• No results found

Measuring and modelling the effects of systematic non adherence to mass drug administration

N/A
N/A
Protected

Academic year: 2020

Share "Measuring and modelling the effects of systematic non adherence to mass drug administration"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

warwick.ac.uk/lib-publications

Original citation:

Dyson, Louise, Stolk, Wilma, Farrell, Sam H. and Hollingsworth, T. Déirdre. (2017) Measuring

and modelling the effects of systematic non-adherence to mass drug administration.

Epidemics, 18. pp. 56-66.

Permanent WRAP URL:

http://wrap.warwick.ac.uk/87032

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work of researchers of the

University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution 4.0 International

license (CC BY 4.0) and may be reused according to the conditions of the license. For more

details see:

http://creativecommons.org/licenses/by/4.0/

A note on versions:

The version presented in WRAP is the published version, or, version of record, and may be

cited as it appears here.

(2)

ContentslistsavailableatScienceDirect

Epidemics

jo u rn al h om ep age : w w w . e l s e v i e r . c o m / l o c a t e / e p i d e m i c s

Measuring

and

modelling

the

effects

of

systematic

non-adherence

to

mass

drug

administration

Louise

Dyson

a,b,∗

,

Wilma

A.

Stolk

c

,

Sam

H.

Farrell

d

,

T.

Déirdre

Hollingsworth

a,b

aMathematicsInstitute,UniversityofWarwick,Coventry,UK bSchoolofLifeSciences,UniversityofWarwick,Coventry,UK

cDepartmentofPublicHealth,ErasmusMC,UniversityMedicalCenterRotterdam,Rotterdam,TheNetherlands

dLondonCentreforNeglectedTropicalDiseaseResearch,DepartmentofInfectiousDiseaseEpidemiology,StMary’sCampus,ImperialCollegeLondon, LondonWC21PG,UK

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21December2016

Receivedinrevisedform1February2017 Accepted2February2017

Keywords:

Neglectedtropicaldiseases Coverage

Systematicnon-compliance Systematic

non-adherence Modelling

a

b

s

t

r

a

c

t

Itiswellunderstoodthatthesuccessorfailureofamassdrugadministrationcampaigncriticallydepends onthelevelofcoverageachieved.Tothatendcoveragelevelsareoftencloselyscrutinisedduring cam-paignsandtheresponsetounderperformingcampaignsistoattempttoimprovecoverage.Modelling workhasindicated,however,thatthequalityofthecoverageachievedmayalsohaveasignificantimpact ontheoutcome.Ifthecoverageachievedislikelytomisssimilarpeopleeveryroundthenthiscanhave aseriousdetrimentaleffectonthecampaignoutcome.Webeginbyreviewingthecurrentmodelling descriptionsofthiseffectandintroduceanewmodellingframeworkthatcanbeusedtosimulateagiven levelofsystematicnon-adherence.Weformalisethelikelihoodthatpeoplemaymissseveralroundsof treatmentusingthecorrelationintheattendanceofdifferentrounds.Usingtwoverysimplified mod-elsoftheinfectionofhelminthsandnon-helminths,respectively,wedemonstratethatthemodelling descriptionusedandthecorrelationincludedbetweentreatmentroundscanhaveaprofoundeffecton thetimetoeliminationofdiseaseinapopulation.Itisthereforeclearthatmoredetailedcoveragedata isrequiredtoaccuratelypredictthetimetodiseaseelimination.Wereviewpublishedcoveragedatain whichindividualsareaskedhowmanypreviousroundstheyhaveattended,andshowhowthis informa-tionmaybeusedtoassessthelevelofsystematicnon-adherence.Wenotethatwhilethecoveragesin thedatafoundrangefrom40.5%to95.5%,stillthecorrelationsfoundlieinafairlynarrowrange(between 0.2806and0.5351).Thisindicatesthatthelevelofsystematicnon-adherencemaybesimilarevenindata fromdifferentyears,countries,diseasesandadministereddrugs.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Background

Massdrugadministration(MDA)isthecornerstoneofanumber ofcontrolprograms,particularlyhelminthcontrolandtrachoma programs,andalsoformsapartofthesuiteofinterventionsfor diseasessuchasmalariaand yaws (World HealthOrganization, 2013).Theseprogramsarebasedontheuseofdrugswithagood safetyprofilewhichcanbedistributedwithoutcloseclinical super-vision,and areusually prioritisedbecausetheyaremuch more cost-effectivethanscreeningandtreatingonlyinfectedindividuals duetothelogisticcostsinvolved(Brookeretal.,2008;Hollandetal., 1996).Forneglectedtropicaldiseases(NTDs),billionsofindividuals

∗Correspondingauthorat:MathematicsInstitute,UniversityofWarwick, Coven-try,UK.

E-mailaddress:l.dyson@warwick.ac.uk(L.Dyson).

havebeentreatedinMDAprograms.Insomeoftheseprogrammes keydiseasecontrolgoalshave beenmetsothat MDAcouldbe stopped(e.g.MDAprogrammesforlymphaticfilariasisinEgypt, Yemen,SriLanka,etc.WorldHealthOrganization,2015).However, otherprogramsarenotachievingtheexpectedgoals,andsoweare facingthequestionofwhythese“failures”areoccurringandhow bettertomeasuretheeffectivenessofcontrolprograms.

Mathematicalmodellingplaysanimportantroleinthedesign ofMDAprograms—whototreat,whentotreat(Andersonetal.,

2012, 2015; Coffeng et al., 2014, 2015; Gambhir and Pinsent,

2015;Gurarieetal.,2015;Irvineetal.,2015;Jambulingametal.,

2016;Liuetal.,2015;SinghandMichael,2015;Stolketal.,2015;

Truscott et al., 2015; Winnen et al., 2002)—and in setting the

‘expected’prevalenceaftera certainnumber ofrounds, particu-larlyforonchocerciasis(Tekleetal.,2016).Modellingstudieshave highlightedtheimportanceofcoverage(theproportionofthe tar-getpopulationwhoare treated),withhighcoverageleadingto

http://dx.doi.org/10.1016/j.epidem.2017.02.002

(3)

morerapid declinesin prevalenceand sustainedhighcoverage leadingtothepossibilityofelimination(Okelletal.,2011;Slater etal.,2014).Empiricalstudies(Krenteletal.,2013;Briegeretal.,

2012;Kingetal.,2011;Boydetal.,2010)havehighlightedthat

someindividualsdonotreceivetreatmentnotthroughchance,but throughasystematiclackofaccesstothetreatments(suchas work-erswhoareawayduringthedaytimetreatments,Rocketal.,2015;

Mpanyaetal.,2012)orlackofacceptanceofthetreatment.These

studies,amongothers,investigatehowtreatmentcampaignsand interventionsareaffectedbytheculturalandsocio-economic con-textsinwhichtheyoccur(Krenteletal.,2016;ParkerandAllen,

2013a,2013b;Royetal.,2013;Shufordetal.,2016).Inaddition,

manyinvestigationsintotreatmentcampaigncoveragehighlight theunreliabilityofreportedcoveragedata,furthercomplicating modellingefforts(Briegeretal.,2011;Cromwelletal.,2009).

Earlymodellingworkforlymphaticfilariasishighlightedhow thesetypesofsystematicnon-adherencetoaprogramcan under-minethesuccessofthatprogramand,dependingonthesizeofthe untreatedgroup,actasanimportantreservoirforinfection, lead-ingtoonwardtransmissiontotherestofthepopulation(Plaisier etal.,2000).Thedecisiontoproceedwithposttreatment surveil-lancemaybebasedonthereportedcoveragelevelscombinedwith modellingpredictions(forexampleinlymphaticfilariasis,where achievingaround7yearsofhighcoverageisseenasatriggerto begintransmissionassessmentsurveys).Itisimportanttomeasure andunderstandtheseeffectstopreventthedangerofstoppingtoo soonorcontinuingcostlyinterventionsaftertheyarenolonger needed.Ifuntreatedindividualsaregeographicallyclustered,then thistypeofnon-adherence,orlackofaccess,canleadtohotspots ofongoingtransmission.Amorerecentstudyappliedthemethod

byPlaisieretal.(2000)(whichwaspreviouslyusedina

determin-isticsetting)tostudytheeffectofdifferentmodelsofsystematic non-adherenceinanindividual-basedmodelofhelminthinfections (Farrelletal.,2017).

Differentmodellinggroupshaveapproachedmodelling system-aticnon-adherence(whichweshalluseasacatch-alltermforthe situationwhensomeparts ofthepopulationrepeatedlydo not receivetreatments)indifferentways,butthesedifferentmethods haveneverbeenexplicitlycomparedwithrespecttotheresulting simulatedcoveragepatternsortheresultingpredictedtrendsin infection.Hereweaimtoformaliseanewmodelforthisbehaviour whichisflexibleenoughtocapturethedifferentmethodologiesand allowmoredirectcomparisonwithempiricaldata.Weinvestigate theimpactofdifferentassumptionsforsystematicnon-adherence usinga simple susceptible-infected-susceptible (SIS)model and ahelminthmodel. Weuseexamplesfromthesmallnumber of publishedempiricalstudieswhichmeasurethesephenomenato evaluatethesizeoftheeffect,anddiscussthevalueoffurther sur-veystoinformfuturemodellingwork.Wenotethatourworkisan attempttocaptureeffectsthatmaybegeneralacrossmultiple dif-ferentdiseasesandtoapplythistoanyparticulardiseaseorcountry wouldrequiremorein-depthstudyofthespecificsituation.

2. Overview

Wewillbeginbyreviewinghowvariousmodelsinclude sys-tematicnon-adherenceandintroducinganewwayofmodelling treatmentthatallowstheusertospecifythelevelofsystematic non-adherenceinadditiontothecoverage(Section3).Thenwe willconsidertheconsequences of systematic non-adherencein MDAcampaignsbyimplementingthevariousschemesintoa(very simplified)modelofSISdynamicsandoneforhelminthinfections, demonstratingthatthelevelofsystematicnon-adherencehasa sig-nificantimpactontheoutcomeofinterventions(Section4).Finally, wewillconsiderwhatdataisrequired(andhowtoanalyseit)to

assessthelevelofsystematicnon-adherenceandwillshowthatfor thelimiteddataintheliteraturethecorrelationbetweenroundsof treatmentliesinanarrowrangeofvalues(Section5).

3. Modellingdescriptionsofsystematicnon-adherence

Manymodellingdescriptionsofsystematicnon-adherencehave beenusedina varietyofmodelsofdifferentdiseases. Herewe review and compare thedifferentschemes and propose a new method.

3.1. Listofschemes

1.Random–eachroundarandomlyselectedgroupofindividuals aretreated.(1parameter–coverage)

2.Populationpartitioning:

(a)Fullysystematic–twogroupsthataretreated:everyround; ornevertreated(1parameter–coverage)

(b)Deterministicapproximationtoasemi-systematicscheme (numberofparametersdependsonthescheme)

3.Semi-systematic–eachindividualhasaprobabilitypi(thesame

foreveryround)ofbeingtreatedineachround.(1parameter– coverage)

4.Variablecorrelationscheme–treatedindividualsaredistributed witha givenexpectation whilecorrelationis controlledbya givenparameter.(2parameters–coverageandcorrelation) (a)SchemebyGriffinetal.(2010)andIrvineetal.(2015) (b)Controlledcorrelationschemeintroducedinthispaper

Wediscusseachschemeindetailbelow.

3.1.1. Random

Themajorityofmodellingpredictionsfortheoutcomeofmass drugadministrationcampaignsassumerandomcoverage(Truscott

etal.,2015;GambhirandPinsent,2015;Liuetal.,2015;Bloketal.,

2015;Pandeyetal.,2015;SinghandMichael,2015;Gurarieetal.,

2015;Andersonetal.,2015).Inthisscheme,eachindividualineach

roundhasthesameprobability,c,ofreceivingtreatment,wherec isthecoverageachievedbythecampaign.Ifthecampaign con-tinuesrunningforenoughroundstheneventuallyallindividuals willhavereceivedatleastonetreatment.Sinceeachindividualhas thesameprobabilityofbeingtreatedineachround,the propor-tionofthepopulationthatisnevertreateddropsoffveryquickly asthenumberofroundsincreases.Toensureaprobabilityofat mostTthatarandomlyselectedindividualhasneverreceived treat-ment,atagivencoveragec,requiresgreaterthanlog(T)/log(1−c) roundsofMDA.Thedistributionofnumberofroundsattendedin thepopulationafter10roundsat70%coverageisshowninFig.2(a), demonstrating that the proportion ofthe populationthat have neverattendedaroundisverysmall.Thedistributionisclustered around7roundsattended,sincethiswouldbethemeannumberof roundsattendedafter10roundsat70%coverageunderthisscheme.

3.1.2. Populationpartitioning

Asimplewayofincorporatingsystematicnon-adherenceinto anymodel(deterministicorindividual-based)istopartitionthe populationintosubpopulations thatreceive differenttreatment regimes.

(4)

Fig.1. Aschematictorepresentthedifferentschemesusedtomodeltreatmentcampaigns.Foreachschemewegivetworoundsoftreatment.Individualsreceivingtreatment inthatroundarecolouredred,whereasthosenotreceivingtreatmentareinblack.Ineachdiagramthebackgroundcolourrepresentstheprobabilitythatapersonwill receivetreatmentinthatround,fromwhite(neverreceivetreatment)todarkblue(alwaysreceivetreatment).Thecontrolledcorrelationschemeisnotshownexplicitlyin thisdiagrambutcangivedifferentlevelsofsystematicnessdependingonthecorrelationparameterused.

2003;Plaisieretal., 1998),and isalsostudiedin a

determinis-ticmodelforonchocerciasis(Turneretal.,2015,2014a,b).Plaisier

etal.(2000)assessedthecomparativeeffectiveness ofMDAfor

lymphaticfilariasiswithrandom,systematicorsemi-systematic coverageschemes.TheschemeisshowninFig.2(c).

Anotherpartitionwouldfirstassumeasubpopulationthatnever attendsscreeningandthenuseanothermodel ofchoiceforthe remaining population. For example, incorporating a randomly-participating population and a never-participating population (HAT:Rocketal.,2015,hookworm:WORMSIM:Coffengetal.,2015) or a never-par-ticipating population and a semi-systematically participating population (see Section 3.1.3) (onchocerciasis: ONCHOSIM:Plaisieretal.,1990).Toapproximateasemi-systematic schemeinadeterministicmodel,onecanpartitionthepopulation intogroupsthatreceivetreatmentatdifferentrates.Forexample,a PDEmodelofonchocerciasis(EPIONCHO:BasánezandBoussinesq,

1999;Turneret al.,2013)theauthorssplitthepopulationinto

fourgroups:oneinwhichindividualsparticipateeveryround;one wheretheyparticipateinevenrounds;oneparticipatinginodd rounds;andonegroupthatneverparticipates.Thisschemeisvery distinctivewhenweconsiderthenumberofroundsattendedby thedifferentpopulations(Fig.2(f)),anditwouldbeverysurprising ifthiswasseeninrealdata.Howeveritisimportantto remem-berthat thisschemeis not intended asa direct representation oftherealworld,butasanattempttomake asemi-systematic schemeinadeterministicsetting.Inaddition,thisschemecould beextendedbyaddingfurthersubgroupsthataretreatedevery1, 2,3,...roundsorindeedincludingaseparatesubpopulationfor eachpossiblecombinationofroundsattended.

3.1.3. Semi-systematic

Under the semi-systematic scheme the ith individual has a probabilitypiofattendingaroundoftreatment.Toachievea

cov-eragec,eachindividualmusthaveprobabilitypi=u(1i −c)/c,where

uiisauniformlydistributedrandomnumberontheinterval[0,

1].Notethatthisschemediffersfromtherandomscheme,since theprobabilitydiffersbetweenindividuals (butisthesame for

each round), whereas in therandom schemetheprobability is thesameforallindividuals(andisalsothesameforallrounds). Thiscanbeextendedtoincludesex-and age-related participa-tionrates. The differencebetweenthesemi-systematic scheme andtherandomschememaybeeasilyseeninFig.2(b)whereit isclearthatthesemi-systematicschemeresultsinalarger pro-portionof thepopulationreceivingzeroor very fewrounds of treatment, evenat 70%coverage levels,thus havingthe poten-tialtoseriouslyundermineMDAcampaigns.Thesemi-systematic schemehasbeenconsideredinmodelsoflymphaticfilariasis (LYM-FASIM:Jambulingametal.,2016;Plaisieretal.,1998,2000;Stolk

etal., 2003;Subramanianet al.,2004), hookworm(WORMSIM:

Coffengetal.,2015),onchocerciasis(ONCHOSIM:Coffengetal.,

2014;Plaisieretal.,1990;Stolketal.,2015),andschistosomiasis

(SCHISTOSIM:deVlasetal.,1996).

3.1.4. Variablecorrelationschemes

Itispossibletofitmanyoftheprecedingschemesintoageneral frameworkinwhichthecorrelationbetweenroundsattended(i.e. ifanindividualattendsoneroundtowhatextenttheyaremore likelytoattendothers)issetbytheuserinadditiontosettingthe coverageachieved.ThiswasfirstattemptedbyGriffinetal.(2010) andtheirschemewassubsequentlyusedbyIrvineetal.(2015) (detailsinthesupplementaryinformation).However,whiletheir schemegivesawayofincreasingthecorrelationbetweenrounds, itdoesnotallowtheusertodirectlysetthecorrelationexactly. Inaddition,thereisnowayofreproducingthesemi-systematic schemedescribedabove,sincehighercorrelationsareachievedby includingalargernumberofpeoplethatalwaysorneverattend treatment(seeFig.2(d)and(e)).

Weproposeanewscheme(usingamethodbyQaqish,2003)in whichboththecoverage,c,andthecorrelationbetweenrounds,, maybecontrolledexactly.Wecallthisschemethecontrolled cor-relationscheme.Theprocedureisasfollows:inthefirstround,each personattendstreatmentwithprobabilityc.Inroundk,individual iattendstreatmentwithprobability(c(1)+Ri)/(1+(k−2)),

whereRiisthenumberofroundsattendedbypersonisofar.Itis

(5)

Fig.2. Distributionofthennumberofroundsoftreatmentexperiencedbythepopulationfordifferentschemesat70%coverage.

morelikelytheyaretoattendsubsequentrounds,andthestrength ofthiseffectiscontrolledby.If=0thenthisreducestothe randomscheme(Section3.1.1,Fig.2(a)and(g)),andif=1then eachpersonwillattendroundkif,andonlyif,theyattendedthe firstround,thusreducingtothesystematicschemeinSection3.1.2 (Fig.2(c)and(i)).Infactthisschemeisequivalenttogivingeach per-sonaparameterthatgivestheirprobabilityofattendinganyround (whichisfixedforthatperson),asinthesemi-systematicscheme, butdrawingthatparameterfromaBetadistributionwith param-eters˛=y(1−)/)andˇ=(1−y)(1−)/(seesupplementary

information).

Asforpreviousschemes,thevariablecorrelationschememaybe straightforwardlyappliedtosubpopulationswithdifferent atten-danceparameters(forexampledifferentagegroups)bygenerating attendancesseparatelyforeachsubpopulation.Itisalsopossible toextendthisscheme(seesupplementaryinformation)toinclude additional correlated variables to model correlations between adherencetodifferenttypesofinterventionsorbetweenriskand adherencetointerventions.Forexample,itmightbethatpeople whoarelikelytoreceivedrugtreatmentsarealsomorelikelyto

receiveindoorresidualspraying(IRS)ortoreceiveandusebednets (Griffinetal.,2010).

4. Whataretheconsequencesofsystematic non-adherence?

ToassesstheimpactoftheschemesdiscussedinSection3.1, weusetwoverysimplifiedmodelsofinfectiondynamics:an‘SIS’ model;andasimplifiedhelminthinfectionmodel,beforebriefly consideringtheeffectofcorrelationsbetweentreatmentand infec-tionrisk.

4.1. SISdynamics

(6)

prevalenceofinfectionafter5years.Foreachprevalencemeasure, wegivetheprevalencescaledbytheprevalenceachievedbymost effectivescheme:afullyrandomtreatmentcampaign.Forexample, inFig.3(a)weseethattheprevalenceafter5yearscanbeupto180 timesgreaterforasystematicschemethanforrandomcoverage.

4.1.1. Impactoftheintervention

Werunthemodeltosteadystate(200years,givingastarting prevalenceof0.08forˇ=0.2and0.25forˇ=0.8)beforebeginning theplottedsimulationswithamassdrugtreatmentatyearzero. Codeforthesimulationsmaybefoundassupplementary infor-mation.Atthesecond roundthedifferentschemes willhave a differentlevel ofoverlapwithpreviouslycured individuals.The more‘systematic’schemeswilltendtore-treatindividuals who werepreviouslytreatedattimezero,sothatthiswillonlydecrease theprevalenceifthoseindividualshavesincebeenreinfected.Over repeatedtreatments,thedifferencebetweenthemoreandless sys-tematicschemesbecomesprogressivelygreater(Fig.3(a)and(b)). Varyingthecoveragelevelsandconsideringtheprevalenceafter5 yearsdemonstratesthattheeffectofsystematicnon-adherenceis greaterathighercoverages

Wemayalsoinvestigatedifferentendemicsettings,inwhich infectionhappensatdifferentrates.Systematicnon-adherencehas amuchgreatereffectwheninfectionratesareslower(Fig.3(a)and (b)),sinceatlowerinfectionratestheindividualsthatare repeat-edlytreatedinthemoresystematicschemesareunlikelytohave becomereinfectedbetweentreatments.Attheextreme,ifthe infec-tionrateissohighthatallindividualsarereinfectedbytheendof ayear,itisclearthatthedifferentschemeswouldhaveexactlythe sameimpact,sincethecoverageisthesameinalltheschemes.

4.1.2. Prevalenceafter5years

Toinvestigatemorehowthedifferentschemesvarywith cover-agerates,weconsidertheprevalenceafter5yearsforvaryinglevels ofcoverageanddifferentinfectionrates(Fig.3(c)and(d)).These fig-uresdisplayanevenmorecleardistinctionbetweenthedifferent schemes,withmoresystematic schemesdisplayinghuge differ-encesinprevalences. Theeffectofsystematic non-adherenceis morepronouncedathighercoverages,sincethedifferencebetween thepopulationstreated isgreater whenmore peoplearebeing treated in general. At very high coverages the less systematic schemescaneliminatethediseasefromthepopulation,andforthis reasonwedonotgivedataforgreaterthan70%coverage(sincewe scalebytheprevalencefromtherandomscheme,whichisoften zeroafter5yearsathighcoverages).

4.2. Helminthdynamics

Theimpactofsystematicallyre-treatingindividualsislessclear inamodelofhelminthinfections,sinceindividualsarenotregarded tobesimplyinfectedorsusceptible.Insteadtheyareinfectedwith anumberofworms(whichmaybezero).Inthismodelthe preva-lenceofthediseaseinthepopulationisgivenbytheproportionof thepopulationthathaveanon-zeronumberofworms.When indi-vidualsaretreatedtheyarenotnecessarilyfullycured,butinstead aproportionoftheirwormsarekilled.Inthesemodels,therefore, individualsthataretreatedmultipletimesaremorelikelytobe curedthanthosethatonlyreceiveonetreatment.Henceitis pos-siblethatadegreeof’systematicness’couldreducetheprevalence inthepopulation,particularlyatlowcoverages,byconcentrating thosetreatmentssothatalowersubpopulationistreated,butthey aremorelikelytobefullycured.

Weagaintakeaverysimplifiedmodeltohighlightthe differ-encesin thetreatmentschemes withoutincluding muchdetail abouttheinfectiondynamics.Inparticular,wearenotmodelling anyparticulartypeofhelminth,andtheparameterswe useare

notinformedbyrealworlddata.Wedonotincludeanydetailsof wormreplicationwhichinreality,dependingonthespecies,can besexualorasexual,andweonlyconsideradultworms, neglect-inglarvaestagesandvectorsofinfection,suchasinsectsorsnails. Insteadweuseamodelinwhichindividualsareinfectedwitha numberofworms,whichdieatarate.Anindividualigainsworms increasethroughcontactwithanotherinfectedindividual,j,ata rate(ˇ

jWj/N)C/(C+Wi),whereˇistheinfectivity,Nisthe

popu-lationsizeandCgivesdensitydependence,sothatasthenumberof wormsinasingleindividualincreases,the‘space’fornewworms decreases.Wealsoincludedeathoftheindividual,whichispaired withnewbirthssothattheneteffectofapersondyingisthatthey arereplacedbyacompletelyuninfectedperson.

4.2.1. Plottingtheprevalenceduringamassdrugcampaign Asbeforeweplottheprevalenceinthepopulationovertime duringamassdrugcampaign,scaledbythatattainedbyarandom coveragemodel.Werunthemodeltosteadystate(200years, giv-ingastartingprevalenceof0.15forˇ=0.2and0.25forˇ=0.25) beforeadministeringatreatmentroundattime=0years(Fig.4). Codeforthesimulationsmaybefoundassupplementary informa-tion.Wepreviouslymentionedthepossibilitythatconcentrating treatmentsinasubpopulationmayleadtoalowerprevalence(i.e. proportionofthepopulationthatisinfected)whilestill increas-ingtheaveragenumberofworms.We notehere,however,that thisis neverobservedin ourmodel simulations.Anincrease in ‘systematicness’alwaysleadstohigherprevalencesinourmodel simulations(Fig.4),aswasobservedintheSISsystem.AsintheSIS model,theeffectofsystematicnon-adherenceismorepronounced atlowinfectionrates(Fig.4(a)and(c)).Wenotethattheeffect issomewhatreducedcomparedtotheSISmodelwithsystematic treatmentproducingprevalencesupto70timesthatforrandom treatmentinthehelminthmodel,comparedto180timesintheSIS model.Howeverthismaybeinfluencedbytheparametervalues chosen.

4.3. Correlationsbetweentreatmentandinfectionrisk

Anothertypeofsystematiceffectthatcanhavealargeinfluence onthesystemdynamicsisacorrelationbetweenadherenceand infectionrisk.Inthissituationindividualsthatareunlikelytobe treatedalsohaveahigherriskofbeinginfected.Wewouldexpect thistohavenegativeconsequencesforatreatmentcampaign,since thepopulationthatismostlikelytobeinfectedisalsotheleast likelytobetreatedforthatinfection.

Wemaystudythisusingaverysimplemodel,inwhicheach individualihassomeprobability Ti ofreceivingtreatment, and

acquiresdiseaseatsomerateˇi,thentheirprobabilityPi(t)ofbeing

infectedattimetisgivenby

dPi

dt =ˇi(1−Pi)−TiPi, (1)

Pi(Ti,ˇi,t)=ˇi+Tie

−t(Tii)

ˇi+Ti .

(2)

(7)

Fig.3.Theimpactofdifferenttypesmassdrugadministrationcoverageon:(a)and(b)theprevalence;(c)and(d)theprevalenceafter5years;ofanSISmodelovermultiple roundsoftreatment,fordifferentinfectionrates,ˇwhenusingacoverageof70%.Ineachplottheschemesweexpecttohavehighsystematicnon-coverageareshownin red,thosethataremorerandomareinblue,andthosewithsomesystematicnessareshowningreen.Wetaketherateofrecovery,=0.15.Linesareaveragedover1000 simulationsandarescaledbytheprevalenceattainedwhenusingtherandomcoveragescheme.Forreference,therandomcoverageschemeattainsaprevalence0.0003for ˇ=0.2andof0.03forˇ=0.25.

5. Usingdatatoassesstheextentofsystematic non-adherence

Theprecedingsectionshavedemonstratedtheimpactof sys-tematicnon-adherenceontheprevalenceofdisease.Inaddition, theformofthenon-adherencealsohasanimpactonelimination timeanddiseaseburdenovertime.Whilethecoverageis gener-allyacknowledgedtohaveafundamentalimpactonthesuccess ofacampaign,theformthatcoveragemighttakeislesswidely studied.Forthisreasongoodqualitydataonthelevelandformof non-adherenceisrelativelysparse.Itisimportanttonote, how-ever,thatevenifthecoverageandcorrelationsareknown,this doesnot fullyspecifythedistributionofattendance.Inspiteof this,wewillarguethatdataaboutnon-adherenceshouldbe rou-tinelycollectedduringamassdrugadministrationcampaign,inthe samewaythatdataaboutcoverageiscommonlytakenand stud-ied.Thiswouldrepresentasignificantstepforwardinquantifying systematicnon-adherence.

5.1. Existingdata

Forhelminthinfections,asystematicreviewwasundertakenby

Shufordetal.(2016).Manyofthestudiesincludedinthisreview

reportedcoveragedata,orwereinvestigationsintothereasonsfor non-compliance.Thesepapersgiveinsightintofactorsassociated withnon-compliance,butnottheextenttowhichanindividualis likelytoreceivemultipleroundsoftreatment.Discoveringthe rea-sonsfornon-complianceisinvaluablewhenattemptingtoincrease coverage,butformodellingpurposesamoresimplemeasureof thelevelofcorrelationbetweentreatmentroundswould signifi-cantlyincreasetheaccuracyofpredictions.Somepublishedarticles

(Kingetal.,2011;Briegeretal.,2012)hintataccesstodatathat

wouldgivethisinformation,butcorrelationmeasuresarenot gen-erallycalculatedorpublished.Afewarticlesdoincludedataofthe formplottedinFig.2(Newell,1997;Plaisieretal.,2000;Brieger

etal.,2011;Mathieuetal.,2006;El-Setouhyetal.,2007).Notably

Plaisieretal.(2000)alsoincludeacomparisonofthedistributionof

(8)

Fig.4.Theimpactofdifferenttypesmassdrugadministrationcoverageon:(a)and(b)theprevalence;(c)and(d)theprevalenceafter5years;ofasimplifiedhelminthmodel overmultipleroundsoftreatment,fordifferentinfectionrates,ˇwhenusingacoverageof70%.Ineachplottheschemesweexpecttohavehighsystematicnon-coverage areshowninred,thosethataremorerandomareinblue,andthosewithsomesystematicnessareshowningreen.Wetaketherateofdeathofwormstobe=0.1,the birth/deathrateofpeopletobe0.1,thedensitydependenceparametertobeC=50andassumethateachtreatmentkills70%ofthatperson’sworms.Linesareaveraged over1000simulationsandarescaledbytheprevalenceattainedwhenusingtherandomcoveragescheme.Forreference,therandomcoverageschemeattainsaprevalence 0.0005forˇ=0.2andof0.016forˇ=0.8.

attendance,andconcludethatsemi-systematicattendanceisthe mostrealistic ofthethree schemes.Sincenumericaldataisnot giveninPlaisieretal.(2000),wewillconsideronlyNewell(1997),

Briegeretal.(2011),Mathieuetal.(2006)andEl-Setouhyetal.

(2007).BothBriegeretal.(2011)andNewell(1997)investigate

treatmentforonchocerciasiswithivermectin.Newell(1997)report 4roundsoftreatmentinBurundi,whileBriegeretal.(2011) inves-tigatetheAfricanProgrammeforOnchocerciasisControl(APOC), studyingprojectsinNigeriaandCameroon.Mathieuetal.(2006)

andEl-Setouhyetal.(2007)examineparticipationinmassdrug

administrationoflymphaticfilariasiswithDECandalbendazolein Leogane,HaitiandEgypt,respectively.

5.2. Dataanalysis

OnlyMathieuetal.(2006)givesthenumbersattendingall

differ-entcombinationsofrounds(e.g.thepercentageofthepopulation attendingonly rounds1 and 2,say). Fromthecombinations of

roundsinMathieuetal.(2006)itisstraightforwardtocalculate thecoveragesofdifferentrounds(round1=60%,round2=62% andround3=68%)andthecorrelationsbetweendifferentrounds (corr12=0.5351,corr13=0.2979andcorr23=0.5247).

Howeveritisalsopossibletousethedistributionofnumberof roundsattended,bymakingtheassumptionthatallroundsare sim-ilar.Thisisasimplifyingassumption,thatisnotgenerallyentirely satisfied,butgivesanindicationoftherequiredcorrelations.Touse thedistributionofnumberofroundsattended,wedefineXitobe

avectoroflengthgivenbythepopulationsize,whichisoneifthat individualattendedthedrugadministrationinroundi,andzero otherwise.ThenZ=

iXigiveshowmanyroundseachindividual

attended.Wewishtoknowthecorrelationscorr(Xi,Xj)fori=/ j.To

determinethisweusetherelationship:

var

i

Xi

=

i

var(Xi)+2

i i

j=1

(9)

Fig.5. Existingdata(bluebars)withcontrolledcorrelationschemedistributionsusingtheestimatedcorrelationsandcoverages(redlines).

HenceiftheXiareidenticallydistributedthenvar(Xi)=var(X)for

alliandcov(Xi1,Xj1)=cov(Xi2,Xj2)foralli1,j1,i2,j2,and

corr(Xi,Xj)=

cov(Xi,Xj)

var(X) , (4)

= var(Z)

M(M+1)var(X)− 1

M+1, (5)

whereMisthenumberofrounds.Wemayalsocalculatevar(X) fromZviatheformula

E(Z)=E

Xi

=

E(Xi), (6)

hence

E(X)= 1

ME(Z), (7)

and,sinceXisaBernoullirandomvariablewithmeanE(X),then var(X)=E(X)(1−E(X)). For each dataset we calculate the esti-matedcoverageperyearandestimatedcorrelation.Weplotthe data(bluebarsinFig.5)alongwithdistributionobtainedbyusing thesewiththecontrolledcorrelationscheme(redlinesinFig.5).

ApplyingthistothedatainMathieuetal.(2006)weobtainan estimatedcoverageperyearof66%andanestimatedcorrelation of0.4152betweenyears.Thisseemslikeareasonable estimate ofboththecoveragesandthecorrelations,whileclearlynot cap-turingthelowercorrelationbetweenrounds1and3seeninthe individual-leveldata.Thislimitationcanalsobeseenwhen plot-tingthedistributions(Fig.5)sincethelowproportionattending exactlyoneroundisnotwellcaptured.

BothBriegeretal.(2011)andNewell(1997)giveonlythe

num-berof rounds attended. Using our technique onthe datafrom

Newell(1997)givesanestimatedcoverageof60%andacorrelation

of0.3268,contrastingwithreportedcoveragesofbetween40.5% and49.0%(Newell,1997).However,thefitobtainedbyusingthe estimatedcoverageandcorrelationisgood,onlyshowingasmall overestimateforthepercentageattendingoneround(Fig.5(b)).

Briegeretal.(2011)presentalargernumberoftreatmentrounds

(Fig.5(c)),fromwhichweestimateacoverageof57%anda corre-lationof0.3108.Thisdatasethighlightstheissueofassumingall roundsareapproximatelythesame,sincewewouldexpect cov-eragestovaryoverthelargenumberofrounds.Meancoverage rateswereonlyreportedforthreeyears:70%in2003;70%in2004

and74%in2005(Briegeretal.,2011).Giventhesedrawbacksitis

perhapssurprisingthatthisdatasetseemstoshowthebestfitso far(Fig.5(c)).Thismaybeduetothelargeramountofdatathat canbefitandthesmallerimpactofthefluctuationsinindividual yearsontheoverallfit.Inaddition,theattendancesinthisdataset weretakenfromvillageregisterstoavoidreportingbias,whichmay

improvethequalityofthedataset,whilealsoindicatingthatmore detailedindividual-leveldatamaybeavailable.Thediscrepancies foundbyBriegeretal.(2011)betweenthevillageregistersandthe reportedcoveragelevelsisindicativeoftheneedtoexaminethe accuracyofcoveragereportingandassessment.

Finally,El-Setouhyetal.(2007)reportedthenumberofrounds attended(assessedbyasamplesurvey)aftereachroundofMDAup toatotalof5(Fig.6).Thisgivesustheopportunitytocalculateour statisticalmeasuresovermultiplerounds,testingtheassumption thatthedifferentroundsareroughlythesame.Themean cover-agesfoundaftereachyearwere82.41%,88.24%,83.74%,69.26%and 74.51%,whichwerealittlelowerthanthosereported(86.7%,95.5%, 90.1%and88.8%forrounds1–4,whilecoveragewasnotreported forround5).Notethatthetwovaluesarenotexactlycomparable foreach roundsince,forexample, inround4,themean cover-ageisaveragedoverrounds1–4,whereasthereportedcoverage isjustforthatyear.Itshouldalsobenotedthat,sincethe peo-plesurveyedweredifferentaftereachround,thereporteddatais infactinconsistent,withthepercentageofpeoplereceivingzero roundsoftreatmentincreasingovertime.Theestimatedaverage correlationbetweenroundswasfound(usingequation(5))tobe 0.2806,0.3957,0.3446and0.4467afterrounds2,3,4and5, respec-tively.Thiswouldimplythatthelevelofsystematicnoncompliance increasesovertime,whichissomewhatintuitive:onemightexpect that aftermultiplerounds ofMDApeopleget intothehabitof attendingornotattending.

TherangeofvaluestakenbythedataisshowninFig.7with cal-culatedaveragecoveragesandcorrelations(colouredcircles)and reportedcoverages(colouredtriangles).Wecanseefromthisthat ourcalculatedcoveragescanbesystematicallyhigherorlowerthan thereportedcoveragesbut,withtheexceptionoftheEl-Setouhy

etal.(2007)data,arenotalargedeviation.Inaddition,whilethe

coveragesinourdatarangefrom40.5%to95.5%,therangeof cor-relationsfoundisquitenarrow(between0.2806and0.5351).Thus thereissomeevidencethatcorrelationsmaybeapproximatelythe same,evenin datafromdifferentyears,countries, diseasesand administereddrugs.Weshowthedistributionofnumberofrounds attendedforourcontrolledcorrelationmodelwithcorrelation0.4 inFig.2(h)forcomparisonwiththeotherschemes.

6. Discussion

(10)

Fig.6. Data(bluebars)fromEl-Setouhyetal.,2007withcontrolledcorrelationschemedistributionsusingtheestimatedcorrelationuptothatround(redlines)andusing theestimatedcorrelationfromalltherounds(redstars).

differentways ofmodellingsystematic non-adherence,showing therangeof differentassumptionsthat havebeen madeinthe modellingliterature.Individual-basedmodellerswerethefirstto introducesystematicnon-adherence,makinguseoftheirmodel’s flexibilityin characterisingindividualbehaviours(Plaisieretal.,

1990,1998; de Vlas et al.,1996).More recently,

compartmen-tal,deterministicmodelshavebeenadapted tousea varietyof methodologiesforrepresentingthisbehaviour,eachofwhichhave particularlimitations(BasánezandBoussinesq,1999;Turneretal., 2013).Herewehaveintroducedanew,moreflexiblewayof includ-ing this effect in mathematical models. Our proposed variable correlationschemeallowstheexplicitinclusion ofacorrelation betweenrounds,buttheschemeasproposedrequiresthecoverage levelstoremainthesameovermultipleroundsandthecorrelations betweenanytworoundstobethesame.Wenotethatthescheme mayeasilybeextendedusingtechniquesbyQaqish(2003)to pro-ducespecifiedcoveragelevelsand/oraspecifiedcorrelationmatrix betweenrounds.

Usingsimplifiedmodelsofinfection,weinvestigatedtheimpact ofdifferentassumptionsoninfectionrates,coverageand system-atic non-adherence and conclude that the effect of systematic non-adherence is more extreme at lower rates of infection. It appearsthattheeffectsareslightlylowerinhelminthmodels com-paredtotheSISmodel,howeverthismaybeduetotheparameter valueschosen.Wenotethatmorecomplicatedmodelsofhelminth dynamics,inwhichdifferentassumptionsaretakenforeach

spe-cifichelminthspeciesmayaffectthisresult.Moreworkisneeded tofullyunderstandhowtheimpactoftreatmentsonthe proba-bilityofdiseasetransmissionmaychangetheeffectsofsystematic non-adherence.

In thecase where non-adherenceto treatmentis correlated withinfectionrisk,suchasinsub-populationswithpoor sanita-tionandpooraccesstohealth-care,thenthisgenerallyleadsto higherprevalencesinthelongrun.Howeverinthissituation, sur-prisingly,itisbettertofocusontreating peoplewhoarenotat riskofinfectionearlyintheprogram,sincetheyaremorelikelyto remainuninfectedafterbeingcured.

(11)

Fig.7.Anoverviewofthedatasetsobtainedwithcalculatedaveragecoveragesand correlations(colouredcircles)andreportedcoverages(colouredtriangles).Forthe El-Setouhyetal.(2007)datasetthecoloursrefertotheroundthatthedataistaken from,sothatthetrianglesgivethereportedcoverageforrounds1–4,whilethe cir-clesrepresentthecalculatedaveragecoveragesandcorrelationsafter2–5rounds. Thehorizontallinesdemonstratewhichreportedcoveragesrefertowhich calcu-latedvalues,whiletheverticallineforMathieuetal.(2006)showstherangeof correlationsfoundwhenusingthefulldataset(whichreportswhichroundspeople attended,ratherthanjusthowmanyrounds).

onageneraldescription,itisimportanttoidentifyandquantifythe socialandlogisticaldriversinordertoovercomethem.Itis impor-tanttonotethatcorrelationsindifferentgeographicalareasmay beawayofpredictionwherehotspotsaremostlikelytooccur.

7. Conclusions

Overall this study highlights the importance of careful considerationofthedriversandcharacteristicsofsystematic non-adherence,andofmodelcomparison,sothatdifferentpredictions canbeevaluatedintermsoftheirparameterandstructural assump-tions. Further workshould focus in two main areas: gathering dataandextendinganalyticaltoolstoquantifytheextentof sys-tematicnon-adherence;andexpandingcurrentandfuturemodels toincludeandanalysetheseeffects.Wedonotmakeclaimsfor anyparticulardiseasesinthiswork,butinsteaddemonstratethat systematic non-adherence can have a large effect and encour-ageotherstoinvestigatetheseeffectsintheirowndisease-and country-specificcircumstances.

Acknowledgements

LD,WASandTDHgratefullyacknowledgefundingoftheNTD ModellingConsortiumbytheBillandMelindaGatesFoundationin partnershipwiththeTaskForceforGlobalHealth.Theviews, opin-ions,assumptionsoranyotherinformationsetoutinthisarticle shouldnotbeattributedtotheBill&MelindaGatesFoundation andTheTaskForceforGlobalHealthoranypersonconnectedwith them.

AppendixA. SupplementaryData

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.epidem.2017.02. 002.

References

Anderson,R.M.,Hollingsworth,T.D.,Truscott,J.,Brooker,S.J.,2012.Optimisationof masschemotherapytocontrolsoil-transmittedhelminthinfection.Lancet379 (9813),289–290.

Anderson,R.M.,Turner,H.C.,Farrell,S.H.,Yang,J.,Truscott,J.E.,2015.Whatis requiredintermsofmassdrugadministrationtointerruptthetransmissionof schistosomeparasitesinregionsofendemicinfection?Parasit.Vectors8(1), 553.

Basánez,M.G.,Boussinesq,M.,1999.Populationbiologyofhumanonchocerciasis. Philos.Trans.R.Soc.Lond.Ser.BBiol.Sci.354(1384),809–826.

Blok,D.J.,deVlas,S.J.,Richardus,J.H.,2015.Globaleliminationofleprosyby2020: areweontrack.Parasit.Vectors8(1),548.

Boyd,A.,Won,K.Y.,McClintock,S.K.,Donovan,C.V.,Laney,S.J.,Williams,S.A., Pilotte,N.,Streit,T.G.,BeauDeRochars,M.V.E.,Lammie,P.J.,2010.A community-basedstudyoffactorsassociatedwithcontinuingtransmissionof lymphaticfilariasisinLeogane,Haiti.PLoSNeglect.Trop.Dis.4(3),1–10. Brieger,W.R.,Okeibunor,J.C.,Abiose,A.O.,Ndyomugyenyi,R.,Wanji,S.,Elhassan,

E.,Amazigo,U.V.,2012.Characteristicsofpersonswhocompliedwithand failedtocomplywithannualivermectintreatment.Trop.Med.Int.Health17 (7),920–930.

Brieger,W.R.,Okeibunor,J.C.,Abiose,A.O.,Wanji,S.,Elhassan,E.,Ndyomugyenyi, R.,Amazigo,U.V.,2011.Compliancewitheightyearsofannualivermectin treatmentofonchocerciasisinCameroonandNigeria.Parasit.Vectors4(1), 152.

Brooker,S.J.,Kabatereine,N.B.,Fleming,F.,Devlin,N.,2008.Costand cost-effectivenessofnationwideschool-basedhelminthcontrolinUganda: intra-countryvariationandeffectsofscaling-up.HealthPolicyPlan.23(1), 24–35.

Coffeng,L.E.,Bakker,R.,Montresor,A.,deVlas,S.J.,2015.Feasibilityofcontrolling hookworminfectionthroughpreventivechemotherapy:asimulationstudy usingtheindividual-basedWORMSIMmodellingframework.Parasit.Vectors8 (1),541.

Coffeng,L.E.,Stolk,W.A.,Hoerauf,A.,Habbema,D.,Bakker,R.,Hopkins,A.D.,de Vlas,S.J.,2014.EliminationofAfricanonchocerciasis:Modelingtheimpactof increasingthefrequencyofivermectinmasstreatment.PLoSONE9(12),1–25. Cromwell,E.A.,Ngondi,J.,Gatpan,G.,Becknell,S.,Kur,L.,McFarland,D.,King,J.D.,

Emerson,P.M.,2009.Estimationofpopulationcoverageforantibiotic distributionfortrachomacontrol:acomparisonofmethods.Int.Health1(2), 182–189.

deVlas,S.J.,vanOortmarssen,G.J.,Gryseels,B.,Polderman,A.M.,Plaisier,A.P., Habbema,J.D.,1996.SCHISTOSIM:amicrosimulationmodelforthe epidemiologyandcontrolofschistosomiasis.Am.J.Trop.Med.Hygiene55(5 Suppl),170–175.

El-Setouhy,M.,Elaziz,K.M.A.,Hanan,H.,Farid,H.A.,Kamal,H.A.,Ramzy,R.M.R., Shannon,W.D.,Weil,G.J.,2007.Theeffectofcomplianceontheimpactofmass drugadministrationforeliminationoflymphaticfilariasisinEgypt.Am.J.Trop. Med.Hygiene77(6),1069–1073(6).

Farrell,S.H.,Truscott,J.E.,Anderson,R.M.,2017.Theimportanceofpatient complianceinrepeatedroundsofmassdrugadministration(MDA)forthe eliminationofintestinalhelminthtransmission.Parasit.Vectors(under review).

Gambhir,M.,Pinsent,A.,2015.Possiblechangesinthetransmissibilityoftrachoma followingMDAandtransmissionreduction:implicationsfortheGET2020 goals.Parasit.Vectors8(1),530.

Gillespie,D.T.,1977.Exactstochasticsimulationofcoupledchemicalreactions.J. Phys.Chem.81(25),2340–2361.

Griffin,J.T.,Hollingsworth,T.D.,Okell,L.C.,Churcher,T.S.,White,M.,Hinsley,W., Bousema,T.,Drakeley,C.J.,Ferguson,N.M.,Basá ˜nez,M.G.,Ghani,A.C.,2010. ReducingPlasmodiumfalciparummalariatransmissioninAfrica:a model-basedevaluationofinterventionstrategies.PLoSMed.7(8). Gurarie,D.,Yoon,N.,Li,E.,Ndeffo-Mbah,M.,Durham,D.,Phillips,A.E.,Aurelio,

H.O.,Ferro,J.,Galvani,A.P.,King,C.H.,2015.ModellingcontrolofSchistosoma haematobiuminfection:predictionsofthelong-termimpactofmassdrug administrationinAfrica.Parasit.Vectors8(1),529.

Holland,C.V.,O’Shea,E.,Asaolu,S.O.,Turley,O.,Crompton,D.W.,1996.A cost-effectivenessanalysisofanthelminthicinterventionforcommunity controlofsoil-transmittedhelminthinfection:levamisoleandAscaris lumbricoides.J.Parasitol.82(4),527–530.

Irvine,M.A.,Reimer,L.J.,Njenga,S.M.,Gunawardena,S.,Kelly-Hope,L.,Bockarie, M.,Hollingsworth,T.D.,2015.Modellingstrategiestobreaktransmissionof lymphaticfilariasis-aggregation,adherenceandvectorcompetencegreatly alterelimination.Parasit.Vectors8,547.

Jambulingam,P.,Subramanian,S.,deVlas,S.J.,Vinubala,C.,Stolk,W.A.,2016. MathematicalmodellingoflymphaticfilariasiseliminationprogramsinIndia: requireddurationofmassdrugadministrationandpost-treatmentlevelof infectionindicators.Parasit.Vectors,1–18.

King,J.D.,Zielinski-Gutierrez,E.,Pa’au,M.,Lammie,P.,2011.Improving communityparticipationtoeliminatelymphaticfilariasisinAmericanSamoa. ActaTrop.120(SUPPL.1),S48–S54.

Krentel,A.,Fischer,P.U.,Weil,G.J.,2013.Areviewoffactorsthatinfluence individualcompliancewithmassdrugadministrationforeliminationof lymphaticfilariasis.PLoSNeglect.Trop.Dis.7(11).

(12)

eliminationofLFintwo‘endgame’districtsinIndonesiausingmicronarrative surveys.PLoSNeglect.Trop.Dis.3(10).

Liu,F.,Porco,T.C.,Amza,A.,Kadri,B.,Nassirou,B.,West,S.K.,Bailey,R.L.,Keenan, J.D.,Lietman,T.M.,2015.Short-termforecastingoftheprevalenceofclinical trachoma:utilityofincludingdelayedrecoveryandtestsforinfection.Parasit. Vectors8(1),535.

Mathieu,E.,Direny,A.N.,deRochars,M.B.,Streit,T.G.,Addiss,D.G.,Lammie,P.J., 2006.ParticipationinthreeconsecutivemassdrugadministrationsinLeogane, Haiti.Trop.Med.Int.Health11(6),862–868.

Mpanya,A.,Hendrickx,D.,Vuna,M.,Kanyinda,A.,Lumbala,C.,Tshilombo,V., Mitashi,P.,Luboya,O.,Kande,V.,Boelaert,M.,Lefèvre,P.,Lutumba,P.,2012. ShouldIgetscreenedforsleepingsickness?AqualitativestudyinKasai province,DemocraticRepublicofCongo.PLoSNeglect.Trop.Dis.6(1),5–7. Newell,E.D.,1997.Effectofmasstreatmentswithivermectin,withonlypartial compliance,onprevalenceandintensityofO.volvulusinfectioninadultsand inuntreated4and5year-oldchildreninBurundi.Trop.Med.Int.Health2(9), 912–916.

Okell,L.C.,Griffin,J.T.,Kleinschmidt,I.,Hollingsworth,T.D.,Churcher,T.S.,White, M.J.,Bousema,T.,Drakeley,C.J.,Ghani,A.C.,2011.Thepotentialcontributionof masstreatmenttothecontrolofplasmodiumfalciparummalaria.PLoSONE6 (5).

Pandey,A.,Atkins,K.E.,Bucheton,B.,Camara,M.,Aksoy,S.,Galvani,A.P., Ndeffo-Mbah,M.L.,2015.Evaluatinglong-termeffectivenessofsleeping sicknesscontrolmeasuresinGuinea.Parasit.Vectors8,550.

Parker,M.,Allen,T.,2013a.Doesmassdrugadministrationfortheintegrated treatmentofneglectedtropicaldiseasesreallywork?Assessingevidencefor thecontrolofschistosomiasisandsoil-transmittedhelminthsinUganda. HealthRes.PolicySyst.9(3).

Parker,M.,Allen,T.,2013b.Willmassdrugadministrationeliminatelymphatic filariasis?EvidencefromnortherncoastalTanzania.J.Biosoc.Sci.45(4), 517–545.

Plaisier,A.P.,Das,P.K.,Souza,W.,Lapa,T.,Furtado,A.F.,vanderPloeg,C.P.B., Habbema,J.D.F.,vanOortmarssen,G.J.,1998.TheLYMFASIMsimulation programformodellinglymphaticfilariasisanditscontrol.MethodsInf.Med. Plaisier,A.P.,Stolk,W.A.,vanOortmarssen,G.J.,Habbema,J.D.F.,2000.

EffectivenessofannualivermectintreatmentforWuchereriabancrofti

infection.Parasitol.Today16(7),298–302.

Plaisier,A.P.,vanOortmarssen,G.J.,Habbema,J.D.F.,Remme,J.,Alley,E.S.,1990. ONCHOSIM:amodelandcomputersimulationprogramforthetransmission andcontrolofonchocerciasis.Comput.MethodsProg.Biomed.31(1),43–56. Qaqish,B.F.,2003.Afamilyofmultivariatebinarydistributionsforsimulating

correlatedbinaryvariableswithspecifiedmarginalmeansandcorrelations. Qual.Res.90(2),455–463.

Rock,K.S.,Torr,S.J.,Lumbala,C.,Keeling,M.J.,2015.Quantitativeevaluationofthe strategytoeliminatehumanAfricantrypanosomiasisintheDemocratic RepublicofCongo.Parasit.Vectors8(1),532.

Roy,R.N.,Sarkar,A.P.,Misra,R.,Chakroborty,A.,Mondal,T.K.,Bag,K.,2013. Coverageandawarenessofandcompliancewithmassdrugadministrationfor eliminationoflymphaticfilariasisinBurdwanDistrict,WestBengal,India.J. HealthPopul.Nutr.31(2),171–177.

Shuford,K.V.,Turner,H.C.,Anderson,R.M.,2016.Compliancewithanthelmintic treatmentintheneglectedtropicaldiseasescontrolprogrammes:asystematic review.Parasit.Vectors,1–16.

Singh,B.K.,Michael,E.,2015.Bayesiancalibrationofsimulationmodelsfor supportingmanagementoftheeliminationofthemacroparasiticdisease, lymphaticfilariasis.Parasit.Vectors8(1),522.

Slater,H.C.,Walker,P.G.T.,Bousema,T.,Okell,L.C.,Ghani,A.C.,2014.Thepotential impactofaddingivermectintoamasstreatmentinterventiontoreduce malariatransmission:amodellingstudy.J.Infect.Dis.210(12),1972–1980. Stolk,W.A.,deVlas,S.J.,Borsboom,G.J.J.M.,Habbema,J.D.F.,2008.LYMFASIM,a

simulationmodelforpredictingtheimpactoflymphaticfilariasiscontrol: quantificationforAfricanvillages.Parasitology135,1583–1598.

Stolk,W.A.,Subramanian,S.,vanOortmarssen,G.J.,Das,P.K.,Habbema,J.D.F.,2003. Prospectsforeliminationofbancroftianfilariasisbymassdrugtreatmentin Pondicherry,India:asimulationstudy.J.Infect.Dis.188(9),1371–1381. Stolk,W.A.,Walker,M.,Coffeng,L.E.,Basánez,M.G.,deVlas,S.J.,2015.Required

durationofmassivermectintreatmentforonchocerciasiseliminationin Africa:acomparativemodellinganalysis.Parasit.Vectors,1–16.

Subramanian,S.,Stolk,W.A.,Ramaiah,K.D.,Plaisier,A.P.,Krishnamoorthy,K.,van Oortmarssen,G.J.,Amalraj,D.D.,Habbema,J.D.F.,Das,P.K.,2004.Thedynamics ofWuchereriabancroftiinfection:amodel-basedanalysisoflongitudinaldata fromPondicherry,India.Parasitology128(05),467–482.

Tekle,A.H.,Zouré,H.G.M.,Noma,M.,Boussinesq,M.,Coffeng,L.E.,Stolk,W.A., Remme,J.H.F.,2016.Progresstowardsonchocerciasiseliminationinthe participatingcountriesoftheAfricanProgrammeforOnchocerciasisControl: epidemiologicalevaluationresults.Infect.Dis.Poverty5(1),66.

Truscott,J.E.,Turner,H.C.,Anderson,R.M.,2015.Whatimpactwillthe

achievementofthecurrentWorldHealthOrganisationtargetsforanthelmintic treatmentcoverageinchildrenhaveontheintensityofsoiltransmitted helminthinfections?Parasit.Vectors8(1),551.

Turner,H.C.,Churcher,T.S.,Walker,M.,Osei-atweneboana,M.Y.,Prichard,R.K., 2013.Uncertaintysurroundingprojectionsofthelong-termimpactof ivermectintreatmentonhumanonchocerciasis.PLoSNeglect.Trop.Dis.7(4). Turner,H.C.,Walker,M.,Attah,S.K.,Opoku,N.O.,Awadzi,K.,Kuesel,A.C.,Basá ˜nez, M.G.,2015.Thepotentialimpactofmoxidectinononchocerciasiselimination inAfrica:aneconomicevaluationbasedonthePhaseIIclinicaltrialdata. Parasit.Vectors8(1),167.

Turner,H.C.,Walker,M.,Churcher,T.S.,Basánez,M.G.,2014a.Modellingthe impactofivermectinonRiverBlindnessanditsburdenofmorbidityand mortalityinAfricanSavannah:EpiOnchoprojections.Parasit.Vectors7,241. Turner,H.C.,Walker,M.,Churcher,T.S.,Osei-Atweneboana,M.Y.,Biritwum,N.K.,

Hopkins,A.D.,Prichard,R.K.,Basánez,M.G.,2014b.ReachingtheLondon declarationonneglectedtropicaldiseasesgoalsforonchocerciasis:an economicevaluationofincreasingthefrequencyofivermectintreatmentin Africa.Clin.Infect.Dis.59(7),923–932.

Winnen,M.,Plaisier,A.P.,Alley,E.S.,Nagelkerke,N.J.D.,vanOortmarssen,G., Boatin,B.A.,Habbema,J.D.F.,2002.Canivermectinmasstreatmentseliminate onchocerciasisinAfrica?Bull.WorldHealthOrgan.80(5).

WorldHealthOrganization,2013.SustainingtheDrivetoOvercometheGlobal ImpactofNeglectedTropicalDiseases.SecondWHOReportonNeglected TropicalDiseases.WorldHealthOrganization,Geneva2013.

References

Related documents

In contrast to other seawater bodies with 3.5% salinity, the recreational waters in the southern coast of the Caspian Sea possess its own salinity (about 1% w/v) and thus

The single variable beam theories taking into account effect of transverse shear deformation for the buckling, bending and free vibration analysis of the thick beam

The objective of this study was to develop Fourier transform infrared (FTIR) spectroscopy in combination with multivariate calibration of partial least square (PLS) and

Based on these considerations, in Oct 2013 we adopted a biweekly low dose docetaxel regimen (40 mg/m 2 every 2 weeks) as an institutional standard chemotherapy regi- men for

Twenty-five percent of our respondents listed unilateral hearing loss as an indication for BAHA im- plantation, and only 17% routinely offered this treatment to children with

The most important contributions of this paper are (i) the proposal of a concern mining approach for KDM, what may encourage other groups to start researching on

Transaction activity Value Add Yields Core Yields Income Hotel Residential Office Retail Logistics Transaction activity Value Add Yields Core Yields Income Hotel Residential

The research followed several major pathways: a literature review, a document analysis, a job task analysis, focus groups to validate the job tasks and competency model,