• No results found

1 Acetyl 3,3 bis­­[3 (4 methyl­phen­yl) 1,2,4 oxa­diazol 5 ylmeth­yl] 1H indol 2(3H) one

N/A
N/A
Protected

Academic year: 2020

Share "1 Acetyl 3,3 bis­­[3 (4 methyl­phen­yl) 1,2,4 oxa­diazol 5 ylmeth­yl] 1H indol 2(3H) one"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2462

Yanet al. C

30H25N5O4 doi:10.1107/S160053680601854X Acta Cryst.(2006). E62, o2462–o2463

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-Acetyl-3,3-bis[3-(4-methylphenyl)-1,2,4-oxadiazol-5-ylmethyl]-1

H

-indol-2(3

H

)-one

Xiao-Chen Yan,* Hai-Bo Wang and Zhi-Qian Liu

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People’s Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.006 A˚ Rfactor = 0.043 wRfactor = 0.127 Data-to-parameter ratio = 8.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 15 May 2006 Accepted 18 May 2006

#2006 International Union of Crystallography All rights reserved

In the crystal structure of the title compound, C30H25N5O4,

there are C—H O and C—H N hydrogen bonds.

Comment

Oxindole derivatives, which possess affinity for different receptors, exhibit intrinsic analgesic (Daisley & Walker, 1979), anti-inflammatory (Kadin, 1986), antiviral (Singh & Krishna, 1989), cardiotonic (Andreani & Rambaldi, 1988), anti-convulsant (Valentaet al., 1990), anxiolytic (Sargeset al., 1989) and inotropic (Ogawaet al., 1988) properties. We are focusing our synthetic and structural studies on new oxindole deriva-tives, and recently we have published the synthesis and structure of 1-acetyl-3,3-bis[(3-(2-methylphenyl)-1,2,4-oxa-diazol-5-yl)methyl]-1H-indolin-2(3H)-one (Yan et al., 2006). We report here the structure of its close analogue, (I), with 2-methylphenyl replaced by the 4-methylphenyl group.

The molecular structure of (I) is shown in Fig. 1. The indanone ring system is planar and the acetyl group at N5 is twisted by 17.5 (2). The dihedral angle between the N4/ C22O4/N3/C23 and C24–C29 planes is 11.1 (1) and that between the N2/C8/N1/O1/C29 and C2–C7 planes is 25.6 (1). Intramolecular C—H N and C—H O hydrogen bonds are observed in the molecular structure. The crystal structure is stabilized by intermolecular C—H O and C—H N hydrogen bonds (Table 1).

Experimental

(2)

was obtained. The pure compound was obtained by crystallization from a mixture of ethyl acetate (4 ml) and petrolum ether (8 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

C30H25N5O4

Mr= 519.55

Monoclinic,C2

a= 15.5510 (16) A˚

b= 6.9695 (14) A˚

c= 25.220 (2) A˚

= 103.46 (3)

V= 2658.3 (7) A˚3

Z= 4

Dx= 1.298 Mg m

3

MoKradiation

= 0.09 mm1

T= 293 (2) K Block, colourless 0.400.400.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.965,Tmax= 0.974

5676 measured reflections

2843 independent reflections 2200 reflections withI> 2(I)

Rint= 0.030 max= 26.0

3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.127

S= 1.05 2843 reflections 353 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.075P)2

+ 0.19P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.16 e A˚

3

min=0.15 e A˚ 3

Extinction correction:SHELXL97

Extinction coefficient: 0.0098 (12)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C7—H7A N1i 0.93 2.62 3.387 (6) 140 C10—H10A O2ii

0.97 2.46 3.411 (5) 166 C16—H16A O2 0.93 2.30 2.834 (5) 116 C29—H29A N4 0.93 2.62 2.935 (4) 100

Symmetry codes: (i)x;y1;z; (ii)x1 2;yþ

1 2;z.

All H atoms were positioned geometrically with C—H distances in the range 0.93–0.97 A˚ and included in the refinement in the riding-model approximation, withUiso(H) values of 1.2 or 1.5 timesUeq(C).

In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97 (Sheldrick, 1997); molecular graphics:SHELXTL (Siemens, 1996); software used to prepare material for publication:SHELXL97.

References

Andreani, A. & Rambaldi, M. (1988).J. Heterocycl. Chem.25, 1519–1523. Daisley, R. W. & Walker, J. (1979).Eur. J. Med. Chem. Chim. Ther.14, 47–52. Enraf–Nonius (1989).CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The

Netherlands.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Kadin, S. B. (1986). Eur. Patent No. EP175551.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351– 359.

Ogawa, H., Tamada, S., Fujioka, T., Teramoto, S., Kondo, K., Yamashita, S., Yabuuchi, Y., Tominaga, M. & Nakagawa, K. (1988).Chem. Pharm. Bull.36, 2253–2258.

Sarges, R., Howard, H. R., Koe, B. K. & Weissman, A. (1989).J. Med. Chem.

32, 437–444.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Singh, S. P. & Krishna, J. (1989).Zentralbl. Mikrobiol.144, 105–109. Valenta, V., Holubek, J., Svatek, E., Valchar, M., Krejci, I. & Protiva, M.

(1990).Collect. Czech. Chem. Commun.55, 2756–2764.

[image:2.610.315.570.71.224.2]

Yan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006).Acta Cryst.E62, o917–o918.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o2462–o2463

supporting information

Acta Cryst. (2006). E62, o2462–o2463 [https://doi.org/10.1107/S160053680601854X]

1-Acetyl-3,3-bis[3-(4-methylphenyl)-1,2,4-oxadiazol-5-ylmethyl]-1

H

-indol-2(3

H

)-one

Xiao-Chen Yan, Hai-Bo Wang and Zhi-Qian Liu

1-Acetyl-3,3-bis[3-(4-methylphenyl)-1,2,4-oxadiazol-5-ylmethyl]-1H- indol-2(3H)-one

Crystal data

C30H25N5O4

Mr = 519.55

Monoclinic, C2 Hall symbol: C 2y

a = 15.5510 (16) Å

b = 6.9695 (14) Å

c = 25.220 (2) Å

β = 103.46 (3)°

V = 2658.3 (7) Å3

Z = 4

F(000) = 1088

Dx = 1.298 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 10–13°

µ = 0.09 mm−1

T = 293 K Block, colourless 0.40 × 0.40 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.965, Tmax = 0.974

5676 measured reflections

2843 independent reflections 2200 reflections with I > 2σ(I)

Rint = 0.030

θmax = 26.0°, θmin = 1.7°

h = −19→19

k = 0→8

l = −31→31

3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.127

S = 1.05 2843 reflections 353 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.075P)2 + 0.19P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.16 e Å−3

Δρmin = −0.15 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Experimental. 1H NMR (CDCl

3, δ, p.p.m.): 8.16 (m, 1H), 7.74–7.75 (s, 4H), 7.19–7.23 (s, 5H), 7.03–7.05 (s, 2H), 3.74–

3.77 (m, 2H), 3.63–3.66 (m, 2H), 2.75 (s, 3H), 2.35 (s, 6H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o2462–o2463

H14A 0.6435 1.1888 0.8350 0.072* C15 0.7261 (2) 0.9816 (6) 0.82098 (16) 0.0593 (9) H15A 0.7779 1.0444 0.8383 0.071* C16 0.7320 (2) 0.8019 (5) 0.79763 (14) 0.0493 (8) H16A 0.7865 0.7445 0.7990 0.059* C17 0.65412 (18) 0.7129 (5) 0.77239 (12) 0.0406 (7) C18 0.54967 (19) 0.4971 (5) 0.72633 (13) 0.0448 (8) C19 0.6825 (3) 0.2680 (7) 0.68912 (18) 0.0757 (13) H19A 0.7348 0.2108 0.6819 0.114* H19B 0.6460 0.3162 0.6557 0.114* H19C 0.6503 0.1733 0.7043 0.114* C20 0.7080 (2) 0.4284 (6) 0.72852 (15) 0.0531 (9) C21 0.4433 (2) 0.7608 (6) 0.68741 (14) 0.0531 (9) H21A 0.4003 0.6666 0.6695 0.064* H21B 0.4108 0.8693 0.6969 0.064* C22 0.4952 (2) 0.8266 (6) 0.64798 (13) 0.0488 (8) C23 0.5851 (2) 0.8925 (5) 0.60135 (12) 0.0465 (8) C24 0.6695 (2) 0.9026 (5) 0.58370 (13) 0.0454 (7) C25 0.6728 (2) 0.9900 (6) 0.53497 (15) 0.0600 (10) H25A 0.6213 1.0362 0.5120 0.072* C26 0.7531 (3) 1.0089 (7) 0.52035 (17) 0.0694 (11) H26A 0.7546 1.0681 0.4875 0.083* C27 0.8303 (2) 0.9420 (5) 0.55329 (17) 0.0594 (10) C28 0.8259 (2) 0.8507 (6) 0.60107 (16) 0.0605 (10) H28A 0.8773 0.8013 0.6234 0.073* C29 0.7462 (2) 0.8308 (6) 0.61666 (14) 0.0541 (9) H29A 0.7447 0.7693 0.6492 0.065* C30 0.9181 (3) 0.9625 (8) 0.5372 (2) 0.0872 (15) H30A 0.9643 0.9085 0.5652 0.131* H30B 0.9300 1.0959 0.5328 0.131* H30C 0.9153 0.8960 0.5035 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C5 0.061 (2) 0.047 (2) 0.058 (2) −0.0034 (18) 0.0207 (17) −0.0037 (18) C6 0.080 (3) 0.051 (2) 0.071 (3) 0.002 (2) 0.003 (2) −0.010 (2) C7 0.111 (4) 0.046 (3) 0.091 (4) 0.008 (3) 0.002 (3) 0.003 (3) C8 0.060 (2) 0.044 (2) 0.063 (2) −0.0014 (18) 0.0252 (17) −0.0040 (18) C9 0.0471 (17) 0.049 (2) 0.065 (2) 0.0032 (17) 0.0303 (16) 0.0028 (19) C10 0.0386 (16) 0.057 (2) 0.075 (2) 0.0088 (17) 0.0218 (15) 0.005 (2) C11 0.0347 (14) 0.0447 (19) 0.0560 (18) 0.0113 (15) 0.0160 (13) 0.0038 (16) C12 0.0427 (16) 0.0440 (19) 0.0504 (17) 0.0105 (15) 0.0200 (13) 0.0024 (16) C13 0.0532 (18) 0.046 (2) 0.066 (2) 0.0104 (18) 0.0269 (16) 0.0005 (19) C14 0.075 (2) 0.043 (2) 0.070 (2) 0.0036 (19) 0.0296 (19) −0.0085 (19) C15 0.057 (2) 0.051 (2) 0.070 (2) −0.0055 (19) 0.0159 (17) −0.010 (2) C16 0.0412 (16) 0.046 (2) 0.061 (2) 0.0049 (16) 0.0127 (14) 0.0000 (18) C17 0.0386 (15) 0.0382 (17) 0.0457 (16) 0.0081 (14) 0.0113 (12) 0.0029 (15) C18 0.0373 (16) 0.043 (2) 0.0529 (19) 0.0070 (15) 0.0080 (13) −0.0011 (17) C19 0.061 (2) 0.071 (3) 0.099 (3) 0.013 (2) 0.027 (2) −0.033 (3) C20 0.0435 (17) 0.047 (2) 0.070 (2) 0.0163 (16) 0.0162 (15) −0.0074 (18) C21 0.0389 (15) 0.057 (2) 0.064 (2) 0.0146 (16) 0.0129 (14) 0.0047 (18) C22 0.0441 (17) 0.050 (2) 0.0498 (18) 0.0141 (16) 0.0061 (13) −0.0001 (17) C23 0.0450 (16) 0.0456 (19) 0.0457 (17) 0.0089 (16) 0.0043 (13) −0.0013 (16) C24 0.0490 (16) 0.0389 (18) 0.0472 (17) 0.0026 (15) 0.0089 (13) −0.0056 (15) C25 0.059 (2) 0.057 (2) 0.064 (2) 0.008 (2) 0.0131 (16) 0.012 (2) C26 0.077 (2) 0.056 (2) 0.082 (3) 0.002 (2) 0.032 (2) 0.017 (2) C27 0.061 (2) 0.043 (2) 0.079 (3) −0.0052 (18) 0.0263 (18) −0.008 (2) C28 0.0473 (18) 0.057 (2) 0.073 (2) 0.0078 (18) 0.0059 (16) −0.009 (2) C29 0.0523 (18) 0.054 (2) 0.0542 (19) 0.0057 (18) 0.0091 (15) 0.0007 (18) C30 0.072 (2) 0.070 (3) 0.132 (4) −0.013 (3) 0.051 (3) −0.011 (3)

Geometric parameters (Å, º)

O1—C9 1.318 (5) C11—C21 1.533 (4)

O1—N1 1.426 (4) C11—C18 1.539 (5)

O2—C20 1.205 (4) C12—C13 1.374 (5)

O3—C18 1.202 (4) C12—C17 1.397 (4)

O4—C22 1.336 (4) C13—C14 1.384 (5)

O4—N3 1.422 (4) C13—H13A 0.9300

N1—C8 1.303 (5) C14—C15 1.384 (5)

N2—C9 1.299 (5) C14—H14A 0.9300

N2—C8 1.369 (5) C15—C16 1.396 (6)

N3—C23 1.294 (4) C15—H15A 0.9300

N4—C22 1.281 (4) C16—C17 1.378 (4)

N4—C23 1.371 (4) C16—H16A 0.9300

N5—C18 1.402 (4) C19—C20 1.487 (5)

N5—C20 1.410 (4) C19—H19A 0.9600

N5—C17 1.432 (4) C19—H19B 0.9600

C1—C2 1.519 (7) C19—H19C 0.9600

C1—H1B 0.9600 C21—C22 1.492 (5)

C1—H1C 0.9600 C21—H21A 0.9700

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o2462–o2463

C2—C7 1.366 (7) C23—C24 1.482 (4)

C2—C3 1.377 (7) C24—C29 1.380 (4)

C3—C4 1.362 (7) C24—C25 1.384 (5)

C3—H3B 0.9300 C25—C26 1.387 (5)

C4—C5 1.374 (6) C25—H25A 0.9300

C4—H4B 0.9300 C26—C27 1.373 (6)

C5—C6 1.378 (6) C26—H26A 0.9300

C5—C8 1.467 (5) C27—C28 1.379 (6)

C6—C7 1.377 (6) C27—C30 1.518 (5)

C6—H6A 0.9300 C28—C29 1.391 (5)

C7—H7A 0.9300 C28—H28A 0.9300

C9—C10 1.467 (5) C29—H29A 0.9300

C10—C11 1.553 (4) C30—H30A 0.9600

C10—H10A 0.9700 C30—H30B 0.9600

C10—H10B 0.9700 C30—H30C 0.9600

C11—C12 1.512 (5)

(8)

C2—C7—H7A 118.7 N3—C23—N4 114.7 (3) C6—C7—H7A 118.7 N3—C23—C24 122.0 (3) N1—C8—N2 113.9 (4) N4—C23—C24 123.2 (3) N1—C8—C5 121.0 (4) C29—C24—C25 119.2 (3) N2—C8—C5 125.1 (3) C29—C24—C23 120.3 (3) N2—C9—O1 113.2 (3) C25—C24—C23 120.5 (3) N2—C9—C10 130.5 (3) C24—C25—C26 120.0 (3) O1—C9—C10 116.3 (3) C24—C25—H25A 120.0 C9—C10—C11 114.9 (3) C26—C25—H25A 120.0 C9—C10—H10A 108.5 C27—C26—C25 121.4 (4) C11—C10—H10A 108.5 C27—C26—H26A 119.3 C9—C10—H10B 108.5 C25—C26—H26A 119.3 C11—C10—H10B 108.5 C26—C27—C28 118.1 (3) H10A—C10—H10B 107.5 C26—C27—C30 121.4 (4) C12—C11—C21 114.0 (3) C28—C27—C30 120.5 (4) C12—C11—C18 102.2 (2) C27—C28—C29 121.5 (3) C21—C11—C18 109.8 (3) C27—C28—H28A 119.3 C12—C11—C10 115.4 (3) C29—C28—H28A 119.3 C21—C11—C10 106.3 (2) C24—C29—C28 119.7 (3) C18—C11—C10 109.1 (3) C24—C29—H29A 120.1 C13—C12—C17 120.6 (3) C28—C29—H29A 120.1 C13—C12—C11 129.6 (3) C27—C30—H30A 109.5 C17—C12—C11 109.8 (3) C27—C30—H30B 109.5 C12—C13—C14 119.3 (3) H30A—C30—H30B 109.5 C12—C13—H13A 120.3 C27—C30—H30C 109.5 C14—C13—H13A 120.3 H30A—C30—H30C 109.5 C13—C14—C15 119.7 (4) H30B—C30—H30C 109.5 C13—C14—H14A 120.2

(9)

supporting information

sup-7

Acta Cryst. (2006). E62, o2462–o2463

C6—C5—C8—N2 −24.5 (6) C18—C11—C21—C22 −59.4 (4) C8—N2—C9—O1 −2.2 (4) C10—C11—C21—C22 −177.3 (3) C8—N2—C9—C10 179.8 (3) C23—N4—C22—O4 −0.8 (4) N1—O1—C9—N2 1.3 (4) C23—N4—C22—C21 −179.5 (4) N1—O1—C9—C10 179.5 (3) N3—O4—C22—N4 0.8 (5) N2—C9—C10—C11 −85.5 (5) N3—O4—C22—C21 179.6 (3) O1—C9—C10—C11 96.6 (4) C11—C21—C22—N4 14.0 (6) C9—C10—C11—C12 −37.6 (4) C11—C21—C22—O4 −164.6 (3) C9—C10—C11—C21 −164.9 (3) O4—N3—C23—N4 −0.2 (5) C9—C10—C11—C18 76.7 (4) O4—N3—C23—C24 −177.1 (3) C21—C11—C12—C13 62.8 (4) C22—N4—C23—N3 0.6 (4) C18—C11—C12—C13 −178.7 (3) C22—N4—C23—C24 177.5 (3) C10—C11—C12—C13 −60.6 (5) N3—C23—C24—C29 167.6 (4) C21—C11—C12—C17 −117.3 (3) N4—C23—C24—C29 −9.1 (5) C18—C11—C12—C17 1.2 (3) N3—C23—C24—C25 −10.1 (6) C10—C11—C12—C17 119.3 (3) N4—C23—C24—C25 173.2 (3) C17—C12—C13—C14 0.4 (5) C29—C24—C25—C26 −1.5 (6) C11—C12—C13—C14 −179.7 (3) C23—C24—C25—C26 176.2 (4) C12—C13—C14—C15 −0.2 (6) C24—C25—C26—C27 0.1 (7) C13—C14—C15—C16 0.0 (6) C25—C26—C27—C28 1.6 (6) C14—C15—C16—C17 −0.1 (5) C25—C26—C27—C30 179.9 (4) C15—C16—C17—C12 0.3 (5) C26—C27—C28—C29 −1.8 (6) C15—C16—C17—N5 178.9 (3) C30—C27—C28—C29 179.8 (4) C13—C12—C17—C16 −0.5 (5) C25—C24—C29—C28 1.3 (6) C11—C12—C17—C16 179.6 (3) C23—C24—C29—C28 −176.4 (4) C13—C12—C17—N5 −179.3 (3) C27—C28—C29—C24 0.4 (6) C11—C12—C17—N5 0.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C7—H7A···N1i 0.93 2.62 3.387 (6) 140

C10—H10A···O2ii 0.97 2.46 3.411 (5) 166

C16—H16A···O2 0.93 2.30 2.834 (5) 116 C29—H29A···N4 0.93 2.62 2.935 (4) 100

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical