• No results found

c 5 Hydr­­oxy r 2,c 4 bis­­(isopropoxycarbon­yl) t 5 methyl t 3 phenyl­cyclo­hexa­none

N/A
N/A
Protected

Academic year: 2020

Share "c 5 Hydr­­oxy r 2,c 4 bis­­(isopropoxycarbon­yl) t 5 methyl t 3 phenyl­cyclo­hexa­none"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o703–o705 doi:10.1107/S1600536806001772 Hemaet al. C

21H28O6

o703

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

c

-5-Hydroxy-

r

-2,

c

-4-bis(isopropoxycarbonyl)-t

-5-methyl-

t

-3-phenylcyclohexanone

R. Hema,aV. Parthasarathi,a* K. Ravikumar,bK. Pandiarajancand K. Murugavelc

aSchool of Physics, Bharathidasan University,

Tiruchirappalli 620 024, India,bLaboratory

of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, andcDepartment of Chemistry,

Anna-malai University, AnnaAnna-malai Nagar 608 002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.037

wRfactor = 0.104

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography

Printed in Great Britain – all rights reserved

In the title compound, C21H28O6, the cyclohexanone ring

exhibits a chair conformation. The isopropoxy carbonyl groups are oriented in different directions with respect to the cyclohexanone ring. In the crystal structure, weak intermolecular C—H O hydrogen bonds link the molecules into two-dimensional sheets parallel to thebcplane.

Comment

Pharmaceutical preparations such as aminomethyl-phenylcyclohexanone derivatives used in the treatment of pain, inflammatory reactions, allergic reactions, depression, drug abuse, alcohol abuse, gastritis, cardiovascular disease, respiratory tract disease, coughing, mental illness, epilepsy, urinary incontinence, itching and diarrhoea has been the subject of patents (Puetz et al., 2003). Cyclohexanone deri-vatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum (Danyiet al., 1989). In view of these important applications, an X-ray crystal structure determination of the title compound, (I), has been undertaken.

In (I) (Fig. 1), the cyclohexanone ring adopts a chair conformation. A similar conformation was observed in related structures (Mootz & Berking, 1969; Groth, 1972; Bocelli, 1981; Speket al., 1990; Ravikumar & Mehdi, 1993). The mean value [55.4 (6)] of the endocyclic torsion angles of the cyclohexa-none ring in (I) shows that it is slightly more puckered than the idealized cyclohexanone ring [54.1 (3), MM2 calculation; Allinger, 1977). The values of the puckering parameters (Cremer & Pople, 1975) of the cyclohexanone ring [Q = 0.567 (2) A˚ , = 177.34 (14) and = 62 (3)] compare well with the values reported by Ravikumar & Mehdi (1993).

A comparison of the conformation of (I) with those in the related compounds 4-ethoxycarbonyl-3-hydroxy-3-phenyl-cyclohexanone, (II) (Herna´ndez-Ortega et al., 2001), 4-ethoxycarbonyl-3-ethoxypropanoyl-3-phenylcyclohexanone,

(2)

(III) (Brunner & Maas, 1995), (4-cyano-4-tert -butoxycarbonyl-3,5-diphenylcyclohexanone, (IV) (Rowlandet al., 1998), and 5- hydroxy-5-methyl-2,4-bis(methylcarbonyl)-3-(3-nitrophenyl)-cyclohexanone, (V) (Ravikumar & Mehdi, 1993), shows the following features. In (I), the two isopropoxycarbonyl groups at C2 and C4 are substituted in -equatorial positions (Table 1). The phenyl ring (ringA) attached to C3 in (I), (II), (IV) and (V) adopts anequatorial orientation, while in (III) it is in a axial position. In (I) and (V), the methyl and hydroxy groups at C5 are oriented in equatorial and axial positions, respectively. The mean planes through C1, C3, C4

and C6 and ringAmake a dihedral angle of 73.76 (5). This value is smaller than those reported for (II) [86.09 (8)], (III) (81.4) and (V) (77). The dihedral angles between ringAand the carboxy groups C7/O21/O22 and C11/O41/O42 are 82.84 (10) and 54.30 (15), respectively. The latter value is comparable to that reported for (II) (54.9), (IV) (58.3) and (V) (53.6). These two carbonyl groups in (I) are twisted in different directions with C5—C4—C11—O41 and C1—C2— C7—O21 torsion angles of 55.50 (16) and 90.69 (16), respectively, facilitating the formation of an intramolecular O—H O hydrogen bond (Table 2). The corresponding torsion angles in (V) are 49.2 (5) and79.7 (4), respectively. In the crystal structure, weak intermolecular C—H O hydrogen bonds (Desiraju, 1997; Bernsteinet al., 1995; Table 2) link the molecules into two-dimensional sheets parallel to the

bcplane (Fig. 2)

Experimental

A mixture of isopropyl acetoacetate (100 mmol), benzaldehyde (50 mmol) and methylamine (50 mmol) in ethanol (50 ml) was heated to boiling. The reaction mixture was allowed to stand overnight. The separated solid was filtered off and purified by recrystallization from ethanol (yield 80%, m.p. 463 K).

Crystal data

C21H28O6 Mr= 376.43

Monoclinic,C2=c a= 35.775 (6) A˚

b= 5.7948 (10) A˚

c= 20.174 (3) A˚

= 99.893 (3)

V= 4120.1 (12) A˚3 Z= 8

Dx= 1.214 Mg m

3

MoKradiation Cell parameters from 8602

reflections

= 2.2–27.9 = 0.09 mm1 T= 273 (2) K Block, colourless 0.190.110.09 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

!scans

18792 measured reflections 3617 independent reflections 3175 reflections withI> 2(I)

Rint= 0.019

max= 25.0

h=42!42

k=6!6

l=23!23

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.037 wR(F2) = 0.104 S= 1.05 3617 reflections 250 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0482P)2

+ 2.014P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.20 e A˚

3

min=0.14 e A˚

3

Table 1

Selected torsion angles ().

C6—C1—C2—C7 178.36 (11) C1—C2—C3—C16 176.05 (11) C7—C2—C3—C4 172.92 (10) C2—C3—C4—C11 176.00 (10)

C16—C3—C4—C5 179.96 (10) C11—C4—C5—C6 177.33 (11) O51—C5—C6—C1 61.73 (14) C15—C5—C6—C1 179.52 (12)

organic papers

o704

Hemaet al. C

[image:2.610.110.258.72.238.2]

21H28O6 Acta Cryst.(2006). E62, o703–o705

Figure 2

A packing diagram of (I), showing the intermolecular C—H O hydrogen bonds as dashed lines.

Figure 1

[image:2.610.94.234.280.533.2]
(3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C4—H4 O21i

0.98 2.60 3.4678 (16) 148 C17—H17 O21i

0.93 2.57 3.4759 (18) 166 C15—H152 O51i

0.96 2.59 3.404 (2) 143 C19—H19 O51ii

0.93 2.55 3.4005 (18) 152 O51—H51 O41 0.82 2.08 2.7724 (14) 142

Symmetry codes: (i)x;yþ1;z; (ii)x;yþ1;z1 2.

The methyl H atoms were constrained to an ideal geometry (C— H = 0.96 A˚ ), withUiso(H) values of 1.5Ueq(C), but were allowed to

rotate freely about the C—C bond. The hydroxy H atom was posi-tioned geometrically, with O—H = 0.82 A˚ andUiso(H) = 1.5Ueq(O).

All other H atoms were positioned geometrically in idealized posi-tions (C—H = 0.93–0.98 A˚ ) and refined as riding with Uiso(H) =

1.2Ueq(parent atom).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:WinGX

(Version 1.64.05; Farrugia, 1999); software used to prepare material for publication:SHELXL97.

RH thanks the UGC, India, for the award of an FIP 2005– 2007 fellowship. RH also thanks Dr B. Sridhar for his help in the data collection.

References

Allinger, N. L. (1977).J. Am. Chem. Soc.99, 8127–8134.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bocelli, G. (1981).Acta Cryst.B37, 1249–1252.

Bruker (2001).SAINT(Version 6.28a) andSMART(Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.

Brunner, M. & Maas, G. (1995).Synthesis, pp. 957–963.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Danyi, Q., Takayama, K. & Nagai, T. (1989).Drug. Des. Deliv.4, 323–330. Desiraju, G. R. (1997).Aspects of Crystallography in Molecular Biology,

edited by S. Parthasarathy & J. P. Glusker, pp. 219–223. New Delhi: New Age International Publishers.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838. Groth, P. (1972).Acta Chem. Scand.26, 3131–3140.

Herna´ndez-Ortega, S., Jimenez-Cruz, F., Rios-Olivares, H. & Rubio-Arroyo, M. (2001).Acta Cryst.C57, 425–427.

Mootz, V. D. & Berking, B. (1969).Acta Cryst.B25, 828–831.

Puetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Application No. 20030096811.

Ravikumar, K. & Mehdi, S. (1993).Acta Cryst.C49, 2027–2030.

Rowland, A. T., Filla, S. A., Coutlangus, M. L., Winemilla, M. D., Chamberlin, M., Czulada, G. & Johnson, S. D. (1998).J. Org. Chem.63, 4359–4365. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Spek, A. L., Duisenberg, A. J. M., van den Heuvel, H. L. A., Boer Rookhuizen, R. & Bosch, R. (1990).Acta Cryst.C46, 630–631.

organic papers

Acta Cryst.(2006). E62, o703–o705 Hemaet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o703–o705

supporting information

Acta Cryst. (2006). E62, o703–o705 [https://doi.org/10.1107/S1600536806001772]

c

-5-Hydroxy-

r

-2,

c

-4-bis(isopropoxycarbonyl)-

t

-5-methyl-

t

-3-phenylcyclo-hexanone

R. Hema, V. Parthasarathi, K. Ravikumar, K. Pandiarajan and K. Murugavel

c-5-Hydroxy-r-2,c-4-bis(isopropoxycarbonyl)-t-5-methyl-t-3-phenylcyclohexanone

Crystal data

C21H28O6

Mr = 376.43

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 35.775 (6) Å

b = 5.7948 (10) Å

c = 20.174 (3) Å

β = 99.893 (3)°

V = 4120.1 (12) Å3

Z = 8

F(000) = 1616

Dx = 1.214 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 8602 reflections

θ = 2.2–27.9°

µ = 0.09 mm−1

T = 273 K

Block, colourless 0.19 × 0.11 × 0.09 mm

Data collection

Bruker SMART APEX CCD Area Detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: ω pixels mm-1

ω or φ scans?

18792 measured reflections

3617 independent reflections 3175 reflections with I > 2σ(I)

Rint = 0.019

θmax = 25.0°, θmin = 2.1°

h = −42→42

k = −6→6

l = −23→23

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037

wR(F2) = 0.104

S = 1.05

3617 reflections 250 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0482P)2 + 2.014P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.20 e Å−3

Δρmin = −0.14 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o703–o705

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.08258 (4) 0.5846 (3) 0.49083 (7) 0.0478 (3)

C2 0.08280 (4) 0.5717 (2) 0.41527 (6) 0.0397 (3)

H2 0.0697 0.7080 0.3938 0.048*

C3 0.12403 (3) 0.5725 (2) 0.40181 (6) 0.0373 (3)

H3 0.1362 0.4297 0.4205 0.045*

C4 0.14636 (4) 0.7769 (2) 0.43865 (6) 0.0377 (3)

H4 0.1355 0.9214 0.4188 0.045*

C5 0.14510 (4) 0.7789 (2) 0.51499 (6) 0.0424 (3)

C6 0.10401 (4) 0.7842 (3) 0.52566 (7) 0.0492 (3)

H6A 0.1032 0.7776 0.5734 0.059*

H6B 0.0922 0.9275 0.5081 0.059*

C7 0.06128 (4) 0.3601 (2) 0.38765 (6) 0.0420 (3)

C8 −0.00125 (4) 0.2138 (3) 0.34937 (9) 0.0632 (4)

H8 0.0096 0.1137 0.3184 0.076*

C9 −0.00756 (6) 0.0779 (4) 0.40980 (11) 0.0877 (6)

H91 0.0161 0.0139 0.4317 0.131*

H92 −0.0252 −0.0446 0.3959 0.131*

H93 −0.0176 0.1775 0.4405 0.131*

C10 −0.03693 (5) 0.3265 (5) 0.31271 (12) 0.0929 (7)

H101 −0.0484 0.4158 0.3439 0.139*

H102 −0.0544 0.2097 0.2928 0.139*

H103 −0.0307 0.4257 0.2781 0.139*

C11 0.18704 (4) 0.7601 (2) 0.42803 (6) 0.0402 (3)

C12 0.23519 (4) 0.9248 (3) 0.37390 (9) 0.0585 (4)

H12 0.2516 0.8258 0.4059 0.070*

C13 0.24964 (5) 1.1634 (4) 0.37998 (12) 0.0829 (6)

H131 0.2333 1.2611 0.3493 0.124*

H132 0.2748 1.1675 0.3694 0.124*

H133 0.2503 1.2171 0.4252 0.124*

C14 0.23220 (8) 0.8283 (5) 0.30549 (14) 0.1135 (9)

H141 0.2211 0.6773 0.3042 0.170*

H142 0.2570 0.8178 0.2937 0.170*

H143 0.2166 0.9270 0.2740 0.170*

C15 0.16713 (5) 0.9816 (3) 0.54955 (8) 0.0590 (4)

H151 0.1667 0.9754 0.5970 0.088*

H152 0.1557 1.1232 0.5314 0.088*

H153 0.1929 0.9747 0.5421 0.088*

C16 0.12591 (4) 0.5767 (2) 0.32705 (6) 0.0394 (3)

C17 0.11161 (4) 0.7606 (3) 0.28676 (7) 0.0514 (4)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o703–o705

C18 0.11530 (5) 0.7672 (3) 0.21975 (8) 0.0622 (4)

H18 0.1056 0.8919 0.1932 0.075*

C19 0.13310 (5) 0.5920 (3) 0.19204 (8) 0.0641 (5)

H19 0.1356 0.5976 0.1470 0.077*

C20 0.14712 (5) 0.4084 (3) 0.23128 (8) 0.0625 (4)

H20 0.1591 0.2884 0.2126 0.075*

C21 0.14363 (4) 0.3997 (3) 0.29861 (7) 0.0501 (4)

H21 0.1533 0.2740 0.3248 0.060*

O22 0.02452 (3) 0.40602 (18) 0.37070 (5) 0.0519 (3)

O21 0.07529 (3) 0.17373 (18) 0.38329 (6) 0.0554 (3)

O11 0.06699 (4) 0.4406 (2) 0.51928 (6) 0.0768 (4)

O51 0.16009 (3) 0.56738 (17) 0.54505 (5) 0.0508 (3)

H51 0.1791 0.5316 0.5299 0.076*

O42 0.19687 (3) 0.92937 (17) 0.39085 (5) 0.0515 (3)

O41 0.20823 (3) 0.60803 (18) 0.45165 (6) 0.0578 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0455 (7) 0.0550 (9) 0.0461 (8) 0.0003 (6) 0.0168 (6) −0.0003 (7)

C2 0.0398 (7) 0.0396 (7) 0.0407 (7) 0.0041 (5) 0.0098 (5) 0.0007 (5)

C3 0.0398 (7) 0.0352 (7) 0.0380 (7) 0.0030 (5) 0.0097 (5) 0.0014 (5)

C4 0.0420 (7) 0.0337 (6) 0.0378 (7) 0.0025 (5) 0.0080 (5) 0.0024 (5)

C5 0.0526 (8) 0.0367 (7) 0.0380 (7) 0.0010 (6) 0.0083 (6) −0.0002 (5)

C6 0.0587 (8) 0.0520 (8) 0.0402 (7) 0.0027 (7) 0.0177 (6) −0.0058 (6)

C7 0.0384 (7) 0.0471 (8) 0.0418 (7) 0.0022 (6) 0.0111 (5) 0.0018 (6)

C8 0.0443 (8) 0.0749 (11) 0.0699 (10) −0.0116 (8) 0.0089 (7) −0.0106 (9)

C9 0.0685 (12) 0.0936 (15) 0.1045 (16) −0.0173 (11) 0.0250 (11) 0.0137 (12)

C10 0.0495 (10) 0.1256 (18) 0.0968 (15) −0.0074 (11) −0.0062 (9) −0.0009 (14)

C11 0.0442 (7) 0.0369 (7) 0.0391 (7) −0.0006 (6) 0.0063 (5) 0.0000 (6)

C12 0.0463 (8) 0.0586 (10) 0.0760 (11) 0.0048 (7) 0.0258 (7) 0.0124 (8)

C13 0.0613 (11) 0.0824 (13) 0.1109 (16) −0.0215 (10) 0.0316 (10) −0.0186 (12)

C14 0.1160 (18) 0.1129 (18) 0.132 (2) −0.0426 (16) 0.0797 (16) −0.0508 (17)

C15 0.0733 (10) 0.0519 (9) 0.0512 (8) −0.0084 (8) 0.0095 (7) −0.0099 (7)

C16 0.0396 (7) 0.0409 (7) 0.0387 (7) −0.0034 (5) 0.0098 (5) −0.0038 (5)

C17 0.0634 (9) 0.0496 (8) 0.0422 (7) 0.0069 (7) 0.0123 (6) −0.0010 (6)

C18 0.0817 (11) 0.0628 (10) 0.0423 (8) −0.0006 (9) 0.0111 (7) 0.0051 (7)

C19 0.0808 (11) 0.0749 (12) 0.0405 (8) −0.0180 (9) 0.0213 (8) −0.0108 (8)

C20 0.0718 (10) 0.0634 (10) 0.0584 (9) −0.0036 (8) 0.0281 (8) −0.0208 (8)

C21 0.0537 (8) 0.0466 (8) 0.0527 (8) 0.0017 (6) 0.0166 (6) −0.0063 (6)

O22 0.0378 (5) 0.0574 (6) 0.0597 (6) 0.0015 (4) 0.0062 (4) −0.0033 (5)

O21 0.0466 (6) 0.0438 (6) 0.0763 (7) 0.0010 (5) 0.0119 (5) −0.0063 (5)

O11 0.0907 (9) 0.0898 (9) 0.0558 (7) −0.0342 (7) 0.0291 (6) −0.0010 (6)

O51 0.0621 (6) 0.0472 (6) 0.0437 (5) 0.0038 (5) 0.0107 (5) 0.0089 (4)

O42 0.0452 (5) 0.0494 (6) 0.0632 (6) 0.0039 (4) 0.0188 (4) 0.0139 (5)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o703–o705

Geometric parameters (Å, º)

C1—O11 1.2026 (17) C10—H103 0.9600

C1—C6 1.495 (2) C11—O41 1.2060 (16)

C1—C2 1.5275 (19) C11—O42 1.3187 (16)

C2—C7 1.5033 (19) C12—O42 1.4692 (17)

C2—C3 1.5449 (17) C12—C13 1.474 (2)

C2—H2 0.9800 C12—C14 1.476 (3)

C3—C16 1.5214 (17) C12—H12 0.9800

C3—C4 1.5454 (18) C13—H131 0.9600

C3—H3 0.9800 C13—H132 0.9600

C4—C11 1.5102 (18) C13—H133 0.9600

C4—C5 1.5485 (17) C14—H141 0.9600

C4—H4 0.9800 C14—H142 0.9600

C5—O51 1.4302 (16) C14—H143 0.9600

C5—C15 1.516 (2) C15—H151 0.9600

C5—C6 1.522 (2) C15—H152 0.9600

C6—H6A 0.9700 C15—H153 0.9600

C6—H6B 0.9700 C16—C21 1.3815 (19)

C7—O21 1.2000 (16) C16—C17 1.3840 (19)

C7—O22 1.3279 (16) C17—C18 1.381 (2)

C8—O22 1.4627 (19) C17—H17 0.9300

C8—C9 1.501 (3) C18—C19 1.368 (2)

C8—C10 1.510 (3) C18—H18 0.9300

C8—H8 0.9800 C19—C20 1.369 (2)

C9—H91 0.9600 C19—H19 0.9300

C9—H92 0.9600 C20—C21 1.386 (2)

C9—H93 0.9600 C20—H20 0.9300

C10—H101 0.9600 C21—H21 0.9300

C10—H102 0.9600 O51—H51 0.8200

O11—C1—C6 123.70 (13) C8—C10—H103 109.5

O11—C1—C2 121.66 (13) H101—C10—H103 109.5

C6—C1—C2 114.62 (12) H102—C10—H103 109.5

C7—C2—C1 108.63 (11) O41—C11—O42 123.87 (12)

C7—C2—C3 112.39 (10) O41—C11—C4 123.14 (12)

C1—C2—C3 110.12 (11) O42—C11—C4 112.99 (11)

C7—C2—H2 108.5 O42—C12—C13 106.97 (13)

C1—C2—H2 108.5 O42—C12—C14 107.68 (15)

C3—C2—H2 108.5 C13—C12—C14 113.66 (17)

C16—C3—C2 112.37 (10) O42—C12—H12 109.5

C16—C3—C4 110.93 (10) C13—C12—H12 109.5

C2—C3—C4 110.37 (10) C14—C12—H12 109.5

C16—C3—H3 107.7 C12—C13—H131 109.5

C2—C3—H3 107.7 C12—C13—H132 109.5

C4—C3—H3 107.7 H131—C13—H132 109.5

C11—C4—C3 108.28 (10) C12—C13—H133 109.5

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o703–o705

C3—C4—C5 112.53 (10) H132—C13—H133 109.5

C11—C4—H4 108.8 C12—C14—H141 109.5

C3—C4—H4 108.8 C12—C14—H142 109.5

C5—C4—H4 108.8 H141—C14—H142 109.5

O51—C5—C15 109.98 (11) C12—C14—H143 109.5

O51—C5—C6 104.98 (11) H141—C14—H143 109.5

C15—C5—C6 110.94 (12) H142—C14—H143 109.5

O51—C5—C4 110.02 (10) C5—C15—H151 109.5

C15—C5—C4 111.20 (11) C5—C15—H152 109.5

C6—C5—C4 109.54 (11) H151—C15—H152 109.5

C1—C6—C5 110.33 (11) C5—C15—H153 109.5

C1—C6—H6A 109.6 H151—C15—H153 109.5

C5—C6—H6A 109.6 H152—C15—H153 109.5

C1—C6—H6B 109.6 C21—C16—C17 118.53 (13)

C5—C6—H6B 109.6 C21—C16—C3 120.10 (12)

H6A—C6—H6B 108.1 C17—C16—C3 121.31 (11)

O21—C7—O22 124.68 (13) C18—C17—C16 120.54 (14)

O21—C7—C2 124.59 (12) C18—C17—H17 119.7

O22—C7—C2 110.69 (11) C16—C17—H17 119.7

O22—C8—C9 109.62 (14) C19—C18—C17 120.62 (16)

O22—C8—C10 104.58 (15) C19—C18—H18 119.7

C9—C8—C10 113.10 (16) C17—C18—H18 119.7

O22—C8—H8 109.8 C18—C19—C20 119.37 (14)

C9—C8—H8 109.8 C18—C19—H19 120.3

C10—C8—H8 109.8 C20—C19—H19 120.3

C8—C9—H91 109.5 C19—C20—C21 120.62 (15)

C8—C9—H92 109.5 C19—C20—H20 119.7

H91—C9—H92 109.5 C21—C20—H20 119.7

C8—C9—H93 109.5 C16—C21—C20 120.32 (14)

H91—C9—H93 109.5 C16—C21—H21 119.8

H92—C9—H93 109.5 C20—C21—H21 119.8

C8—C10—H101 109.5 C7—O22—C8 117.99 (12)

C8—C10—H102 109.5 C5—O51—H51 109.5

H101—C10—H102 109.5 C11—O42—C12 118.02 (11)

O11—C1—C2—C7 0.03 (19) C3—C2—C7—O22 −150.50 (11)

C6—C1—C2—C7 178.36 (11) C3—C4—C11—O41 −67.57 (16)

O11—C1—C2—C3 −123.45 (15) C5—C4—C11—O41 55.50 (16)

C6—C1—C2—C3 54.89 (15) C3—C4—C11—O42 112.90 (12)

C7—C2—C3—C16 62.69 (14) C5—C4—C11—O42 −124.03 (12)

C1—C2—C3—C16 −176.05 (11) C2—C3—C16—C21 −119.98 (13)

C7—C2—C3—C4 −172.92 (10) C4—C3—C16—C21 115.94 (13)

C1—C2—C3—C4 −51.66 (14) C2—C3—C16—C17 62.89 (16)

C16—C3—C4—C11 −58.78 (13) C4—C3—C16—C17 −61.19 (16)

C2—C3—C4—C11 176.00 (10) C21—C16—C17—C18 −0.5 (2)

C16—C3—C4—C5 179.96 (10) C3—C16—C17—C18 176.65 (13)

C2—C3—C4—C5 54.75 (13) C16—C17—C18—C19 0.1 (3)

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o703–o705

C3—C4—C5—O51 58.10 (14) C18—C19—C20—C21 −0.4 (3)

C11—C4—C5—C15 59.68 (15) C17—C16—C21—C20 0.5 (2)

C3—C4—C5—C15 −179.80 (11) C3—C16—C21—C20 −176.71 (13)

C11—C4—C5—C6 −177.33 (11) C19—C20—C21—C16 0.0 (2)

C3—C4—C5—C6 −56.81 (14) O21—C7—O22—C8 4.3 (2)

O11—C1—C6—C5 120.75 (16) C2—C7—O22—C8 −173.81 (12)

C2—C1—C6—C5 −57.55 (15) C9—C8—O22—C7 76.70 (18)

O51—C5—C6—C1 −61.73 (14) C10—C8—O22—C7 −161.75 (14)

C15—C5—C6—C1 179.52 (12) O41—C11—O42—C12 3.8 (2)

C4—C5—C6—C1 56.38 (14) C4—C11—O42—C12 −176.71 (12)

C1—C2—C7—O21 −90.69 (16) C13—C12—O42—C11 −139.02 (15)

C3—C2—C7—O21 31.41 (18) C14—C12—O42—C11 98.45 (18)

C1—C2—C7—O22 87.39 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C4—H4···O21i 0.98 2.60 3.4678 (16) 148

C17—H17···O21i 0.93 2.57 3.4759 (18) 166

C15—H152···O51i 0.96 2.59 3.404 (2) 143

C19—H19···O51ii 0.93 2.55 3.4005 (18) 152

O51—H51···O41 0.82 2.08 2.7724 (14) 142

Figure

Figure 1

References

Related documents

The impact of Foreign Direct Investment and the institutional quality on Welfare in Latin America and Sub-saharan Africa..

Regarding the human capital variable, it is positive and statistically significant in the short and. long run at the

Taux de disponibilité en énergie : quotient de l'énergie qu'aurait pu produire, pendant la période considérée, la puissance disponible par l'énergie qu'aurait pu produire,

Eurostat hat die Aufgabe, den Informa­ tionsbedarf der Kommission und aller am Aufbau des Binnenmarktes Beteiligten mit Hilfe des europäischen statistischen Systems

The large magnitudes of the estimated effects of REOs in these tables and the tables in Appendix B are due to a one percentage point increase in an REO share representing a very

такая система отбора и найма неэффективна и вовсе обходится очень дорого. Специалисты в области трудовых ресурсов уже давно ощущают потребность в более надежных

In the same vein, this paper analyses the effects of general elections on stock returns and volatility around the election periods at the Nigerian Stock Exchange (NSE)

Selon une enquête réalisée auprès des entreprises par le Ministère de l'emploi et de la sécurité sociale, les prévisions concernant les chiffres de l'emploi au Portugal pour