• No results found

1′ Benzyl 1 (2,4 di­meth­oxy­phenyl) 3 phen­oxy­spiro­[azetidine 2,3′(3H) indole] 2′,4(1H) dione

N/A
N/A
Protected

Academic year: 2020

Share "1′ Benzyl 1 (2,4 di­meth­oxy­phenyl) 3 phen­oxy­spiro­[azetidine 2,3′(3H) indole] 2′,4(1H) dione"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o804

Pınaret al. C31H26N2O5 doi:10.1107/S1600536806002595 Acta Cryst.(2006). E62, o804–o806

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1

000

-Benzyl-1-(2,4-dimethoxyphenyl)-3-phenoxy-spiro[azetidine-2,3

000

(3

H

)-indole]-2

000

,4(1

H

)-dione

S

¸erife Pınar,aMehmet Akkurt,a* Ali Asghar Jarrahpour,b

Dariush Khaliliband Orhan Bu¨yu¨kgu¨ngo¨rc

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey,bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, andcDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T= 296 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.038 wRfactor = 0.102

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 16 January 2006 Accepted 20 January 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C31H26N2O5, is a compound with a spiro

junction between -lactam and isatin ring systems. Its four-and five-membered rings are nearly planar, with maximum deviations of0.020 (1) and 0.050 (1) A˚ for their carbonyl C atoms, respectively. The dihedral angle between these two rings is 86.44 (5). The crystal structure is stabilized by intramolecular C—H O hydrogen-bonding and van der Waals interactions.

Comment

(2)

The four-membered-lactam ring of the title compound, (I) (Fig. 1), is nearly planar, with a maximum deviation of 0.020 (1) A˚ for the carbonyl atom C9. Within the lactam ring, the bond lengths (Table 1) are similar to those observed in previous studies (Ercanet al., 1996a,b; Kabaket al., 1999). The N1—C9 bond, conjugated with the carbonyl group, is shorter than the N1—C1 and N1—C11 bonds and the C9 O3 bond is longer than the standard value of 1.198 (12) A˚ given by Allen

et al.(1987).

The dihedral angles between the ring systems are listed in Table 2. The sum of the bond angles about atom N1 is 357.21.

The packing of (I), viewed down the a axis, is shown in Fig. 2. The crystal structure of (I) is stabilized by intra-molecular C—H O hydrogen bonding (Table 3) and van der Waals interactions.

Experimental

Treatment of N-benzyl-3-(2,4-dimethoxyphenylimino)isatin with phenoxyacetyl chloride and triethylamine in dry dichloromethane at 263 K gave the title spiro monocyclic-lactam (Bhawalet al., 1997). Compound (I) was recrystallized from dichloromethane to give single

lactam carbonyl at 1766 cm1and CO of isatin at 1728 cm1. The 1H NMR spectrum showed the methoxy H atoms at 3.39 and 3.75

p.p.m., the diastereotopic benzyl H atoms at 4.73 p.p.m (J= 15 Hz) and 5.10 p.p.m (J= 15 Hz), COCHOPh at 5.64 p.p.m, and aromatic H atoms at 6.29–7.93 p.p.m. The 13C NMR spectrum exhibited the following signals: CH2benzylic at 44.2, OMe at 55.2 and 55.5, C— OPh at 69.9, spiro C at 86.0, aromatic C at 99.5–159.3, CO of-lactam at 163.4 and CO of isatin at 173.8 p.p.m. The mass spectrum showed molecular ion atm/e506 and the base peak atm/e85.

Crystal data

C31H26N2O5 Mr= 506.54

Monoclinic, P21=c a= 9.3547 (7) A˚

b= 10.0777 (5) A˚

c= 28.193 (2) A˚ = 106.838 (5)

V= 2543.9 (3) A˚3

Z= 4

Dx= 1.323 Mg m

3

MoKradiation

Cell parameters from 29809 reflections

= 1.5–27.3

= 0.09 mm1

T= 296 K Prism, colourless 0.650.500.29 mm

Data collection

Stoe IPDS2 diffractometer !scans

Absorption correction: none 26901 measured reflections 4995 independent reflections 3963 reflections withI> 2(I)

Rint= 0.042 max= 26.0

h=11!11

k=12!12

l=34!32

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.038 wR(F2) = 0.102

S= 1.05 4995 reflections 345 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0537P)2 + 0.2246P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.14 e A˚

3 min=0.18 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

O1—C8 1.414 (2)

O2—C7 1.415 (2)

O3—C9 1.2083 (17)

O4—C10 1.4015 (15)

O4—C26 1.3836 (16)

O5—C18 1.2154 (16)

N1—C1 1.4166 (16)

N1—C9 1.3673 (17)

N1—C11 1.4774 (16)

N2—C13 1.4116 (18)

N2—C18 1.3645 (17)

N2—C19 1.4627 (19)

C1—N1—C9 130.19 (11)

C1—N1—C11 131.68 (10)

C9—N1—C11 95.44 (10)

C13—N2—C18 110.80 (11)

C13—N2—C19 124.66 (11)

[image:2.610.46.298.68.272.2]

C18—N2—C19 124.21 (12)

Table 2

Dihedral angles () between the planes of the ring systems of (I).

Adenotes the ring system N1/C9–C11,BC1–C6,CC13–C17/C12/C11/C18/N2,

DC20–C25 andEC26–C31.

Rings A B C D E

A 26.81 (5) 84.60 (5) 35.01 (6) 54.04 (5)

B 69.26 (4) 57.04 (5) 51.12 (5)

C 81.68 (4) 64.88 (4)

D 85.54 (5)

Figure 1

[image:2.610.44.294.317.442.2]

A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. All H atoms have been omitted for clarity.

Figure 2

[image:2.610.312.566.673.728.2]
(3)

Table 3

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C6—H6 O3 0.93 2.47 3.0909 (18) 124

C19—H19A O5 0.97 2.60 2.9254 (18) 100

All H atoms were positioned geometrically and constrained to an idealized geometry, with C—H distances of 0.93 (aromatic H), 0.96 (methyl H), 0.97 (methylene H) or 0.98 A˚ (methine H), and with Uiso(H) = 1.2Ueq(C-aromatic, C-methylene and C-methine) or 1.5Ueq(C-methyl).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund). AAJ and DK acknowledge the Shiraz University Research Council (grant No. 84-GR-SC-23).

References

Alcaide, B. & Almendros, P. (2001).Chem. Soc. Rev.30, 226–240.

Alcaide, B. & Almendros, P. (2002).Synlett, pp. 381–393.

Alcaide, B. & Almendros, P. (2004).Curr. Med. Chem.11, 1921–1949. Alcaide, B., Almendros, P. & Salgado, N. R. (2001).Tetrahedron Lett.42, 1503–

1505.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987).

J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

Alonso, E., Del Pozo, C. & Gonzalez, J. (2002).Synlett, pp. 69–72.

Alonso, E., Lopez-Ortiz, F., del Pozo, C., Peralta, E., Macias, A. & Gonzalez, J. (2001).J. Org. Chem.66, 6333–6338.

Bhawal, B. M., Deshmukh, A. R. A. S., Srirajan, V. & Karupaiyan, K. (1997).

Tetrahedron Lett.38, 4281–4284.

Deshmukh, A. R. A. S., Bhawal, B. M., Krishnaswamy, D., Govande, V. V., Shinkre, B. A. & Jayanthi, A. (2004).Curr. Med. Chem.11, 1889–1920. Durkheimer, W., Blumbach, J., Lattrell, R. & Scheunemann, K. H. (1985).

Angew. Chem. Int. Ed. Engl.24, 180–202.

Ercan, F., U¨ lku¨, D. & Gu¨ner, V. (1996a).Acta Cryst.C52, 1779–1780. Ercan, F., U¨ lku¨, D. & Gu¨ner, V. (1996b).Z. Kristallogr.211, 735–736. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Gomez-Gallego, M., Mancheno, M. J. & Sierra, M. A. (2000).Tetrahedron,56, 5743–5774.

Jarrahpour, A. A. & Jahaniani, A. R. (2005).Molbank, M439.

Jarrahpour, A. A., Shekarriz, M. & Taslimi, A. (2004a).Molecules,9, 29–38. Jarrahpour, A. A., Shekarriz, M. & Taslimi, A. (2004b).Molecules,9, 939–

948.

Kabak, M., Elerman, Y., Gu¨ner, V., Yıldırır, S. & Durlu, T. N. (1999).Acta Cryst.C55, 1511–1512.

Kambara, T. & Tomioka, K. (1999).J. Org. Chem.64, 9282–9285.

Lopez, J. R., Martinez, J. C. G. & Barra, E. D. (2003).Synlett, pp. 1587– 1590.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Singh, G. S. (2003).Tetrahedron,59, 7631–7649.

Stoe & Cie (2002).X-AREA(Version 1.18) andX-RED32(Version 1.04). Stoe & Cie, Darmstadt, Germany.

organic papers

(4)

supporting information

Acta Cryst. (2006). E62, o804–o806 [https://doi.org/10.1107/S1600536806002595]

1

-Benzyl-1-(2,4-dimethoxyphenyl)-3-phenoxyspiro[azetidine-2,3

(3

H

)-indole]-2

,4(1

H

)-dione

Ş

erife P

ı

nar, Mehmet Akkurt, Ali Asghar Jarrahpour, Dariush Khalili and Orhan B

ü

y

ü

kg

ü

ng

ö

r

1′-Benzyl-1-(2,4-dimethoxyphenyl)-3-phenoxyspiro[azetidine-2,3′(3H)- indole]-2′,4(1H)-dione

Crystal data

C31H26N2O5

Mr = 506.54

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.3547 (7) Å

b = 10.0777 (5) Å

c = 28.193 (2) Å

β = 106.838 (5)°

V = 2543.9 (3) Å3

Z = 4

F(000) = 1064

Dx = 1.323 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 29809 reflections

θ = 1.5–27.3°

µ = 0.09 mm−1

T = 296 K Prism, colourless 0.65 × 0.50 × 0.29 mm

Data collection

Stoe IPDS2 diffractometer

Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus

Plane graphite monochromator Detector resolution: 6.67 pixels mm-1

ω scans

26901 measured reflections

4995 independent reflections 3963 reflections with I > 2σ(I)

Rint = 0.042

θmax = 26.0°, θmin = 1.5°

h = −11→11

k = −12→12

l = −34→32

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.038

wR(F2) = 0.102

S = 1.05 4995 reflections 345 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0537P)2 + 0.2246P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.14 e Å−3

Δρmin = −0.18 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o804–o806

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors.

Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to

zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant

to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F,

and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

H5 1.04400 0.49740 0.26790 0.0670* H6 0.93310 0.45040 0.32940 0.0600* H7A 0.47170 0.79190 0.20440 0.1080* H7B 0.56170 0.89210 0.24450 0.1080* H7C 0.40180 0.84630 0.24480 0.1080* H8A 1.08640 0.52940 0.19270 0.1050* H8B 1.16640 0.64290 0.22870 0.1050* H8C 1.12640 0.66320 0.17120 0.1050* H10 0.57390 0.48590 0.42170 0.0570* H14 0.41430 1.02670 0.36200 0.0740* H15 0.64030 1.13940 0.38880 0.0810* H16 0.86250 1.02810 0.40760 0.0750* H17 0.86770 0.79820 0.40040 0.0630* H19A 0.16860 0.72290 0.32190 0.0680* H19B 0.21010 0.87410 0.32400 0.0680* H21 0.20190 1.00300 0.39510 0.0790* H22 0.16310 1.01890 0.47210 0.0920* H23 0.12570 0.82960 0.51320 0.0890* H24 0.13060 0.62470 0.47740 0.0830* H25 0.17720 0.60770 0.40200 0.0720* H27 0.50490 0.66610 0.46120 0.0730* H28 0.45220 0.74940 0.53090 0.0830* H29 0.63660 0.76260 0.60510 0.0850* H30 0.87840 0.70690 0.60890 0.0820* H31 0.93420 0.62780 0.53970 0.0700*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o804–o806

C13 0.0462 (7) 0.0462 (7) 0.0534 (7) −0.0007 (5) 0.0168 (5) 0.0003 (5) C14 0.0580 (8) 0.0474 (8) 0.0835 (10) 0.0049 (6) 0.0250 (7) 0.0001 (7) C15 0.0722 (10) 0.0463 (8) 0.0896 (11) −0.0079 (7) 0.0338 (9) −0.0055 (7) C16 0.0567 (8) 0.0584 (9) 0.0746 (10) −0.0143 (7) 0.0235 (7) −0.0095 (7) C17 0.0458 (7) 0.0568 (8) 0.0563 (7) −0.0041 (6) 0.0162 (6) −0.0034 (6) C18 0.0448 (6) 0.0478 (7) 0.0430 (6) −0.0002 (5) 0.0124 (5) −0.0010 (5) C19 0.0410 (7) 0.0602 (8) 0.0642 (8) 0.0062 (6) 0.0091 (6) 0.0021 (7) C20 0.0367 (6) 0.0543 (8) 0.0663 (8) 0.0034 (5) 0.0119 (6) −0.0021 (6) C21 0.0583 (8) 0.0557 (9) 0.0875 (11) −0.0012 (7) 0.0260 (8) −0.0057 (8) C22 0.0713 (10) 0.0709 (11) 0.0906 (12) −0.0057 (8) 0.0290 (9) −0.0259 (9) C23 0.0659 (10) 0.0896 (13) 0.0681 (10) 0.0022 (9) 0.0207 (8) −0.0080 (9) C24 0.0636 (9) 0.0708 (10) 0.0734 (10) 0.0080 (8) 0.0214 (8) 0.0089 (8) C25 0.0528 (8) 0.0527 (8) 0.0746 (9) 0.0056 (6) 0.0185 (7) 0.0003 (7) C26 0.0550 (7) 0.0491 (7) 0.0430 (6) 0.0016 (6) 0.0127 (5) 0.0050 (5) C27 0.0543 (8) 0.0751 (10) 0.0517 (7) 0.0049 (7) 0.0116 (6) 0.0020 (7) C28 0.0687 (10) 0.0733 (10) 0.0703 (10) 0.0088 (8) 0.0263 (8) −0.0039 (8) C29 0.0945 (12) 0.0630 (9) 0.0579 (9) 0.0041 (9) 0.0264 (8) −0.0088 (7) C30 0.0828 (11) 0.0607 (9) 0.0510 (8) 0.0063 (8) 0.0036 (7) −0.0058 (7) C31 0.0578 (8) 0.0565 (8) 0.0524 (7) 0.0035 (6) 0.0044 (6) −0.0003 (6)

Geometric parameters (Å, º)

O1—C4 1.3671 (19) C23—C24 1.373 (3)

O1—C8 1.414 (2) C24—C25 1.376 (2)

O2—C2 1.3601 (17) C26—C27 1.370 (2)

O2—C7 1.415 (2) C26—C31 1.383 (2)

O3—C9 1.2083 (17) C27—C28 1.385 (2) O4—C10 1.4015 (15) C28—C29 1.370 (2) O4—C26 1.3836 (16) C29—C30 1.374 (3) O5—C18 1.2154 (16) C30—C31 1.374 (2)

N1—C1 1.4166 (16) C3—H3 0.9300

N1—C9 1.3673 (17) C5—H5 0.9300

N1—C11 1.4774 (16) C6—H6 0.9300

N2—C13 1.4116 (18) C7—H7A 0.9600

N2—C18 1.3645 (17) C7—H7B 0.9600

N2—C19 1.4627 (19) C7—H7C 0.9600

C1—C2 1.3993 (17) C8—H8A 0.9600

C1—C6 1.3784 (19) C8—H8B 0.9600

C2—C3 1.3804 (19) C8—H8C 0.9600

C3—C4 1.388 (2) C10—H10 0.9800

C4—C5 1.378 (2) C14—H14 0.9300

C5—C6 1.386 (2) C15—H15 0.9300

C9—C10 1.5244 (18) C16—H16 0.9300

(8)

C13—C14 1.3772 (19) C23—H23 0.9300

C14—C15 1.388 (2) C24—H24 0.9300

C15—C16 1.372 (2) C25—H25 0.9300

C16—C17 1.390 (2) C27—H27 0.9300

C19—C20 1.5071 (19) C28—H28 0.9300

C20—C21 1.384 (2) C29—H29 0.9300

C20—C25 1.389 (2) C30—H30 0.9300

C21—C22 1.383 (3) C31—H31 0.9300

C22—C23 1.379 (3)

O2···C11 2.8195 (14) C19···H14 2.8900 O2···N1 2.7079 (14) C21···H14 3.0200 O2···N2 3.1231 (15) C22···H16x 2.9200

O2···C18 2.8145 (15) C23···H28 2.9200 O2···C12 2.9790 (14) C23···H17x 2.9300

O2···C13 3.1746 (16) C24···H17x 2.8500

O3···O4 3.0612 (14) C24···H28 3.0000 O3···C6 3.0909 (18) C25···H27 3.0000 O3···C31i 3.3846 (19) C25···H17x 2.9700

O4···N1 3.0200 (14) C26···H24v 2.9500

O4···O3 3.0612 (14) C27···H10 2.7100 O4···C17 3.2181 (17) C28···H10v 2.8700

O5···N1 3.0338 (15) C29···H21xi 2.9700

O1···H30ii 2.6500 C31···H24v 2.8300

O3···H15iii 2.6800 H3···C7 2.5500

O3···H31i 2.6800 H3···H7A 2.3000

O3···H6 2.4700 H3···H7B 2.4100

O3···H8Civ 2.7300 H5···C8 2.5200

O4···H24v 2.7600 H5···H8A 2.2900

O5···H10 2.7700 H5···H8B 2.3300

O5···H19A 2.6000 H6···O3 2.4700

O5···H7Bvi 2.8300 H6···C9 2.7000

N1···O2 2.7079 (14) H7A···C3 2.7600 N1···O4 3.0200 (14) H7A···H3 2.3000 N1···O5 3.0338 (15) H7B···C3 2.7900 N1···C7vi 3.397 (2) H7B···H3 2.4100

N2···O2 3.1231 (15) H7B···O5vii 2.8300

C1···C7vi 3.447 (2) H7C···C1vii 2.8700

C2···C12 3.4303 (16) H8A···C5 2.7500 C6···O3 3.0909 (18) H8A···H5 2.2900 C7···N1vii 3.397 (2) H8B···C5 2.7200

C7···C13 3.572 (2) H8B···H5 2.3300 C7···C1vii 3.447 (2) H8C···O3viii 2.7300

C8···C16iv 3.549 (3) H8C···C16iv 3.0000

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o804–o806

C12···C27 3.5779 (18) H14···C19 2.8900 C12···O2 2.9790 (14) H14···C21 3.0200 C13···O2 3.1746 (16) H14···H19B 2.4400 C13···C7 3.572 (2) H14···H21 2.4400 C14···C21 3.522 (2) H14···H29xi 2.4200

C14···C20 3.581 (2) H15···O3xii 2.6800

C16···C8viii 3.549 (3) H16···C22ix 2.9200

C16···C22ix 3.593 (3) H17···C23ix 2.9300

C17···O4 3.2181 (17) H17···C24ix 2.8500

C18···O2 2.8145 (15) H17···C25ix 2.9700

C20···C14 3.581 (2) H19A···O5 2.6000 C21···C14 3.522 (2) H19A···C5x 2.7900

C22···C16x 3.593 (3) H19A···H25 2.5200

C24···C31v 3.540 (2) H19B···C14 2.8900

C26···C12 3.4665 (18) H19B···H14 2.4400 C27···C12 3.5779 (18) H19B···H21 2.4100 C27···C11 3.5453 (18) H19B···C4vii 3.1000

C31···C24v 3.540 (2) H21···H14 2.4400

C31···O3i 3.3846 (19) H21···H19B 2.4100

C1···H7Cvi 2.8700 H21···C29xi 2.9700

C3···H7A 2.7600 H23···C16xi 3.0900

C3···H7B 2.7900 H24···O4v 2.7600

C4···H19Bvi 3.1000 H24···C26v 2.9500

C5···H8A 2.7500 H24···C31v 2.8300

C5···H8B 2.7200 H25···H19A 2.5200

C5···H19Aix 2.7900 H27···C10 2.5800

C7···H3 2.5500 H27···C11 3.0400

C8···H5 2.5200 H27···C25 3.0000

C9···H6 2.7000 H27···H10 2.3200

C10···H27 2.5800 H28···C23 2.9200

C11···H27 3.0400 H28···C24 3.0000

C14···H19B 2.8900 H29···C14xi 3.0700

C14···H29xi 3.0700 H29···H14xi 2.4200

C16···H23xi 3.0900 H30···O1xiii 2.6500

C16···H8Cviii 3.0000 H31···O3i 2.6800

(10)
(11)

supporting information

sup-8

Acta Cryst. (2006). E62, o804–o806

(12)

N1—C9—C10—C11 2.37 (10) C28—C29—C30—C31 −1.8 (3) O3—C9—C10—C11 −179.93 (17) C29—C30—C31—C26 −1.0 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x, y−1, z; (iv) −x+2, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+2, y+1/2, −z+1/2; (ix) x+1, y, z; (x) x−1, y, z; (xi) −x+1, −y+2, −z+1; (xii) x, y+1, z; (xiii) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Figure 1

References

Related documents

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

The Master Fund is authorised in Luxembourg as a specialised investment fund and is managed by a management company, Ress Capital Fund Management SA, who acts

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

Comments This can be a real eye-opener to learn what team members believe are requirements to succeed on your team. Teams often incorporate things into their “perfect team