• No results found

Bis{5 amino 3 cyano 1 [2,6 di­chloro 4 (tri­fluoro­methyl)­phenyl] 1H pyrazol 4 yl} di­sulfide aceto­nitrile disolvate

N/A
N/A
Protected

Academic year: 2020

Share "Bis{5 amino 3 cyano 1 [2,6 di­chloro 4 (tri­fluoro­methyl)­phenyl] 1H pyrazol 4 yl} di­sulfide aceto­nitrile disolvate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1564

Tanget al. C

22H8Cl4F6N8S22C2H3N doi:10.1107/S1600536805013085 Acta Cryst.(2005). E61, o1564–o1565

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Bis{5-amino-3-cyano-1-[2,6-dichloro-4-(tri-fluoromethyl)phenyl]-1

H

-pyrazol-4-yl}

disulfide acetonitrile disolvate

Ri-Yuan Tang, Ping Zhong,* Shu-Yan Li and Mao-Lin Hu

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People’s Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.060 wRfactor = 0.171

Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The disulfide moiety in the title compound, C22H8Cl4F6N8S2

-2C2H3N, has an overall Z shape. The molecule possesses a

crystallographically imposed twofold rotation axis. The pyrazole and adjacent benzene ring make a dihedral angle of 88.16 (12). Intermolecular N—H N hydrogen bonds link

the amine groups with the acetonitrile solvent molecules.

Comment

The title compound, (I) (Fig. 1), is an important starting material for the synthesis of a number of insecticides (Clavelet al., 2003; Hattonet al., 1993). The molecule of (I) has a central S—S fragment which links two

5-amino-3-cyano-1-[2,6-di-chloro-4-(trifluoromethyl)phenyl]pyrazol-4-yl groups and

occupies a special position on a twofold rotation axis, which is normal to the S—S bond.. The pyrazole and adjacent benzene

ring make a dihedral angle of 88.16 (12). One of the two

amine group H atoms forms a hydrogen bond with the cyano N atom of an acetonitrile solvent molecule (Table 1).

Experimental

According to the method of Hattonet al.(1993), the reaction of 2,6-dichloro-4-(trifluoromethyl)aniline with a suspension of nitrosyl-sulfuric acid, followed by reaction with a solution of ethyl 2,3-di-cyanopropionate in acetic acid, was used to obtain 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazole. According to the method of Clavelet al.(2003), to a solution of chlorobenzene (12.56 g) containing 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoro-methyl)phenyl]-1H-pyrazole (7.33 g, 22.8 mmol), acetonitrile (16.74 g) was added, followed by the injection of sulfur monochloride (1.54 g 11.4 mmol). The title compound was obtained in 87.2% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution (m.p.575–577 K). IR (KBr,

cm1): 3442, 3316, 2249, 1702, 1632, 1557, 1507, 1142, 881, 816;1H

NMR (CDCl3):8.07 (s, 4H), 6.36 (s, 4H); 13

C NMR (C3D6O):152.7

(2C), 137.5 (2C), 136.9 (2C), 134.7 (2C), 132.3 (2C), 127.3 (2C), 127.2 (4C), 127.1 (2C), 123.3 (2C), 113.2 (2C).

(2)

Crystal data

C22H8Cl4F6N8S22C2H3N

Mr= 786.39 Monoclinic,C2=c a= 12.267 (3) A˚

b= 13.083 (3) A˚

c= 20.919 (6) A˚

= 92.423 (5)

V= 3354.5 (15) A˚3

Z= 4

Dx= 1.557 Mg m 3

MoKradiation Cell parameters from 3364

reflections

= 2.3–25.0 = 0.55 mm1

T= 298 (2) K Block, yellow 0.450.340.27 mm

Data collection

Bruker SMART APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.791,Tmax= 0.866

8406 measured reflections

2961 independent reflections 2520 reflections withI> 2(I)

Rint= 0.024

max= 25.2

h=14!8

k=15!15

l=25!22

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.060

wR(F2) = 0.171

S= 1.04 2961 reflections 224 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0937P)2 + 6.8928P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.95 e A˚

3 min=0.45 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

S1—C10 1.729 (3) S1—S1i

2.0948 (19) Cl1—C6 1.731 (3) Cl2—C4 1.722 (3)

F1—C1 1.245 (6)

F2—C1 1.311 (7)

F3—C1 1.228 (6)

N1—C11 1.356 (4)

N1—N2 1.374 (4)

N1—C5 1.422 (4)

N2—C9 1.319 (4)

N3—C8 1.143 (5)

N4—C11 1.345 (4)

C8—C9 1.436 (5)

C9—C10 1.418 (5) C10—C11 1.388 (4)

C10—S1—S1i

104.82 (12) C11—N1—N2 113.3 (3) N2—N1—C5 120.5 (3) C9—N2—N1 103.2 (3) F3—C1—F1 112.1 (5) F3—C1—F2 100.8 (5) F1—C1—F2 100.3 (5)

N2—C9—C10 113.3 (3) N2—C9—C8 120.4 (3) C11—C10—C9 104.1 (3) C11—C10—S1 126.4 (3) C9—C10—S1 129.5 (2) N4—C11—N1 122.7 (3) N1—C11—C10 106.2 (3)

[image:2.610.314.563.74.188.2]

Symmetry code: (i) 2x;y;1 2z.

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N4—H4B N5ii 0.82 2.26 3.060 (5) 164

Symmetry code: (ii)x1 2;y

1 2;z.

All H atoms were initially located in a difference Fourier map and then placed in geometrically idealized positions and included in the refinement in a riding-model approximation, with N—H = 0.82– 0.83 A˚ , C—H = 0.93–0.96 A˚ andUiso(H) = 1.2–1.5Ueqof the carrier

atom. High displacement parameters for atoms F1, F2 and F3 indi-cated either large thermal motion or rotational disorder of the tri-fluoromethyl group. However, attempts to represent the CF3group

using a model of disorder were unsuccessful. The inability to take properly into account the electron-density distribution in the vicinity of the CF3group is the most probable reason for the rather limited

overall precision of the structure.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP

(Bruker, 2002); software used to prepare material for publication:

SHELXL97.

This work was supported by the National Natural Science Foundation of China (grant No.20272043) and the Natural

Science Foundation of Zhejiang Province (grant No.

M203001).

References

Bruker (2002). SMART, SAINT, SADABS and XP. Bruker AXS Inc., Madison, Wisconsin, USA.

Clavel, J. L., Pelta, I., Bars, L. & Charreau, P. (2003). US Patent No. 6 620 943. Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. &

Roberts, D. A. (1993). US Patent No. 5 232 940.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Figure 1

View of (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by 2x,y,1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o1564–o1565

supporting information

Acta Cryst. (2005). E61, o1564–o1565 [https://doi.org/10.1107/S1600536805013085]

Bis{5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1

H

-pyrazol-4-yl} disulfide acetonitrile disolvate

Ri-Yuan Tang, Ping Zhong, Shu-Yan Li and Mao-Lin Hu

Bis{5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazol-4- yl}disulfide acetonitrile disolvate

Crystal data

C22H8Cl4F6N8S2·2C2H3N

Mr = 786.39 Monoclinic, C2/c

Hall symbol: -C2yc

a = 12.267 (3) Å

b = 13.083 (3) Å

c = 20.919 (6) Å

β = 92.423 (5)°

V = 3354.5 (15) Å3

Z = 4

F(000) = 1576

Dx = 1.557 Mg m−3

Melting point: 576 K

Mo radiation, λ = 0.71073 Å Cell parameters from 3364 reflections

θ = 2.3–25.0°

µ = 0.55 mm−1

T = 298 K Block, yellow

0.45 × 0.34 × 0.27 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.791, Tmax = 0.866

8406 measured reflections 2961 independent reflections 2520 reflections with I > 2σ(I)

Rint = 0.024

θmax = 25.2°, θmin = 2.0°

h = −14→8

k = −15→15

l = −25→22

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.060

wR(F2) = 0.171

S = 1.04 2961 reflections 224 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0937P)2 + 6.8928P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.95 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 1.02599 (7) 0.43899 (6) 0.29834 (4) 0.0464 (3) Cl1 0.80232 (9) 0.58066 (10) 0.51887 (5) 0.0729 (4) Cl2 0.65557 (9) 0.69557 (8) 0.28458 (4) 0.0617 (3) F1 0.3882 (3) 0.6716 (5) 0.5299 (2) 0.178 (3) F2 0.3996 (4) 0.8082 (4) 0.4921 (3) 0.198 (3) F3 0.3297 (3) 0.7022 (6) 0.4386 (2) 0.203 (3) N1 0.8191 (2) 0.6163 (2) 0.37915 (13) 0.0434 (6) N2 0.8996 (2) 0.6884 (2) 0.37329 (15) 0.0490 (7) N3 1.1596 (3) 0.7237 (3) 0.3201 (2) 0.0780 (11) N4 0.7771 (3) 0.4435 (2) 0.35485 (19) 0.0579 (8) N5 1.0281 (4) 0.9578 (3) 0.3522 (3) 0.0956 (14) C1 0.4071 (4) 0.7112 (4) 0.4774 (2) 0.0753 (13) C2 0.5168 (3) 0.6883 (3) 0.45207 (18) 0.0517 (9) C3 0.5324 (3) 0.7034 (3) 0.38815 (17) 0.0468 (8)

H3 0.4764 0.7283 0.3612 0.056*

C4 0.6331 (3) 0.6808 (2) 0.36473 (16) 0.0439 (8) C5 0.7175 (3) 0.6433 (2) 0.40483 (16) 0.0425 (8) C6 0.6985 (3) 0.6288 (3) 0.46899 (16) 0.0478 (8) C7 0.5987 (3) 0.6511 (3) 0.49296 (17) 0.0537 (9)

H7 0.5865 0.6413 0.5361 0.064*

C8 1.0783 (3) 0.6869 (3) 0.33188 (19) 0.0554 (9) C9 0.9775 (3) 0.6374 (3) 0.34575 (16) 0.0432 (7) C10 0.9500 (3) 0.5339 (2) 0.33287 (15) 0.0401 (7) C11 0.8455 (3) 0.5239 (2) 0.35503 (15) 0.0400 (7) C12 0.8295 (4) 0.9399 (5) 0.3115 (3) 0.0958 (17) H12A 0.7995 0.8784 0.3286 0.144* H12B 0.8256 0.9367 0.2656 0.144* H12C 0.7886 0.9977 0.3254 0.144* C13 0.9415 (4) 0.9501 (3) 0.3337 (2) 0.0642 (11)

H4A 0.793 0.387 0.339 0.077*

H4B 0.7120 0.450 0.362 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o1564–o1565

Cl1 0.0559 (6) 0.1005 (9) 0.0622 (6) 0.0194 (5) 0.0005 (5) 0.0126 (5) Cl2 0.0713 (7) 0.0689 (6) 0.0461 (5) 0.0125 (5) 0.0178 (5) 0.0062 (4) F1 0.090 (2) 0.309 (7) 0.142 (3) 0.083 (3) 0.081 (2) 0.110 (4) F2 0.127 (4) 0.159 (4) 0.318 (8) 0.056 (3) 0.110 (4) −0.030 (5) F3 0.0415 (18) 0.449 (10) 0.121 (3) 0.027 (3) 0.0180 (19) −0.054 (4) N1 0.0352 (14) 0.0399 (14) 0.0561 (17) −0.0013 (11) 0.0155 (12) −0.0063 (12) N2 0.0445 (16) 0.0432 (15) 0.0605 (18) −0.0067 (12) 0.0178 (14) −0.0079 (13) N3 0.063 (2) 0.083 (3) 0.091 (3) −0.028 (2) 0.034 (2) −0.023 (2) N4 0.0462 (17) 0.0416 (16) 0.087 (2) −0.0030 (13) 0.0218 (17) −0.0054 (16) N5 0.059 (3) 0.075 (3) 0.152 (4) −0.009 (2) −0.003 (3) −0.003 (3) C1 0.048 (2) 0.112 (4) 0.068 (3) 0.026 (2) 0.022 (2) 0.010 (3) C2 0.0432 (19) 0.056 (2) 0.057 (2) 0.0057 (16) 0.0160 (16) 0.0014 (16) C3 0.0421 (18) 0.0473 (18) 0.052 (2) 0.0049 (14) 0.0088 (15) 0.0027 (15) C4 0.0481 (19) 0.0391 (17) 0.0454 (18) 0.0010 (14) 0.0115 (15) 0.0009 (14) C5 0.0366 (17) 0.0398 (17) 0.0521 (19) 0.0012 (13) 0.0143 (14) −0.0047 (14) C6 0.0426 (18) 0.053 (2) 0.0474 (19) 0.0048 (15) 0.0045 (15) 0.0016 (15) C7 0.050 (2) 0.069 (2) 0.0433 (19) 0.0076 (18) 0.0146 (16) 0.0029 (17) C8 0.054 (2) 0.052 (2) 0.061 (2) −0.0088 (17) 0.0187 (18) −0.0119 (17) C9 0.0368 (16) 0.0470 (18) 0.0469 (18) −0.0029 (14) 0.0133 (14) −0.0043 (14) C10 0.0379 (16) 0.0384 (16) 0.0446 (17) 0.0041 (13) 0.0092 (13) 0.0011 (13) C11 0.0368 (16) 0.0383 (16) 0.0456 (17) 0.0022 (13) 0.0093 (13) 0.0021 (13) C12 0.064 (3) 0.119 (5) 0.104 (4) −0.015 (3) −0.010 (3) 0.019 (3) C13 0.056 (2) 0.055 (2) 0.082 (3) −0.0060 (19) 0.010 (2) 0.007 (2)

Geometric parameters (Å, º)

S1—C10 1.729 (3) C1—C2 1.497 (5)

S1—S1i 2.0948 (19) C2—C3 1.373 (5)

Cl1—C6 1.731 (3) C2—C7 1.381 (5)

Cl2—C4 1.722 (3) C3—C4 1.380 (5)

F1—C1 1.245 (6) C3—H3 0.9300

F2—C1 1.311 (7) C4—C5 1.393 (5)

F3—C1 1.228 (6) C5—C6 1.385 (5)

N1—C11 1.356 (4) C6—C7 1.374 (5)

N1—N2 1.374 (4) C7—H7 0.9300

N1—C5 1.422 (4) C8—C9 1.436 (5)

N2—C9 1.319 (4) C9—C10 1.418 (5)

N3—C8 1.143 (5) C10—C11 1.388 (4)

N4—C11 1.345 (4) C12—C13 1.438 (7)

N4—H4A 0.83 C12—H12A 0.9600

N4—H4B 0.82 C12—H12B 0.9600

N5—C13 1.120 (6) C12—H12C 0.9600

C10—S1—S1i 104.82 (12) C4—C5—N1 120.0 (3)

(6)

C11—N4—H4A 122 C6—C7—H7 120.5

C11—N4—H4B 122 C2—C7—H7 120.5

H4A—N4—H4B 114 N3—C8—C9 178.0 (4)

F3—C1—F1 112.1 (5) N2—C9—C10 113.3 (3) F3—C1—F2 100.8 (5) N2—C9—C8 120.4 (3) F1—C1—F2 100.3 (5) C10—C9—C8 126.3 (3) F3—C1—C2 115.3 (4) C11—C10—C9 104.1 (3) F1—C1—C2 115.7 (4) C11—C10—S1 126.4 (3) F2—C1—C2 110.5 (5) C9—C10—S1 129.5 (2) C3—C2—C7 121.7 (3) N4—C11—N1 122.7 (3) C3—C2—C1 118.8 (3) N4—C11—C10 131.1 (3) C7—C2—C1 119.5 (3) N1—C11—C10 106.2 (3) C2—C3—C4 118.6 (3) C13—C12—H12A 109.5

C2—C3—H3 120.7 C13—C12—H12B 109.5

C4—C3—H3 120.7 H12A—C12—H12B 109.5 C3—C4—C5 121.0 (3) C13—C12—H12C 109.5 C3—C4—Cl2 120.3 (3) H12A—C12—H12C 109.5 C5—C4—Cl2 118.7 (3) H12B—C12—H12C 109.5 C6—C5—C4 118.7 (3) N5—C13—C12 178.5 (6) C6—C5—N1 121.2 (3)

Symmetry code: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4—H4B···N5ii 0.82 2.26 3.060 (5) 164

Figure

Table 2

References

Related documents

This section describes how to effectively opti- mize neural network detection models via dy- namic cost-sensitive learning. Specifically, we first propose a marginal utility

To test the performance of DFG, we use a similar recurrent architecture to Memory Fusion Network (MFN). MFN is a recurrent neural model with three main components 1) System of LSTMs:

Samples were analysed for 119 disorders including amino acid disorders, fatty acid disorders, organic acid disorders, carbohydrate disorders, peroxisomal disorders

We wish to express our gratitude to CJK Institute (Japan), Institute for Infocomm Research (Singapore), National University of Singapore (NUS), Artificial Intelligence Laboratory at

Each row reports the coefficients from separate regressions of the effect of the corresponding treatment on natives’ average test scores.Controls for grade-level

In this study, almost half of the sample showed statistically significant relations between electricity consumption and exports income resembling economic growth

In addition, the causality test shows that South Africa, India and China induce Brazil’s economic growth.. The results of this study carry implications for future world

In this paper, we have presented a neural model for POS tagging and language identification on CS data. The neural network is a state-of-the- art bidirectional LSTM with prefix,