• No results found

Bis(η3 indenyl)­bis­­(tetra­hydro­furan)­magnesium(II)

N/A
N/A
Protected

Academic year: 2020

Share "Bis(η3 indenyl)­bis­­(tetra­hydro­furan)­magnesium(II)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1108

Holger Gritzoet al. [Mg(C4H8O)2(C9H7)2] DOI: 10.1107/S1600536804016149 Acta Cryst.(2004). E60, m1108±m1110 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(

g

3

-indenyl)bis(tetrahydrofuran)magnesium(II)

Holger Gritzo, Frank Schaper and Hans-Herbert Brintzinger*

Fachbereich Chemie, UniversitaÈt Konstanz, Postfach 5560, 78434 Konstanz, Germany

Correspondence e-mail: hans.brintzinger@uni-konstanz.de

Key indicators Single-crystal X-ray study

T= 188 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.070

wRfactor = 0.190

Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the crystal structure of the title compound, [Mg(C4H8O)2(C9H7)2], the two indenyl ligands are bound to

the Mg atom in a manner intermediate between 1- and 3

-coordination; the latter is untypical, as it includes one of the ring-sharing C atoms. The OÐMgÐO angle [101.01] is larger than for any other magnesocene±(THF)2 adduct (THF is

tetrahydrofuran). A crystallographicC2 axis bisects the OÐ

MgÐO angle.

Comment

The title compound, (I), was prepared as a precursor for syntheses of other metallocenes. (Ind)2Mg is known to be

polymeric in the solid state, with indenyl (Ind) groups coordinated in monohapto, dihapto or pentahapto arrange-ments to one or two Mg centres (Atwood & Smith, 1974). By addition of tetrahydrofuran (THF) to this complex, which was prepared via a ligand-exchange reaction (Eisch & Sanchez, 1985), we obtained its THF adduct, (I), which is monomeric in the solid state.

A crystallographicC2axis bisects the O1ÐMgÐO1iangle

(symmetry code as in Table 1) and the two indenyl ligands are thus equivalent by symmetry. Unusual features of the coor-dination geometry of (I) are revealed by comparison with other magnesocene structures. The shortest MgÐC(Cp) distance (Cp is cyclopentadienyl) of 2.256 (3) AÊ in (I) is similar to thebona ®deMgÐC(1) distance of 2.282 (2) AÊ for

the related compound (1-Cp)(5-Cp)Mg(THF) 2, (II)

(Jaenschke et al., 2003). The next two MgÐC distances in increasing length are 2.723 (3) and 2.738 (3) AÊ for (I), compared with 2.736 (2) and 2.880 (2) AÊ for (II). The short-ening of one of these MgÐC bond distances indicates that the hapticity of the indenyl ligands in (I) is slightly higher than the

1-coordination assigned to (II). In (I), one of the three

(2)

closest-bound C atoms is in a ring-sharing position of the indenyl ligand.

In another comparable structure, viz. C2H4(3-Ind)2

-Mg(THF)2, (III) (Damrauet al., 1998), one of the 3

-coord-inated indenyl ligands has one of its Mg-bound C atoms in a ring-sharing position, as in (I). The three shortest MgÐC distances in (III) [2.328 (3), 2.451 (3) and 2.682 (3) AÊ] are closer to each other than those in (I). This and their smaller average indicate that the hapticity of the indenyl ligands in (I) is lower than their3-coordination in (III). Corresponding CÐ

C distances of the indenyl fragments are quite similar for (I) and (III); however, the maximum difference is 0.02 AÊ.

Normally, an allylic 3-coordination of an indenyl ligand

involves those three C atoms which are not part of the C6ring

(O'Connor & Casey, 1987). Coordination of an indenyl frag-ment to an Mg atom involving a ring-sharing C atom, as in (I), has so far been seen only in two bridged magnesocenes [Cambridge Structural Database (CSD, Version 5.25 of Nov-ember 2003) refcodes PUBREY and PUBROT; Allen, 2002]. The MgÐO distance of the magnesium±THF fragments [MgÐO = 1.993 (2) AÊ] is comparable with those found for other magnesocene±THF adducts (MgÐO = 1.989±2.098 AÊ (CSD refcodes HUXSAU, NUZXIP, NUZXOF, PUBREJ, PUBRIN, PUBROT, PUBRUZ, ROBCUG, TACXIF, VITZUT, WIDYAJ, WIDYEN, XILZIB and ZEHYUG). The O1ÐMgÐO1i angle in (I) [101.01 (12)] is the largest observed so far for any magnesocene with two THF ligands (OÐMgÐO = 88.20±94.40; CSD refcodes HUXSAU,

NUZXIP, PUBREJ, PUBROT, PUBRUZ and XILZIB). This opening of the OÐMgÐO angle is probably connected with the unusually low hapticity of both indenyl ligands in (I).

Experimental

All manipulations were performed using conventional Schlenk techniques under an atmosphere of argon or in a glove-box under an atmosphere of nitrogen. (Ind)2Mg (Eisch & Sanchez, 1985) (5.0 g,

20 mmol) was stirred in a mixture of 50 ml pentane and 30 ml tetrahydrofuran for 3 d at room temperature. The yellow suspension was decanted and the precipitate washed twice with 20 ml pentane. Drying in vacuo yielded 6.4 g (16 mmol, 82%) of a pale-yellow powder. For crystallization, a small amount was dissolved in tetra-hydrofuran. While the solvent was slowly evaporated in a glove-box at room temperature colourless crystals were formed. 1H NMR

(600 MHz, CD2Cl2, 298 K):7.54 (4H,m, Ind-H6), 6.89 (4H,m,

Ind-H7), 6.79 (2H,s, Ind-H3), 5.85 (4H,s, Ind-H2), 3.18 (8H,bs, THF), 1.71 (8H,bs, THF). 13C NMR (600 MHz, CD

2Cl2, 298 K):133.9

C1), 120.6 C3), 120.2 C6), 117.9 C7), 89.5 (Ind-C2), 70.4 (THF), 25.3 (THF). Analysis calculated for C26H30MgO2:

C 78.30, H 7.58%; found: C 76.68, H 7.65%.

Crystal data

[Mg(C4H8O)2(C9H7)2]

Mr= 398.81

Monoclinic, C2=c a= 10.958 (4) AÊ

b= 9.683 (6) AÊ

c= 20.861 (9) AÊ

= 96.56 (5)

V= 2199.0 (18) AÊ3

Z= 4

Dx= 1.205 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections

= 5.1±12.5

= 0.10 mmÿ1

T= 188 K Plate, colourless 0.40.20.2 mm

Data collection

BrukerP4 diffractometer

!scans

5253 measured re¯ections 2399 independent re¯ections 1658 re¯ections withI> 2(I)

Rint= 0.077

max= 27.0

h=ÿ13!12

k=ÿ12!12

l=ÿ26!26 3 standard re¯ections

every 97 re¯ections intensity decay: 0.2%

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.070

wR(F2) = 0.190

S= 1.04 2399 re¯ections 132 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0986P)2

+ 1.492P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.30 e AÊÿ3

min=ÿ0.73 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Mg1ÐO1 1.993 (2) Mg1ÐC2 2.256 (3) Mg1ÐC3 2.723 (3) Mg1ÐC1 2.738 (3) C1ÐC9 1.408 (4) C1ÐC2 1.441 (4) C1ÐC5 1.447 (4)

C2ÐC3 1.429 (4) C3ÐC4 1.391 (4) C4ÐC5 1.423 (4) C5ÐC6 1.412 (4) C6ÐC7 1.361 (4) C7ÐC8 1.418 (5) C8ÐC9 1.378 (4) O1ÐMg1ÐO1i 101.01 (12)

Symmetry code: (i)ÿx;y;3 2ÿz.

H atoms were positioned geometrically and re®ned as riding, with

Uiso(H) = 1.2Ueq(parent atom).

metal-organic papers

Acta Cryst.(2004). E60, m1108±m1110 Holger Gritzoet al. [Mg(C4H8O)2(C9H7)2]

m1109

Figure 1

(3)

Data collection: XSCANS (Siemens, 1992); cell re®nement:

XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Siemens, 1997); software used to prepare material for publication:SHELXTL.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Atwood, J. L. & Smith, K. D. (1974).J. Am. Chem. Soc.96, 994±998.

Damrau, H. R. H., Geyer, A., Prosenc, M. H., Weeber, A., Schaper, F. & Brintzinger, H. H. (1998).J. Organomet. Chem.553, 331±343.

Eisch, J. J. & Sanchez, R. (1985). J. Organomet. Chem. 296, C27± C31.

Jaenschke, A., Paap, J. & Behrens, U. (2003). Organometallics, 22, 1167± 1169.

O'Connor, J. M. & Casey, C. P. (1987).Chem. Rev.87, 307±318.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Siemens (1992). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1997).SHELXTL.Version 5.1. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

metal-organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m1108–m1110

supporting information

Acta Cryst. (2004). E60, m1108–m1110 [https://doi.org/10.1107/S1600536804016149]

Bis(

η

3

-indenyl)bis(tetrahydrofuran)magnesium(II)

Holger Gritzo, Frank Schaper and Hans-Herbert Brintzinger

Bis(η3-indenyl)bis(tetrahydrofuran)magnesium(II)

Crystal data

[Mg(C4H8O)2(C9H7)2] Mr = 398.81

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 10.958 (4) Å

b = 9.683 (6) Å

c = 20.861 (9) Å

β = 96.56 (5)°

V = 2199.0 (18) Å3 Z = 4

F(000) = 856

Dx = 1.205 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 5.1–12.5°

µ = 0.10 mm−1 T = 188 K Plate, colorless 0.4 × 0.2 × 0.2 mm

Data collection

Bruker P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

5253 measured reflections 2399 independent reflections 1658 reflections with I > 2σ(I)

Rint = 0.077

θmax = 27.0°, θmin = 2.0°

h = −13→12

k = −12→12

l = −26→26

3 standard reflections every 97 reflections intensity decay: 0.2%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.070 wR(F2) = 0.190 S = 1.04 2399 reflections 132 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0986P)2 + 1.492P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.30 e Å−3

Δρmin = −0.73 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1108–m1110

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Mg1 0.0000 0.17327 (12) 0.7500 0.0280 (3) O1 0.01503 (16) 0.30416 (18) 0.67761 (8) 0.0309 (5) C1 −0.1502 (2) −0.0058 (2) 0.67634 (12) 0.0278 (6) C2 −0.1696 (2) 0.0394 (3) 0.74021 (12) 0.0314 (6)

H2A −0.1809 −0.0291 0.7736 0.038*

C3 −0.2496 (2) 0.1562 (3) 0.73205 (14) 0.0359 (6)

H3A −0.3017 0.1853 0.7648 0.043*

C4 −0.2764 (2) 0.1873 (3) 0.66690 (14) 0.0355 (6)

H4A −0.3251 0.2601 0.6498 0.043*

C5 −0.2162 (2) 0.0884 (3) 0.63102 (13) 0.0312 (6) C6 −0.2093 (3) 0.0700 (3) 0.56438 (13) 0.0412 (7)

H6A −0.2503 0.1307 0.5348 0.049*

C7 −0.1430 (3) −0.0362 (4) 0.54326 (14) 0.0480 (8)

H7A −0.1396 −0.0477 0.4992 0.058*

C8 −0.0792 (3) −0.1296 (3) 0.58748 (15) 0.0444 (7)

H8A −0.0345 −0.2017 0.5721 0.053*

C9 −0.0825 (2) −0.1147 (3) 0.65297 (13) 0.0352 (6)

H9A −0.0402 −0.1763 0.6816 0.042*

C10 −0.0412 (3) 0.4406 (3) 0.66844 (13) 0.0403 (7)

H10A 0.0188 0.5129 0.6797 0.048*

H10B −0.1084 0.4511 0.6945 0.048*

C11 −0.0874 (4) 0.4450 (3) 0.59713 (15) 0.0556 (9)

H11B −0.0908 0.5392 0.5811 0.067*

H11C −0.1684 0.4039 0.5889 0.067*

C12 0.0074 (3) 0.3607 (4) 0.56612 (14) 0.0526 (9)

H12A −0.0321 0.3059 0.5307 0.063*

H12C 0.0674 0.4208 0.5497 0.063*

C13 0.0684 (3) 0.2680 (3) 0.61887 (12) 0.0407 (7)

H13A 0.0529 0.1716 0.6081 0.049*

H13B 0.1565 0.2831 0.6246 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m1108–m1110

C5 0.0245 (12) 0.0352 (13) 0.0332 (14) −0.0064 (10) 0.0002 (10) −0.0002 (11) C6 0.0386 (16) 0.0558 (17) 0.0275 (14) −0.0096 (14) −0.0032 (12) 0.0030 (13) C7 0.0482 (18) 0.067 (2) 0.0290 (15) −0.0106 (16) 0.0040 (13) −0.0110 (14) C8 0.0393 (16) 0.0488 (16) 0.0468 (18) −0.0017 (14) 0.0114 (13) −0.0153 (14) C9 0.0341 (14) 0.0357 (14) 0.0361 (15) −0.0011 (11) 0.0053 (11) −0.0033 (12) C10 0.0551 (19) 0.0329 (14) 0.0317 (15) −0.0044 (13) −0.0006 (13) 0.0057 (11) C11 0.079 (2) 0.0518 (19) 0.0325 (16) 0.0014 (17) −0.0102 (16) 0.0101 (14) C12 0.0484 (18) 0.084 (2) 0.0253 (14) −0.0152 (17) 0.0030 (13) 0.0114 (15) C13 0.0389 (15) 0.0610 (18) 0.0238 (14) −0.0059 (14) 0.0107 (12) −0.0019 (13)

Geometric parameters (Å, º)

Mg1—O1 1.993 (2) C1—C5 1.447 (4)

Mg1—O1i 1.993 (2) C2—C3 1.429 (4)

Mg1—C2 2.256 (3) C3—C4 1.391 (4)

Mg1—C2i 2.256 (3) C4—C5 1.423 (4)

Mg1—C3i 2.723 (3) C5—C6 1.412 (4)

Mg1—C3 2.723 (3) C6—C7 1.361 (4)

Mg1—C1 2.738 (3) C7—C8 1.418 (5)

Mg1—C1i 2.738 (3) C8—C9 1.378 (4)

O1—C13 1.460 (3) C10—C11 1.516 (4)

O1—C10 1.461 (3) C11—C12 1.523 (5)

C1—C9 1.408 (4) C12—C13 1.515 (4)

C1—C2 1.441 (4)

O1—Mg1—O1i 101.01 (12) C4—C3—H3A 122.9

O1—Mg1—C2 115.81 (9) C2—C3—H3A 122.9

O1i—Mg1—C2 107.18 (9) Mg1—C3—H3A 122.9

O1—Mg1—C2i 107.18 (9) C3—C4—C5 108.0 (2)

O1i—Mg1—C2i 115.81 (9) C3—C4—H4A 126.0

C2—Mg1—C2i 109.87 (15) C5—C4—H4A 126.0

O1—Mg1—C3i 88.52 (9) C6—C5—C4 133.1 (3)

O1i—Mg1—C3i 95.92 (9) C6—C5—C1 119.0 (3)

C2—Mg1—C3i 141.42 (10) C4—C5—C1 107.9 (2)

C2i—Mg1—C3i 31.61 (9) C7—C6—C5 120.3 (3)

O1—Mg1—C3 95.92 (9) C7—C6—H6A 119.8

O1i—Mg1—C3 88.52 (9) C5—C6—H6A 119.8

C2—Mg1—C3 31.61 (9) C6—C7—C8 120.9 (3) C2i—Mg1—C3 141.42 (10) C6—C7—H7A 119.6

C3i—Mg1—C3 173.03 (13) C8—C7—H7A 119.6

O1—Mg1—C1 94.24 (8) C9—C8—C7 120.7 (3) O1i—Mg1—C1 137.02 (8) C9—C8—H8A 119.6

C2—Mg1—C1 31.71 (9) C7—C8—H8A 119.6

C2i—Mg1—C1 97.08 (10) C8—C9—C1 119.8 (3)

C3i—Mg1—C1 124.65 (9) C8—C9—H9A 120.1

C3—Mg1—C1 49.79 (8) C1—C9—H9A 120.1

O1—Mg1—C1i 137.02 (8) O1—C10—C11 104.0 (2)

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1108–m1110

C2—Mg1—C1i 97.08 (10) C11—C10—H10A 110.9

C2i—Mg1—C1i 31.71 (9) O1—C10—H10B 110.9

C3i—Mg1—C1i 49.79 (8) C11—C10—H10B 110.9

C3—Mg1—C1i 124.65 (9) H10A—C10—H10B 109.0

C1—Mg1—C1i 101.43 (12) C10—C11—C12 103.5 (3)

C13—O1—C10 108.1 (2) C10—C11—H11B 111.1 C13—O1—Mg1 124.00 (17) C12—C11—H11B 111.1 C10—O1—Mg1 127.18 (16) C10—C11—H11C 111.1 C9—C1—C2 133.4 (2) C12—C11—H11C 111.1 C9—C1—C5 119.3 (2) H11B—C11—H11C 109.0 C2—C1—C5 107.3 (2) C13—C12—C11 106.0 (2) C9—C1—Mg1 111.22 (17) C13—C12—H12A 110.5 C2—C1—Mg1 55.35 (13) C11—C12—H12A 110.5 C5—C1—Mg1 101.01 (16) C13—C12—H12C 110.5 C3—C2—C1 106.5 (2) C11—C12—H12C 110.5 C3—C2—Mg1 92.53 (17) H12A—C12—H12C 108.7 C1—C2—Mg1 92.94 (16) O1—C13—C12 106.3 (2)

C3—C2—H2A 119.7 O1—C13—H13A 110.5

C1—C2—H2A 119.7 C12—C13—H13A 110.5

Mg1—C2—H2A 119.7 O1—C13—H13B 110.5

C4—C3—C2 110.3 (2) C12—C13—H13B 110.5 C4—C3—Mg1 102.60 (18) H13A—C13—H13B 108.7 C2—C3—Mg1 55.86 (14)

O1i—Mg1—O1—C13 158.7 (2) O1i—Mg1—C2—C1 163.01 (15)

C2—Mg1—O1—C13 −86.0 (2) C2i—Mg1—C2—C1 −70.39 (15)

C2i—Mg1—O1—C13 37.0 (2) C3i—Mg1—C2—C1 −72.9 (2)

C3i—Mg1—O1—C13 62.9 (2) C3—Mg1—C2—C1 106.6 (2)

C3—Mg1—O1—C13 −111.7 (2) C1i—Mg1—C2—C1 −100.31 (17)

C1—Mg1—O1—C13 −61.7 (2) C1—C2—C3—C4 −2.1 (3) C1i—Mg1—O1—C13 50.1 (2) Mg1—C2—C3—C4 91.7 (2)

O1i—Mg1—O1—C10 −32.25 (17) C1—C2—C3—Mg1 −93.82 (19)

C2—Mg1—O1—C10 83.1 (2) O1—Mg1—C3—C4 25.70 (19) C2i—Mg1—O1—C10 −153.88 (19) O1i—Mg1—C3—C4 126.61 (18)

C3i—Mg1—O1—C10 −128.0 (2) C2—Mg1—C3—C4 −106.1 (2)

C3—Mg1—O1—C10 57.4 (2) C2i—Mg1—C3—C4 −101.6 (2)

C1—Mg1—O1—C10 107.4 (2) C1—Mg1—C3—C4 −64.85 (18) C1i—Mg1—O1—C10 −140.86 (19) C1i—Mg1—C3—C4 −139.26 (17)

O1—Mg1—C1—C9 95.85 (19) O1—Mg1—C3—C2 131.81 (17) O1i—Mg1—C1—C9 −153.04 (17) O1i—Mg1—C3—C2 −127.28 (17)

C2—Mg1—C1—C9 −128.9 (3) C2i—Mg1—C3—C2 4.5 (3)

C2i—Mg1—C1—C9 −12.08 (19) C1—Mg1—C3—C2 41.26 (16)

C3i—Mg1—C1—C9 4.7 (2) C1i—Mg1—C3—C2 −33.15 (19)

C3—Mg1—C1—C9 −170.0 (2) C2—C3—C4—C5 1.4 (3) C1i—Mg1—C1—C9 −43.92 (16) Mg1—C3—C4—C5 59.4 (2)

O1—Mg1—C1—C2 −135.29 (17) C3—C4—C5—C6 −179.1 (3) O1i—Mg1—C1—C2 −24.2 (2) C3—C4—C5—C1 −0.2 (3)

(8)

supporting information

sup-5 Acta Cryst. (2004). E60, m1108–m1110

C3i—Mg1—C1—C2 133.57 (17) C2—C1—C5—C6 178.0 (2)

C3—Mg1—C1—C2 −41.12 (16) Mg1—C1—C5—C6 121.1 (2) C1i—Mg1—C1—C2 84.94 (16) C9—C1—C5—C4 179.9 (2)

O1—Mg1—C1—C5 −31.80 (17) C2—C1—C5—C4 −1.1 (3) O1i—Mg1—C1—C5 79.3 (2) Mg1—C1—C5—C4 −58.0 (2)

C2—Mg1—C1—C5 103.5 (2) C4—C5—C6—C7 179.8 (3) C2i—Mg1—C1—C5 −139.72 (17) C1—C5—C6—C7 1.0 (4)

C3i—Mg1—C1—C5 −122.93 (17) C5—C6—C7—C8 −0.4 (4)

C3—Mg1—C1—C5 62.37 (17) C6—C7—C8—C9 −0.2 (5) C1i—Mg1—C1—C5 −171.56 (19) C7—C8—C9—C1 0.1 (4)

C9—C1—C2—C3 −179.2 (3) C2—C1—C9—C8 −178.3 (3) C5—C1—C2—C3 1.9 (3) C5—C1—C9—C8 0.5 (4) Mg1—C1—C2—C3 93.5 (2) Mg1—C1—C9—C8 −116.4 (2) C9—C1—C2—Mg1 87.3 (3) C13—O1—C10—C11 33.3 (3) C5—C1—C2—Mg1 −91.62 (19) Mg1—O1—C10—C11 −137.2 (2) O1—Mg1—C2—C3 −55.44 (18) O1—C10—C11—C12 −33.8 (3) O1i—Mg1—C2—C3 56.37 (17) C10—C11—C12—C13 22.4 (3)

C2i—Mg1—C2—C3 −177.03 (19) C10—O1—C13—C12 −18.9 (3)

C1—Mg1—C2—C3 −106.6 (2) Mg1—O1—C13—C12 151.93 (19) C1i—Mg1—C2—C3 153.05 (16) C11—C12—C13—O1 −2.9 (3)

O1—Mg1—C2—C1 51.20 (18)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical