13—H13 121.5 C1—N1—C9 112.6 (7) C13—C14—C15 121.4 (10) C17—N1—C9 111.0 (7) C13—C14—H14 119.3 C1—N1—Co1 107.7 (6) C15—C14—H14 119.3 C17—N1—Co1 106.7 (5) C16—C15—C14 120.9 (11) C9—N1—Co1 106.8 (5) C16—C15—H15 119.5 C2—N2—C3 106.4 (8) C14—C15—H15 119.5 C2—N2—Co1 119.4 (6) C15—C16—C11 119.8 (10) C3—N2—Co1 133.5 (7) C15—C16—H16 120.1 C2—N3—C4 108.3 (9) C11—C16—H16 120.1 C2—N3—H3 125.8 N1—C17—C18 108.3 (9)

C4—N3—H3 125.8 N1—C17—H17A 110.0

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, m1067–m1069

C11—N4—Co1 135.1 (7) C18—C17—H17B 110.0 C10—N5—C12 107.1 (8) H17A—C17—H17B 108.4 C10—N5—H5 126.5 N6—C18—N7 116.4 (11) C12—N5—H5 126.5 N6—C18—C17 121.2 (11) C18—N6—C19 103.1 (10) N7—C18—C17 122.4 (13) C18—N6—Co1 119.3 (7) C20—C19—N6 110.1 (11) C19—N6—Co1 136.6 (9) C20—C19—C24 120.3 (12) C18—N7—C20 103.6 (11) N6—C19—C24 129.6 (13) C18—N7—H7 128.2 C19—C20—N7 106.7 (11) C20—N7—H7 128.2 C19—C20—C21 125.6 (15) C2—C1—N1 108.1 (8) N7—C20—C21 127.7 (17) C2—C1—H1A 110.1 C22—C21—C20 112 (2)

N1—C1—H1A 110.1 C22—C21—H21 123.9

C2—C1—H1B 110.1 C20—C21—H21 123.9

N1—C1—H1B 110.1 C21—C22—C23 126 (2) H1A—C1—H1B 108.4 C21—C22—H22 117.0 N2—C2—N3 111.9 (9) C23—C22—H22 117.0 N2—C2—C1 122.2 (8) C22—C23—C24 120.2 (18) N3—C2—C1 125.7 (10) C22—C23—H23 119.9 C4—C3—N2 107.2 (10) C24—C23—H23 119.9 C4—C3—C8 120.1 (11) C19—C24—C23 115.8 (14) N2—C3—C8 132.7 (10) C19—C24—H24 122.1 N3—C4—C3 106.1 (10) C23—C24—H24 122.1 N3—C4—C5 132.7 (12) O1—C25—H25A 109.5 C3—C4—C5 121.2 (13) O1—C25—H25B 109.5 C6—C5—C4 117.1 (14) H25A—C25—H25B 109.5

C6—C5—H5A 121.5 O1—C25—H25C 109.5

C4—C5—H5A 121.5 H25A—C25—H25C 109.5 C5—C6—C7 124.1 (14) H25B—C25—H25C 109.5

C5—C6—H6 117.9 C25—O1—H1 109.5

C7—C6—H6 117.9 O2—C26—H26A 109.5

C8—C7—C6 120.1 (13) O2—C26—H26B 109.5 C8—C7—H7A 120.0 H26A—C26—H26B 109.5

C6—C7—H7A 120.0 O2—C26—H26C 109.5

C7—C8—C3 117.4 (11) H26A—C26—H26C 109.5 C7—C8—H8 121.3 H26B—C26—H26C 109.5

C3—C8—H8 121.3 C26—O2—H2 109.5

N1—C9—C10 108.5 (7) Cl3i—Co2—Cl3 108.2 (4)

N1—C9—H9A 110.0 Cl3i—Co2—Cl2 108.4 (2)

C10—C9—H9A 110.0 Cl3—Co2—Cl2 110.27 (19) N1—C9—H9B 110.0 Cl3i—Co2—Cl2i 110.27 (19)

C10—C9—H9B 110.0 Cl3—Co2—Cl2i 108.4 (2)

H9A—C9—H9B 108.4 Cl2—Co2—Cl2i 111.3 (2)

N4—C10—N5 113.3 (9)

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, m1067–m1069

(11)

supporting information

sup-8 Acta Cryst. (2005). E61, m1067–m1069

C8—C3—C4—N3 178.9 (8) C19—C20—C21—C22 −1 (2) N2—C3—C4—C5 −179.6 (8) N7—C20—C21—C22 −179.9 (13) C8—C3—C4—C5 0.6 (13) C20—C21—C22—C23 −1 (3) N3—C4—C5—C6 −177.4 (11) C21—C22—C23—C24 2 (3) C3—C4—C5—C6 0.4 (16) C20—C19—C24—C23 0.0 (15) C4—C5—C6—C7 −1 (2) N6—C19—C24—C23 −180.0 (10) C5—C6—C7—C8 1 (2) C22—C23—C24—C19 −1.3 (19) C6—C7—C8—C3 0.2 (15)

Symmetry code: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···Cl1ii 0.82 2.41 3.152 (8) 152

N7—H7···Cl2iii 0.86 2.31 3.145 (11) 163

N5—H5···O2iv 0.86 1.93 2.786 (12) 178

N3—H3···O1 0.86 1.89 2.706 (12) 158

C8—H8···Cl1 0.93 2.81 3.545 (12) 137 C16—H16···Cl1 0.93 2.85 3.616 (10) 140 C24—H24···Cl1 0.93 2.73 3.477 (13) 138 C16—H16···C16v 0.93 2.90 3.357 (18) 112

Figure

Figure 1
Table 2Hydrogen-bond geometry (A˚ , �).

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical