• No results found

4 Bromo 2 [(5 methyl­pyridin 2 ylimino)meth­yl]phenol

N/A
N/A
Protected

Academic year: 2020

Share "4 Bromo 2 [(5 methyl­pyridin 2 ylimino)meth­yl]phenol"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2365–o2366 doi:10.1107/S1600536806017211 De-Suo Yang C

13H11BrN2O

o2365

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Bromo-2-[(5-methylpyridin-2-ylimino)-methyl]phenol

De-Suo Yang

Department of Chemistry and Chemical Engineering, Baoji College of Arts and Sciences, Baoji 721007, People’s Republic of China

Correspondence e-mail: desuoyang@yahoo.com.cn

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.008 A˚ Rfactor = 0.044 wRfactor = 0.117

Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 8 May 2006 Accepted 9 May 2006

#2006 International Union of Crystallography All rights reserved

The molecule of the title compound, C13H11BrN2O, displays a

transconfiguration with respect to the central C N double bond and is almost planar. An intramolecular O—H N hydrogen bond [O N = 2.589 (6) A˚ ] may influence the overall conformation.

Comment

Schiff compounds play an important role in the development of coordination chemistry (Telferet al., 2004; Ramnauthet al., 2004; Musieet al., 2001; Bernardoet al., 1996; Paulet al., 2002). Two crystal structures of Schiff base compounds have recently been reported by the author (Yang, 2006a,b). As an extension of work on the structural characterization of such compounds, the crystal structure of the title compound, (I), is reported here (Fig. 1).

In (I), all the bond lengths are within normal ranges (Allen

[image:1.610.267.394.369.450.2] [image:1.610.208.459.591.707.2]

et al., 1987) and comparable to the corresponding values observed in the similar crystal structures reported recently (Yang, 2006a), e.g.the central transC7 N1 bond length of 1.269 (7) A˚ . The molecule is nearly planar, with a dihedral angle of 4.0 (5) between the benzene ring and the pyridine ring. An intramolecular O—H N hydrogen bond (Table 1) may influence the overall conformation. In the crystal struc-ture, the molecular packing in (I) is stabilized only by van der

Figure 1

(2)

Waals interactions (Fig. 2) as there are no intermolecular hydrogen bonds or significant–stacking interactions.

Experimental

Reagents and solvents used were of commercially available quality. 5-Bromosalicylaldehyde (0.1 mmol, 20.1 mg) and 5-methyl-2-amino-pyridine (0.1 mmol, 10.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at 298 K to give a clear yellow solution. Crystals of (I) were formed by slow evaporation of the solvent over a period of about 10 d at 298 K.

Crystal data

C13H11BrN2O

Mr= 291.15 Orthorhombic,Pna21

a= 24.245 (4) A˚

b= 4.358 (1) A˚

c= 11.401 (2) A˚

V= 1204.6 (4) A˚3

Z= 4

Dx= 1.605 Mg m 3 MoKradiation

= 3.40 mm 1

T= 298 (2) K Block, yellow 0.200.180.18 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.517,Tmax= 0.545

8591 measured reflections 2456 independent reflections 1618 reflections withI> 2(I)

Rint= 0.056

max= 26.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.117

S= 1.07 2456 reflections 156 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + 0.5825P] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.33 e A˚ 3 min= 0.33 e A˚ 3

Absolute structure: Flack (1983), 1141 Friedel pairs.

Flack parameter: 0.02 (2)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 N1 0.82 1.93 2.589 (6) 137

All H atoms were placed in idealized positions and constrained to ride on their parent atoms. Constrained distances: O—H = 0.82 A˚ , and C—H = 0.93 and 0.96 A˚ for methyl and aromatic CH groups, respectively. Isotropic displacement parameters were fixed atUiso(H)

= 1.2Uiso(C) for aromatic CH groups and 1.5Uiso(C,O) for other H

atoms.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction: SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXL97.

Financial support from the Baoji College of Arts and Sciences research funds is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996).Inorg. Chem.35, 387–396.

Bruker (2002).SAINT(Version 6.36A,SMART(Version 5.10) andSADABS

(Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001).Inorg. Chem.

40, 3336–3341.

Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002).Inorg. Chem.41, 5803– 5809.

Ramnauth, R., Al-Juaid, S., Motevalli, M., Parkin, B. C. & Sullivan, A. C. (2004).Inorg. Chem.43, 4072–4079.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Telfer, S. G., Sato, T., Harada, T., Kuroda, R., Lefebvre, J. & Leznoff, D. B. (2004).Inorg. Chem.43, 6168–6176.

[image:2.610.357.522.72.385.2]

Yang, D.-S. (2006a).Acta Cryst.E62, o1395–o1396. Yang, D.-S. (2006b).Acta Cryst.E62, o1591–o1592.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2365–o2366

supporting information

Acta Cryst. (2006). E62, o2365–o2366 [https://doi.org/10.1107/S1600536806017211]

4-Bromo-2-[(5-methylpyridin-2-ylimino)methyl]phenol

De-Suo Yang

4-Bromo-2-[(5-methylpyridin-2-ylimino)methyl]phenol

Crystal data

C13H11BrN2O Mr = 291.15

Orthorhombic, Pna21 Hall symbol: P 2c -2n a = 24.245 (4) Å b = 4.358 (1) Å c = 11.401 (2) Å V = 1204.6 (4) Å3 Z = 4

F(000) = 584 Dx = 1.605 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1681 reflections θ = 2.4–24.5°

µ = 3.40 mm−1 T = 298 K Block, yellow

0.20 × 0.18 × 0.18 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.517, Tmax = 0.545

8591 measured reflections 2456 independent reflections 1618 reflections with I > 2σ(I) Rint = 0.056

θmax = 26.5°, θmin = 1.7° h = −29→29

k = −5→5 l = −14→13

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.044 wR(F2) = 0.117 S = 1.07 2456 reflections 156 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + 0.5825P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.33 e Å−3 Δρmin = −0.33 e Å−3

Absolute structure: Flack (1983), 1141 Friedel pairs.

Absolute structure parameter: 0.02 (2)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 0.72749 (2) 1.58944 (15) 0.76403 (9) 0.0700 (3)

O1 0.60188 (19) 1.1807 (10) 0.3385 (3) 0.0593 (12)

H1 0.5712 1.1158 0.3562 0.089*

N1 0.5406 (2) 0.8508 (10) 0.4752 (4) 0.0416 (12)

N2 0.4823 (2) 0.5713 (12) 0.6027 (4) 0.0495 (12)

C1 0.6135 (2) 1.1646 (11) 0.5476 (5) 0.0388 (13)

C2 0.6286 (2) 1.2696 (13) 0.4362 (5) 0.0450 (14)

C3 0.6724 (2) 1.4721 (13) 0.4246 (6) 0.0483 (15)

H3 0.6820 1.5460 0.3508 0.058*

C4 0.7018 (3) 1.5641 (13) 0.5220 (6) 0.0505 (15)

H4 0.7321 1.6936 0.5138 0.061*

C5 0.6863 (3) 1.4644 (13) 0.6300 (5) 0.0462 (15)

C6 0.6426 (3) 1.2626 (13) 0.6449 (5) 0.0441 (14)

H6 0.6330 1.1943 0.7194 0.053*

C7 0.5675 (2) 0.9587 (12) 0.5614 (5) 0.0420 (14)

H7 0.5570 0.9022 0.6368 0.050*

C8 0.4956 (2) 0.6523 (13) 0.4931 (5) 0.0414 (14)

C9 0.4673 (3) 0.5490 (15) 0.3959 (5) 0.0510 (16)

H9 0.4787 0.6008 0.3206 0.061*

C10 0.4209 (3) 0.3645 (14) 0.4137 (5) 0.0516 (16)

H10 0.4007 0.2950 0.3496 0.062*

C11 0.4050 (2) 0.2849 (13) 0.5259 (5) 0.0463 (14)

C12 0.4381 (3) 0.3945 (14) 0.6161 (5) 0.0507 (16)

H12 0.4284 0.3398 0.6922 0.061*

C13 0.3556 (3) 0.0966 (16) 0.5508 (7) 0.069 (2)

H13A 0.3244 0.2285 0.5628 0.104*

H13B 0.3618 −0.0239 0.6200 0.104*

H13C 0.3485 −0.0371 0.4856 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0634 (4) 0.0781 (4) 0.0684 (4) −0.0050 (3) −0.0172 (5) −0.0138 (5)

O1 0.073 (3) 0.069 (3) 0.036 (2) −0.008 (2) 0.000 (2) −0.001 (2)

N1 0.049 (3) 0.037 (3) 0.038 (3) −0.002 (2) 0.002 (2) 0.001 (2)

N2 0.057 (3) 0.059 (3) 0.033 (3) −0.006 (3) 0.004 (2) 0.000 (2)

C1 0.049 (3) 0.033 (3) 0.035 (3) 0.006 (3) 0.006 (3) −0.001 (2)

C2 0.056 (4) 0.046 (3) 0.033 (3) 0.012 (3) 0.002 (3) −0.006 (3)

C3 0.048 (4) 0.043 (3) 0.053 (4) 0.006 (3) 0.013 (3) 0.003 (3)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2365–o2366

C5 0.047 (4) 0.037 (3) 0.055 (4) 0.008 (3) −0.004 (3) −0.012 (3)

C6 0.052 (4) 0.042 (3) 0.039 (3) 0.004 (3) −0.005 (3) 0.002 (3)

C7 0.053 (4) 0.040 (3) 0.033 (3) 0.002 (3) 0.001 (3) 0.007 (3)

C8 0.049 (4) 0.045 (3) 0.031 (3) 0.008 (3) 0.002 (3) −0.004 (2)

C9 0.053 (4) 0.066 (4) 0.034 (3) −0.006 (3) 0.003 (3) 0.002 (3)

C10 0.057 (4) 0.057 (4) 0.041 (3) 0.006 (3) 0.000 (3) −0.003 (3)

C11 0.050 (4) 0.044 (3) 0.045 (4) 0.004 (3) −0.002 (3) −0.001 (3)

C12 0.061 (4) 0.059 (4) 0.032 (3) −0.004 (3) 0.001 (3) 0.004 (3)

C13 0.052 (4) 0.082 (5) 0.073 (5) −0.018 (4) −0.005 (4) 0.020 (4)

Geometric parameters (Å, º)

Br1—C5 1.905 (6) C5—C6 1.388 (9)

O1—C2 1.346 (7) C6—H6 0.9300

O1—H1 0.8200 C7—H7 0.9300

N1—C7 1.269 (7) C8—C9 1.378 (8)

N1—C8 1.408 (7) C9—C10 1.396 (9)

N2—C12 1.330 (7) C9—H9 0.9300

N2—C8 1.338 (7) C10—C11 1.381 (8)

C1—C6 1.381 (8) C10—H10 0.9300

C1—C2 1.399 (8) C11—C12 1.388 (8)

C1—C7 1.440 (8) C11—C13 1.480 (8)

C2—C3 1.387 (8) C12—H12 0.9300

C3—C4 1.380 (9) C13—H13A 0.9600

C3—H3 0.9300 C13—H13B 0.9600

C4—C5 1.359 (9) C13—H13C 0.9600

C4—H4 0.9300

C2—O1—H1 109.5 C1—C7—H7 118.5

C7—N1—C8 120.9 (5) N2—C8—C9 123.1 (5)

C12—N2—C8 117.0 (5) N2—C8—N1 118.9 (5)

C6—C1—C2 119.6 (5) C9—C8—N1 118.1 (5)

C6—C1—C7 120.0 (5) C8—C9—C10 118.2 (5)

C2—C1—C7 120.4 (5) C8—C9—H9 120.9

O1—C2—C3 118.2 (5) C10—C9—H9 120.9

O1—C2—C1 122.1 (5) C11—C10—C9 120.3 (6)

C3—C2—C1 119.7 (5) C11—C10—H10 119.9

C4—C3—C2 120.2 (6) C9—C10—H10 119.9

C4—C3—H3 119.9 C10—C11—C12 116.0 (6)

C2—C3—H3 119.9 C10—C11—C13 122.9 (6)

C5—C4—C3 119.6 (6) C12—C11—C13 121.1 (6)

C5—C4—H4 120.2 N2—C12—C11 125.5 (5)

C3—C4—H4 120.2 N2—C12—H12 117.3

C4—C5—C6 121.6 (6) C11—C12—H12 117.3

C4—C5—Br1 119.4 (5) C11—C13—H13A 109.5

C6—C5—Br1 118.9 (4) C11—C13—H13B 109.5

C1—C6—C5 119.2 (5) H13A—C13—H13B 109.5

(6)

C5—C6—H6 120.4 H13A—C13—H13C 109.5

N1—C7—C1 123.0 (5) H13B—C13—H13C 109.5

N1—C7—H7 118.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Figure 1
Figure 2

References

Related documents

This section describes how to effectively opti- mize neural network detection models via dy- namic cost-sensitive learning. Specifically, we first propose a marginal utility

To test the performance of DFG, we use a similar recurrent architecture to Memory Fusion Network (MFN). MFN is a recurrent neural model with three main components 1) System of LSTMs:

Samples were analysed for 119 disorders including amino acid disorders, fatty acid disorders, organic acid disorders, carbohydrate disorders, peroxisomal disorders

We wish to express our gratitude to CJK Institute (Japan), Institute for Infocomm Research (Singapore), National University of Singapore (NUS), Artificial Intelligence Laboratory at

Each row reports the coefficients from separate regressions of the effect of the corresponding treatment on natives’ average test scores.Controls for grade-level

In this study, almost half of the sample showed statistically significant relations between electricity consumption and exports income resembling economic growth

In addition, the causality test shows that South Africa, India and China induce Brazil’s economic growth.. The results of this study carry implications for future world

In this paper, we have presented a neural model for POS tagging and language identification on CS data. The neural network is a state-of-the- art bidirectional LSTM with prefix,