• No results found

1 (4 Chloro­phen­yl) 6,7 di­meth­oxy­isochroman

N/A
N/A
Protected

Academic year: 2020

Share "1 (4 Chloro­phen­yl) 6,7 di­meth­oxy­isochroman"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1819–o1821 doi:10.1107/S1600536806011792 Saeed and Flo¨rke C

17H17ClO3

o1819

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Chlorophenyl)-6,7-dimethoxyisochroman

Aamer Saeedaand Ulrich Flo¨rkeb*

a

Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan, and b

Department Chemie, Fakulta¨t fu¨r Naturwissenschaften, Universita¨t Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

Key indicators

Single-crystal X-ray study

T= 120 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.042

wRfactor = 0.115

Data-to-parameter ratio = 18.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 28 March 2006 Accepted 31 March 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, C17H17ClO3, is another representative of

the rare examples of crystallographically characterized 6,7-dimethoxyisochromans. The packing exhibits intermolecular

C(methyl)—H Cl hydrogen bonds with an infinite zigzag

pattern along [010]. Additional intermolecular bonds occur between methoxy groups and the pyran O atoms.

Comment

Various isochroman (3,4-dihydro-1H-benzo[c]pyran)

struc-tures are found in nature or as part of complex natural products. These are also intermediates in the synthesis of pharmaceuticals and drugs. 1-Aryl-6,7-dimethoxyisochromans are an important class of isochromans which exhibit a wide range of biological activities such as analgesic, muscle relaxant, antidepressant, anti-inflammatory, antihistaminic,

anticoagulant and antihypertensive (Dobson et al., 1975;

Yamato et al., 1985; McCall et al., 1982).

6,7-Dimethoxy-isochromans substituted at C-1 via a one- to three-carbon

chain with arylpiperazines,p-fluorophenyl,etc., are hypoten-sives which lower blood pressure, presumably by both

peripheral and central-adrenoreceptor blockade (TenBrink

et al., 1996). 1-Phenyl- and 1-(3-methoxy-4-hydroxy)phenyl-6,7-dihydroxyisochromans have been identified in extra virgin olive oil (Malstromet al., 2000). These natural isochromans or their synthetic derivatives have been shown to exhibit bene-ficial antioxidant effects (Lorenzet al., 2005). The antiplatelet activity and antioxidant power of these isochromans have also been evaluated and found to be effective free radical scavengers and inhibited platelet aggregation and throm-boxane release evoked by agonists (Tognaet al., 2003).

6,7-Dimethoxyisochromans can easily be demethylated to the corresponding 6,7-dihydroxyisochromans. The oxa-Pictet– Spengler reaction is a variation of the Pictet–Spengler reaction in which a phenethyl alcohol reacts with a carbonyl compound

(2)

2001). The title compound, (I), was prepared by condensation

of 2-(3,4-dimethoxyphenyl)ethanol with

4-chlorobenz-aldehyde in the presence of a catalytic amount of p

-toluene-sulfonic acid under microwave irradiation. The compound was

characterized by a 1H singlet at5.54 for H-1 in the1H NMR

spectrum. The non-planar nature of the tetrahydropyran ring

was indicated by separate 2H multiplets at3.84 and 4.0 and

at 2.56 and 2.94 for the C-3 and C-4 methylene protons,

respectively.

The pyran ring is puckered with O1 and C8 lying0.429 (1)

and 0.342 (2)A˚ , respectively, below and above the isochroman plane. The C atom of the O3/C17 methoxy group is slightly

bent out of this plane [C17 0.325 (2), with A˚ below the plane], whereas the second methoxy group is almost coplanar [deviation for C16 of 0.066 (2)A˚ ]. The angle formed by the two aromatic isochroman (C10–C15) and benzene (C1–C6) planes is 84.30 (4).

The packing shows stacking of the molecules along [010].

Intermolecular C—H Cl hydrogen bonds (see Table) form a

zigzag pattern with each of the two methyl donors linked to one chlorine acceptor. These infinite centrosymmetric double chains (Fig. 2) are then connected to each other by

C(methyl)—H O(pyran) bridges. The shortest

inter-molecular H O(methoxy) distances are about 2.7A˚ and

there are no–interactions between the molecules. There

are short C—H contacts between C3—H3 and X1(x+ 1,

y+1 2,z+

1

2), the mid-point of the C1–C6p-chlorophenyl ring,

and between C16—H16Aand X2(x,y+ 1,z), the mid-point of the C10–C15 dimethoxyisochroman unit.

Experimental

To a mixture of 2-(3,4-dimethoxyphenyl)ethanol (0.182 g, 1 mmol) and 4-chlorobenzaldehyde (0.136 g, 0.12 ml, 1 mmol), a catalytic amount of p-toluenesulfonic acid monohydrate was added. The reaction mixture was homogenized and irradiated for 90 s. On completion of the reaction, as monitored by thin-layer chromato-graphy (TLC, every 30 s) using petroleum ether and ethyl acetate (7:2), the reaction mixture was purified by thick-layer chromato-graphy. The product obtained was recrystallized from ethyl acetate (0.29 g, 0.98 mmol, 98%; 357–358 K). TLC (Rf): 0.38; 1H NMR (CDCl3):6.59 (1H,s, H-5), 6.20 (1H,s, H-8), 5.54 (1H,s, H-1), 3.84 and 4.0 (2H,m, 2H-3), 3.79 (6H,s, 2OCH3), 2.56 and 2.94 (2H, m, 2H-4); chlorophenyl group: 7.23 (2H,d,J= 8.4 Hz, C-30and

C-50), 7.20 (2H,d,J= 8.4 Hz, C-20 and C-60). Analysis calculated for

C17H17ClO3: C 67.00, H 5.62%; found: C 67.3, H 5.58%.

Crystal data

C17H17ClO3

Mr= 304.76 Monoclinic,P21=c

a= 16.877 (1) A˚

b= 5.3142 (3) A˚

c= 16.3985 (9) A˚

= 96.964 (1)

V= 1459.89 (14) A˚3

Z= 4

Dx= 1.387 Mg m 3

MoKradiation

= 0.27 mm1

T= 120 (2) K Block, colourless 0.420.260.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.895,Tmax= 0.936

13531 measured reflections 3531 independent reflections 3050 reflections withI> 2(I)

Rint= 0.025

max= 28.1

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.042

wR(F2) = 0.115

S= 1.04 3531 reflections 190 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0609P)2 + 0.562P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.39 e A˚ 3

min=0.37 e A˚ 3

organic papers

o1820

Saeed and Flo¨rke C

[image:2.610.61.262.68.313.2]

17H17ClO3 Acta Cryst.(2006). E62, o1819–o1821

Figure 1

[image:2.610.46.294.358.539.2]

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

Table 1

Selected geometric parameters (A˚ ,).

Cl1—C4 1.7427 (15)

O1—C8 1.4294 (17)

O1—C7 1.4302 (18)

C1—C7 1.5102 (19)

C8—O1—C7 110.94 (11)

O1—C7—C1 106.73 (11)

O1—C7—C11 110.98 (12)

C1—C7—C11 113.34 (11)

C2—C1—C7—C11 117.11 (15)

C16—O2—C13—C14 177.65 (12)

C17—O3—C14—C13 167.44 (12)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C16—H16B O1i

0.98 2.59 3.5375 (19) 164

C16—H16B Cl1ii

0.98 2.88 3.3115 (14) 108

C16—H16C Cl1iii

0.98 2.89 3.7440 (17) 146

Symmetry codes: (i) x;yþ3 2;zþ

1

2; (ii) xþ1;yþ2;zþ1; (iii)

xþ1;yþ1;zþ1.

H atoms were placed at idealized positions (C–H = 0.95–0.99A˚ ) and refined as riding, withUiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve

structure: SHELXTL (Bruker, 2002); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

AS gratefully acknowledges the Higher Education

Commission of Pakistan for financial assistance.

References

Bruker (2002).SMART(Version 5.62),SAINT (Version 6.02),SHELXTL

(Version 6.10) andSADABS(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Dobson, T. A. & Humber, L. G. (1975).J. Heterocycl. Chem.12, 591–594. Guiso, M., Marra, C. & Cavarischia, C. (2001).Tetrahedron Lett.42, 6531–

6134.

Lorenz, P., Zeh, M., Lobenhoffer, J. M., Schmidt, H., Wolf, G. & Horn, T. F. W. (2005).Free Radical Res.39, 535–545.

Malstrom, J., Christophersen, C. & Frisvad, J. C. (2000).Phytochemistry,54, 301–309.

McCall, J. M., McCall, R. B., TenBrink, R. E., Kamdar, B. V., Humphrey, S. J., Sethy, V. H., Harris, D. W. & Daenzar, C. (1982).J. Med. Chem.25, 75–81. TenBrink, R. E., Bergh, C. L., Duncan, J. N., Harris, D. W., Huff, R. M., Lahti, R. A., Lawson, C. F., Lutzke, B. S., Martin, I. J., Rees, S. A., Schlachter, S. K., Sihr, J. C. & Smith, M. W. (1996).J. Med. Chem.39, 2435–2437.

Togna, G. I., Togna, A. R., Franconi, M., Marra, C. & Guiso, M. (2003).J. Nutr. 133, 2532–2536.

Yamato, M., Hashigaki, K., Ishikawa, S., Kokubu, N., Inoue, Y., Tsuruo, T. & Tashirot, T. (1985).J. Med. Chem.28, 1026–1031.

organic papers

Acta Cryst.(2006). E62, o1819–o1821 Saeed and Flo¨rke C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o1819–o1821

supporting information

Acta Cryst. (2006). E62, o1819–o1821 [https://doi.org/10.1107/S1600536806011792]

1-(4-Chlorophenyl)-6,7-dimethoxyisochroman

Aamer Saeed and Ulrich Fl

ö

rke

1-(4-Chlorophenyl)-6,7-dimethoxyisochroman

Crystal data

C17H17ClO3

Mr = 304.76

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 16.877 (1) Å

b = 5.3142 (3) Å

c = 16.3985 (9) Å

β = 96.964 (1)°

V = 1459.89 (14) Å3

Z = 4

F(000) = 640

Dx = 1.387 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4340 reflections

θ = 2.4–28.2°

µ = 0.27 mm−1

T = 120 K Block, colourless 0.42 × 0.26 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.895, Tmax = 0.936

13531 measured reflections 3531 independent reflections 3050 reflections with I > 2σ(I)

Rint = 0.025

θmax = 28.1°, θmin = 1.2°

h = −22→22

k = −6→7

l = −19→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.042

wR(F2) = 0.115

S = 1.04 3531 reflections 190 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0609P)2 + 0.562P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.39 e Å−3

Δρmin = −0.37 e Å−3

Special details

Experimental. EIMS m/e: 304, 306, 193, 165.

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o1819–o1821

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.38719 (2) 0.54092 (9) 0.38286 (3) 0.04020 (14) O1 0.74629 (6) 0.2315 (2) 0.30335 (6) 0.0292 (2) O2 0.81316 (6) 0.8414 (2) 0.61986 (6) 0.0275 (2) O3 0.93535 (6) 0.5440 (2) 0.64814 (6) 0.0257 (2) C1 0.64861 (8) 0.4869 (3) 0.35364 (8) 0.0224 (3) C2 0.60322 (9) 0.6852 (3) 0.31898 (10) 0.0299 (3)

H2A 0.6274 0.8102 0.2888 0.036*

C3 0.52254 (9) 0.7033 (3) 0.32791 (10) 0.0326 (3)

H3A 0.4915 0.8395 0.3040 0.039*

C4 0.48841 (8) 0.5214 (3) 0.37180 (9) 0.0268 (3) C5 0.53228 (9) 0.3215 (3) 0.40710 (9) 0.0289 (3)

H5A 0.5078 0.1968 0.4372 0.035*

C6 0.61262 (8) 0.3064 (3) 0.39775 (9) 0.0270 (3)

H6A 0.6435 0.1703 0.4220 0.032*

C7 0.73616 (8) 0.4658 (3) 0.34375 (9) 0.0246 (3)

H7A 0.7504 0.6054 0.3073 0.029*

C8 0.82828 (9) 0.1903 (3) 0.29347 (9) 0.0314 (3)

H8A 0.8500 0.3408 0.2683 0.038*

H8B 0.8327 0.0457 0.2562 0.038*

C9 0.87619 (9) 0.1379 (3) 0.37581 (9) 0.0275 (3)

H9A 0.8640 −0.0337 0.3942 0.033*

H9B 0.9339 0.1458 0.3701 0.033*

C10 0.85689 (8) 0.3271 (3) 0.43923 (8) 0.0226 (3) C11 0.79063 (8) 0.4813 (3) 0.42494 (8) 0.0213 (3) C12 0.77495 (8) 0.6579 (3) 0.48436 (8) 0.0221 (3)

H12A 0.7299 0.7655 0.4739 0.027*

C13 0.82405 (8) 0.6780 (3) 0.55810 (8) 0.0216 (3) C14 0.89049 (8) 0.5168 (3) 0.57309 (9) 0.0213 (3) C15 0.90621 (8) 0.3459 (3) 0.51397 (9) 0.0231 (3)

H15A 0.9514 0.2388 0.5241 0.028*

C16 0.74778 (9) 1.0131 (3) 0.60433 (9) 0.0274 (3)

H16A 0.7564 1.1226 0.5581 0.041*

H16B 0.7441 1.1158 0.6534 0.041*

H16C 0.6981 0.9184 0.5909 0.041*

C17 0.99185 (9) 0.3487 (3) 0.67008 (9) 0.0286 (3)

H17A 0.9653 0.1849 0.6627 0.043*

H17B 1.0143 0.3686 0.7277 0.043*

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o1819–o1821

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0257 (2) 0.0487 (3) 0.0464 (3) 0.00991 (16) 0.00516 (16) −0.00744 (19) O1 0.0264 (5) 0.0341 (6) 0.0282 (5) −0.0030 (4) 0.0080 (4) −0.0111 (5) O2 0.0304 (5) 0.0274 (5) 0.0240 (5) 0.0095 (4) 0.0000 (4) −0.0053 (4) O3 0.0244 (5) 0.0279 (5) 0.0240 (5) 0.0053 (4) 0.0003 (4) −0.0010 (4) C1 0.0251 (6) 0.0230 (7) 0.0186 (6) −0.0003 (5) 0.0009 (5) −0.0033 (5) C2 0.0369 (8) 0.0239 (7) 0.0289 (7) −0.0004 (6) 0.0041 (6) 0.0034 (6) C3 0.0354 (8) 0.0269 (8) 0.0344 (8) 0.0096 (6) −0.0001 (6) 0.0023 (6) C4 0.0234 (6) 0.0299 (8) 0.0269 (7) 0.0046 (5) 0.0013 (5) −0.0073 (6) C5 0.0278 (7) 0.0292 (8) 0.0302 (8) 0.0009 (6) 0.0064 (6) 0.0034 (6) C6 0.0253 (7) 0.0257 (7) 0.0298 (7) 0.0033 (5) 0.0025 (5) 0.0057 (6) C7 0.0268 (7) 0.0260 (7) 0.0214 (7) −0.0032 (5) 0.0050 (5) −0.0012 (5) C8 0.0291 (7) 0.0389 (9) 0.0283 (8) −0.0031 (6) 0.0124 (6) −0.0094 (7) C9 0.0278 (7) 0.0260 (7) 0.0309 (8) −0.0006 (6) 0.0125 (6) −0.0050 (6) C10 0.0243 (6) 0.0218 (7) 0.0235 (7) −0.0022 (5) 0.0096 (5) −0.0009 (5) C11 0.0223 (6) 0.0213 (7) 0.0211 (6) −0.0034 (5) 0.0056 (5) 0.0009 (5) C12 0.0220 (6) 0.0208 (7) 0.0239 (7) 0.0020 (5) 0.0045 (5) 0.0004 (5) C13 0.0241 (6) 0.0189 (6) 0.0228 (7) 0.0010 (5) 0.0066 (5) −0.0009 (5) C14 0.0198 (6) 0.0218 (7) 0.0227 (7) −0.0011 (5) 0.0044 (5) 0.0024 (5) C15 0.0199 (6) 0.0232 (7) 0.0275 (7) 0.0018 (5) 0.0076 (5) 0.0015 (5) C16 0.0278 (7) 0.0255 (7) 0.0286 (8) 0.0073 (6) 0.0028 (6) −0.0046 (6) C17 0.0268 (7) 0.0296 (8) 0.0285 (7) 0.0057 (6) 0.0002 (6) 0.0040 (6)

Geometric parameters (Å, º)

Cl1—C4 1.7427 (15) C8—C9 1.513 (2)

O1—C8 1.4294 (17) C8—H8A 0.9900

O1—C7 1.4302 (18) C8—H8B 0.9900

O2—C13 1.3633 (16) C9—C10 1.5100 (19)

O2—C16 1.4306 (16) C9—H9A 0.9900

O3—C14 1.3720 (17) C9—H9B 0.9900

O3—C17 1.4259 (17) C10—C11 1.3832 (19)

C1—C2 1.384 (2) C10—C15 1.399 (2)

C1—C6 1.385 (2) C11—C12 1.4012 (19)

C1—C7 1.5102 (19) C12—C13 1.3848 (19)

C2—C3 1.390 (2) C12—H12A 0.9500

C2—H2A 0.9500 C13—C14 1.4091 (18)

C3—C4 1.373 (2) C14—C15 1.377 (2)

C3—H3A 0.9500 C15—H15A 0.9500

C4—C5 1.381 (2) C16—H16A 0.9800

C5—C6 1.385 (2) C16—H16B 0.9800

C5—H5A 0.9500 C16—H16C 0.9800

C6—H6A 0.9500 C17—H17A 0.9800

C7—C11 1.5255 (19) C17—H17B 0.9800

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o1819–o1821

C8—O1—C7 110.94 (11) C8—C9—H9A 109.5

C13—O2—C16 116.39 (11) C10—C9—H9B 109.5

C14—O3—C17 115.40 (11) C8—C9—H9B 109.5

C2—C1—C6 119.07 (13) H9A—C9—H9B 108.1

C2—C1—C7 120.84 (13) C11—C10—C15 119.28 (13)

C6—C1—C7 120.10 (12) C11—C10—C9 121.00 (13)

C1—C2—C3 120.66 (14) C15—C10—C9 119.72 (13)

C1—C2—H2A 119.7 C10—C11—C12 119.73 (13)

C3—C2—H2A 119.7 C10—C11—C7 120.34 (12)

C4—C3—C2 119.01 (14) C12—C11—C7 119.90 (12)

C4—C3—H3A 120.5 C13—C12—C11 121.04 (12)

C2—C3—H3A 120.5 C13—C12—H12A 119.5

C3—C4—C5 121.57 (14) C11—C12—H12A 119.5

C3—C4—Cl1 119.44 (12) O2—C13—C12 125.29 (12)

C5—C4—Cl1 118.99 (12) O2—C13—C14 115.71 (12)

C4—C5—C6 118.71 (14) C12—C13—C14 118.99 (12)

C4—C5—H5A 120.6 O3—C14—C15 124.64 (12)

C6—C5—H5A 120.6 O3—C14—C13 115.67 (12)

C1—C6—C5 120.99 (14) C15—C14—C13 119.68 (13)

C1—C6—H6A 119.5 C14—C15—C10 121.25 (13)

C5—C6—H6A 119.5 C14—C15—H15A 119.4

O1—C7—C1 106.73 (11) C10—C15—H15A 119.4

O1—C7—C11 110.98 (12) O2—C16—H16A 109.5

C1—C7—C11 113.34 (11) O2—C16—H16B 109.5

O1—C7—H7A 108.6 H16A—C16—H16B 109.5

C1—C7—H7A 108.6 O2—C16—H16C 109.5

C11—C7—H7A 108.6 H16A—C16—H16C 109.5

O1—C8—C9 110.30 (11) H16B—C16—H16C 109.5

O1—C8—H8A 109.6 O3—C17—H17A 109.5

C9—C8—H8A 109.6 O3—C17—H17B 109.5

O1—C8—H8B 109.6 H17A—C17—H17B 109.5

C9—C8—H8B 109.6 O3—C17—H17C 109.5

H8A—C8—H8B 108.1 H17A—C17—H17C 109.5

C10—C9—C8 110.83 (12) H17B—C17—H17C 109.5

C10—C9—H9A 109.5

C6—C1—C2—C3 −0.2 (2) C15—C10—C11—C7 179.60 (12)

C7—C1—C2—C3 179.70 (14) C9—C10—C11—C7 −1.0 (2)

C1—C2—C3—C4 0.1 (2) O1—C7—C11—C10 19.95 (17)

C2—C3—C4—C5 0.0 (2) C1—C7—C11—C10 140.02 (13)

C2—C3—C4—Cl1 −179.58 (12) O1—C7—C11—C12 −162.06 (12)

C3—C4—C5—C6 0.2 (2) C1—C7—C11—C12 −41.99 (17)

Cl1—C4—C5—C6 179.69 (12) C10—C11—C12—C13 −1.1 (2)

C2—C1—C6—C5 0.3 (2) C7—C11—C12—C13 −179.15 (12)

C7—C1—C6—C5 −179.59 (14) C16—O2—C13—C12 −3.4 (2)

C4—C5—C6—C1 −0.3 (2) C16—O2—C13—C14 177.65 (12)

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o1819–o1821

C2—C1—C7—O1 −120.43 (14) C17—O3—C14—C15 −12.33 (19) C6—C1—C7—O1 59.50 (17) C17—O3—C14—C13 167.44 (12) C2—C1—C7—C11 117.11 (15) O2—C13—C14—O3 0.39 (18) C6—C1—C7—C11 −62.97 (17) C12—C13—C14—O3 −178.65 (12) C7—O1—C8—C9 70.22 (16) O2—C13—C14—C15 −179.83 (12) O1—C8—C9—C10 −47.17 (17) C12—C13—C14—C15 1.1 (2) C8—C9—C10—C11 14.14 (18) O3—C14—C15—C10 179.09 (13) C8—C9—C10—C15 −166.42 (12) C13—C14—C15—C10 −0.7 (2) C15—C10—C11—C12 1.6 (2) C11—C10—C15—C14 −0.7 (2) C9—C10—C11—C12 −178.95 (12) C9—C10—C15—C14 179.84 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C16—H16B···O1i 0.98 2.59 3.5375 (19) 164

C16—H16B···Cl1ii 0.98 2.88 3.3115 (14) 108

C16—H16C···Cl1iii 0.98 2.89 3.7440 (17) 146

Figure

Figure 1

References

Related documents

We ad- dress this problem by using several novel encoder-decoder architectures, including a multi-task learning (MTL) architecture us- ing a grapheme-to-phoneme dictionary as

Poniżej przedstawiono graficzną propozycję wielokryterialnego modelu decyzyjnego opisującego proces decyzyjny młodych ludzi u progu dorosłego życia. 5], model decyzyjny AHP

The toolkit in- cludes two standalone command-line tools that do not require any knowledge of the Python pro- gramming language: one that can be used for automatically obtaining

Structural functionalism sees society or other social objects as a system, as a structurally dissected integrity, in which each system unit performs a specific

In the present study, plasma TAA levels were decreased significantly in OSCC patients as compared to controls and positively correlated with GST, which elucidate the combined

We have presented a method that converts word vectors obtained using any state-of-the-art word vector model into sparse and optionally binary word vectors.. These transformed

The available pitch accent and boundary an- notations allow us to automatically derive a sec- ondary layer of prosodic information which rep- resents a mapping of the pitch accents

Keywords: Education, economic growth; ARDL model; cointegration, South Africa...