• No results found

1 Phenyl­ethyl phenyl­di­thio­acetate

N/A
N/A
Protected

Academic year: 2020

Share "1 Phenyl­ethyl phenyl­di­thio­acetate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2395–o2396 doi:10.1107/S1600536806017624 Gaoet al. C

16H16S2

o2395

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-Phenylethyl phenyldithioacetate

Jing Gao, Yingwu Luo and Bogeng Li*

Zhejiang University, The Union State Key Laboratory of Chemical, Engineering, Polymer Reaction Engineering Division, Hangzhou, 310027, People’s Republic of China

Correspondence e-mail: stella_gj@zju.edu.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.044

wRfactor = 0.143

Data-to-parameter ratio = 20.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 13 January 2006 Accepted 12 May 2006

#2006 International Union of Crystallography All rights reserved

The overall shape of the title compound, C16H16S2, is like a

capital ‘M’, with both planar benzene rings projecting to one side of the central thioacetate portion.

Comment

The title compound, (I), is commonly used as a chain-transfer agent in living-radical polymerizations. The S atom adjacent to the carbon with a double bond can be attacked by radicals and, in a reverse process, yields styrene radicals as shown in the scheme, in which I may indicate either an initiator-born radical or a long-chain propagating radical. The mediation of this compound in free-radical polymerizations leads to a well controlled molecular weight, a narrow molecular-weight distribution and an improvement in the extent of conversion.

Overall, the shape of molecule (I) is like a capital ‘M’, with both planar benzene rings projecting to one side of the central thioacetate portion (Fig. 1). The dihedral angle between the two benzene planes is 126.5 (1). There are no unusually short intermolecular contact distances.

Experimental

Compound (I) was synthesized by the authors, using a literature procedure (Quinn, et al., 2001). Briefly, a simple Grignard reagent

Figure 1

(2)

was first synthesized from benzyl chloride and magnesium. The Grignard reagent and carbon disulfide then were used to produce a dithiocarboxylic acid salt, which was then acidified and subsequently underwent an addition reaction with styrene. The product (I) was crystallized by evaporation of a cold (268 K) methanol solution.

Crystal data

C16H16S2

Mr= 272.41 Monoclinic,P21=c

a= 11.311 (2) A˚

b= 6.019 (2) A˚

c= 22.003 (4) A˚ = 98.188 (10)

V= 1482.7 (6) A˚3

Z= 4

Dx= 1.220 Mg m 3 MoKradiation = 0.34 mm 1

T= 298 (1) K Chunk, yellow 0.230.200.13 mm

Data collection

Rigaku RAXIS-RAPID diffractometer !scans

Absorption correction: multi-scan

ABSCOR(Higashi, 1995)

Tmin= 0.916,Tmax= 0.957

13414 measured reflections 3398 independent reflections 2251 reflections withI> 2(I)

Rint= 0.062

max= 27.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.143

S= 0.99 3398 reflections 163 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0814P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.21 e A˚ 3

min= 0.29 e A˚ 3

All H atoms were positioned geometrically and refined with riding constraints (C—H = 0.93–0.98 A˚ ). TheUiso(H) values were set equal

to 1.2Ueq(carrier atom).

Data collection:RAPID-AUTO (Rigaku, 1998); cell refinement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure:SIR92 (Altomareet al., 1993); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors acknowledge Professor Jianming Gu from the Zhejiang University for help in determining the crystal structure.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).J. Appl. Cryst.26, 343–350.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Quinn, J. F., Rizzardo, E. & Davis, T. P. (2001).Chem. Commun.11, 1044– 1045.

Rigaku (1998).PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure. Version 3.00. Rigaku/MSC, The

Wood-lands, TX, 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2395–o2396

supporting information

Acta Cryst. (2006). E62, o2395–o2396 [https://doi.org/10.1107/S1600536806017624]

1-Phenylethyl phenyldithioacetate

Jing Gao, Yingwu Luo and Bogeng Li

phenyl(phenylethylthio)methane-1-thione

Crystal data

C16H16S2

Mr = 272.41 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 11.311 (1) Å

b = 6.019 (2) Å

c = 22.003 (4) Å

β = 98.188 (10)°

V = 1482.7 (6) Å3

Z = 4

F(000) = 576.00

Dx = 1.220 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 9800 reflections

θ = 3.4–27.4°

µ = 0.34 mm−1

T = 298 K Chunk, yellow 0.23 × 0.20 × 0.13 mm

Data collection

Rigaku RAXIS-RAPID diffractometer

Radiation source: rotation target Graphite monochromator

Detector resolution: 10.00 pixels mm-1

ω scans

Absorption correction: multi-scan ABSCOR (Higashi, 1995)

Tmin = 0.916, Tmax = 0.957

13414 measured reflections 3398 independent reflections 2251 reflections with I > 2σ(I)

Rint = 0.062

θmax = 27.5°, θmin = 3.5°

h = −12→14

k = −7→7

l = −28→28

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.143

S = 0.99 3398 reflections 163 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0814P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.21 e Å−3

Δρmin = −0.29 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.88803 (4) 0.51521 (8) 0.09702 (2) 0.05430 (19)

S2 0.81311 (6) 0.07562 (10) 0.04093 (3) 0.0778 (2)

C1 1.02256 (17) 0.3529 (3) 0.12229 (9) 0.0515 (5)

H1 0.9987 0.2081 0.1369 0.062*

C2 1.09156 (16) 0.4766 (3) 0.17583 (9) 0.0469 (4)

C10 0.58652 (18) 0.4278 (3) 0.07781 (10) 0.0592 (6)

C8 0.78974 (18) 0.3373 (3) 0.05458 (9) 0.0557 (5)

C7 1.10863 (17) 0.3803 (4) 0.23364 (9) 0.0564 (5)

H7 1.0744 0.2432 0.2398 0.068*

C9 0.6723 (2) 0.4521 (4) 0.03257 (11) 0.0687 (6)

H9A 0.6869 0.6087 0.0262 0.082*

H9B 0.6375 0.3889 −0.0065 0.082*

C6 1.1764 (2) 0.4874 (4) 0.28213 (11) 0.0734 (7)

H6 1.1875 0.4218 0.3208 0.088*

C3 1.1416 (2) 0.6821 (3) 0.16792 (11) 0.0650 (6)

H3 1.1297 0.7500 0.1296 0.078*

C4 1.2096 (2) 0.7876 (4) 0.21716 (14) 0.0806 (7)

H4 1.2431 0.9259 0.2116 0.097*

C16 1.0948 (2) 0.3155 (5) 0.07044 (11) 0.0814 (8)

H16A 1.0475 0.2351 0.0380 0.122*

H16B 1.1651 0.2313 0.0853 0.122*

H16C 1.1176 0.4562 0.0552 0.122*

C15 0.5205 (2) 0.2334 (4) 0.08041 (13) 0.0785 (7)

H15 0.5294 0.1191 0.0530 0.094*

C5 1.2274 (2) 0.6890 (5) 0.27371 (13) 0.0821 (8)

H5 1.2740 0.7590 0.3064 0.099*

C11 0.5710 (2) 0.5927 (4) 0.11902 (14) 0.0803 (8)

H11 0.6129 0.7253 0.1182 0.096*

C14 0.4429 (3) 0.2058 (5) 0.12213 (19) 0.0999 (10)

H14 0.3996 0.0747 0.1227 0.120*

C12 0.4938 (3) 0.5643 (6) 0.16167 (17) 0.1033 (11)

H12 0.4853 0.6768 0.1897 0.124*

C13 0.4293 (3) 0.3714 (7) 0.16308 (18) 0.1059 (10)

H13 0.3768 0.3536 0.1916 0.127*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0566 (3) 0.0500 (3) 0.0544 (3) 0.0091 (2) 0.0012 (2) −0.0009 (2)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2395–o2396

C1 0.0555 (10) 0.0537 (10) 0.0450 (10) 0.0116 (8) 0.0064 (8) −0.0007 (8)

C2 0.0448 (9) 0.0518 (9) 0.0448 (10) 0.0065 (7) 0.0095 (8) −0.0003 (7)

C10 0.0471 (10) 0.0574 (11) 0.0669 (13) 0.0082 (9) −0.0134 (10) 0.0049 (9)

C8 0.0649 (12) 0.0588 (11) 0.0418 (10) 0.0033 (9) 0.0024 (9) 0.0039 (8)

C7 0.0542 (11) 0.0668 (12) 0.0492 (11) 0.0056 (9) 0.0101 (9) 0.0043 (9)

C9 0.0682 (14) 0.0725 (14) 0.0596 (13) 0.0074 (11) −0.0117 (11) 0.0126 (10)

C6 0.0644 (13) 0.1035 (18) 0.0506 (12) 0.0077 (13) 0.0022 (10) −0.0041 (12)

C3 0.0720 (13) 0.0589 (12) 0.0658 (14) −0.0016 (10) 0.0160 (11) 0.0045 (10)

C4 0.0692 (14) 0.0678 (14) 0.107 (2) −0.0143 (12) 0.0210 (15) −0.0215 (14)

C16 0.0690 (14) 0.117 (2) 0.0591 (14) 0.0152 (14) 0.0133 (12) −0.0234 (14)

C15 0.0653 (13) 0.0704 (14) 0.096 (2) 0.0022 (12) −0.0016 (14) 0.0012 (13)

C5 0.0593 (13) 0.107 (2) 0.0771 (18) −0.0025 (13) 0.0007 (12) −0.0367 (15)

C11 0.0611 (13) 0.0727 (15) 0.102 (2) 0.0138 (12) −0.0059 (14) −0.0101 (14)

C14 0.0676 (16) 0.089 (2) 0.143 (3) 0.0016 (15) 0.0171 (19) 0.020 (2)

C12 0.0785 (18) 0.126 (3) 0.105 (2) 0.0331 (19) 0.0134 (18) −0.023 (2)

C13 0.0702 (17) 0.129 (3) 0.122 (3) 0.0236 (19) 0.0261 (18) 0.025 (2)

Geometric parameters (Å, º)

S1—C8 1.720 (2) C3—C4 1.390 (3)

S1—C1 1.8270 (18) C3—H3 0.9300

S2—C8 1.632 (2) C4—C5 1.367 (4)

C1—C16 1.512 (3) C4—H4 0.9300

C1—C2 1.513 (3) C16—H16A 0.9600

C1—H1 0.9800 C16—H16B 0.9600

C2—C3 1.382 (3) C16—H16C 0.9600

C2—C7 1.386 (3) C15—C14 1.367 (4)

C10—C11 1.373 (3) C15—H15 0.9300

C10—C15 1.394 (3) C5—H5 0.9300

C10—C9 1.493 (3) C11—C12 1.380 (5)

C8—C9 1.514 (3) C11—H11 0.9300

C7—C6 1.381 (3) C14—C13 1.367 (5)

C7—H7 0.9300 C14—H14 0.9300

C9—H9A 0.9700 C12—C13 1.374 (5)

C9—H9B 0.9700 C12—H12 0.9300

C6—C5 1.367 (4) C13—H13 0.9300

C6—H6 0.9300

C8—S1—C1 106.15 (9) C2—C3—H3 119.9

C16—C1—C2 112.75 (18) C4—C3—H3 119.9

C16—C1—S1 111.50 (15) C5—C4—C3 120.3 (2)

C2—C1—S1 106.78 (12) C5—C4—H4 119.9

C16—C1—H1 108.6 C3—C4—H4 119.9

C2—C1—H1 108.6 C1—C16—H16A 109.5

S1—C1—H1 108.6 C1—C16—H16B 109.5

C3—C2—C7 118.95 (19) H16A—C16—H16B 109.5

C3—C2—C1 121.16 (18) C1—C16—H16C 109.5

(6)

C11—C10—C15 117.4 (3) H16B—C16—H16C 109.5

C11—C10—C9 121.7 (2) C14—C15—C10 121.9 (3)

C15—C10—C9 120.8 (2) C14—C15—H15 119.1

C9—C8—S2 122.65 (15) C10—C15—H15 119.1

C9—C8—S1 111.03 (15) C6—C5—C4 119.9 (2)

S2—C8—S1 126.28 (12) C6—C5—H5 120.1

C6—C7—C2 120.2 (2) C4—C5—H5 120.1

C6—C7—H7 119.9 C10—C11—C12 120.8 (3)

C2—C7—H7 119.9 C10—C11—H11 119.6

C10—C9—C8 111.45 (17) C12—C11—H11 119.6

C10—C9—H9A 109.3 C13—C14—C15 119.8 (3)

C8—C9—H9A 109.3 C13—C14—H14 120.1

C10—C9—H9B 109.3 C15—C14—H14 120.1

C8—C9—H9B 109.3 C13—C12—C11 120.6 (3)

H9A—C9—H9B 108.0 C13—C12—H12 119.7

C5—C6—C7 120.5 (2) C11—C12—H12 119.7

C5—C6—H6 119.7 C14—C13—C12 119.4 (3)

C7—C6—H6 119.7 C14—C13—H13 120.3

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical