(Equation 1) to determine the cord s characteristics. Hooke s Law represents the

Full text


Using  Hooke’s  Law  to  Solve  for  Length  of  Bungee  Cord  Needed  for  Egg  Drop   Introduction  

  This  experiment  is  the  second  part  of  a  three-­‐part  experiment.  The  first  two   lead  up  to  the  final  in  which  we  aim  to  successfully  drop  an  egg  attached  to  the  cord   without  the  egg  breaking.  The  first  experiment  we  did  involved  using  Hooke’s  Law   (Equation  1)  to  determine  the  cord’s  characteristics.  Hooke’s  Law  represents  the  

  F  =  -­‐kX                   (1)  

relationship  of  an  ideal  spring  where  F  is  the  restoring  force,  k  is  the  spring   constant,  and  X  is  the  displacement  from  equilibrium.  The  restoring  force,  weight,   was  found  by  multiplying  the  attached  mass  by  the  gravitational  constant.  We  found   the  spring  constant,  k,  of  our  bungee  cord  by  measuring  the  displacement  of  cords   varying  in  length  after  hanging  different  masses  on  it.    

The  goal  of  the  current  experiment  was  to  develop  an  equation  that  can  be   used  to  determine  the  length  of  cord  necessary  to  drop  our  egg  with.  Similar  to  our   first  experiment,  we  sought  to  determine  the  spring  constant,  k.  However,  we  did  so   dynamically  in  order  to  have  a  more  accurate  idea  of  what  the  displacement  will  be.  

This  experimental  design  also  assumes  that  the  bungee  cord  acts  as  an  ideal  spring.  

This  is  a  conservative  system;  thus,  no  energy  is  gained  or  loss  according  to  the   Classical  Work  Energy  (CWE)  Theorem.  Equation  2  is  a  derivation  relating  the  CWE   theorem  and  Hooke’s  Law  where  m  is  the  mass,  h  is  the  total  length  of  the  drop,  

  Mgh  =  ½kx2          (2)  

k  is  the  spring  constant,  and  x  is  the  displacement  of  the  bungee  cord  from   equilibrium.  



  Overall,  we  measured  the  displacement  of  a  doubled-­‐up  bungee  cord  by   dropping  a  hanger  with  mass  attached  to  it  and  measuring  how  far  the  bungee   stretched  from  equilibrium.    


Figure  1  displays  the  order  of  the  procedure.  First,  we  doubled  the  bungee   cord  by  folding  it  in  half  and  knotting  it,  leaving  a  hoop  to  hang  it  from.  We  did  this   in  order  to  find  a  more  direct  relationship  between  the  spring  constant  and  the   length  of  the  cord  used  per  trial.  Then,  we  attached  the  knotted  cord  to  a  metal  bar   and  hung  a  measuring  tape  parallel.  Each  measurement  off  the  measuring  tape  was   taken  from  the  center  of  the  knot  on  the  cord.  Another  knot  was  made  at  the  bottom   of  each  chosen  length  of  cord,  0.10-­‐0.275  m.  This  length  is  the  cord’s  equilibrium   point  (Figure  1:  Step  1).  A  hanger  was  attached  to  the  loop  from  the  bottom  knot.  

Four  different  masses,  0.10-­‐0.16  kg,  were  chosen  to  make  four  trials  per  length.  The    

Step  1 Step  2



Step  3  


Displacement  x   (m) Mass  m  

(kg) Length  L  (m)

Figure  1:  Setup  and  procedure  of  the  bungee  cord   system


masses  were  fastened  with  painter’s  tape  to  ensure  their  stability.  The  hanger  was   dropped  straight  down  from  where  the  bungee  cord  was  connected  to  the  metal  bar   (Figure  1:  Step  2).  We  used  an  application  on  an  iPad  called  “Coach  My  Video”  to   measure  the  displacement.  The  application  allowed  us  to  video  the  drop,  zoom  in   afterwards,  and  play  the  video  in  small  steps  to  see  where  on  the  measuring  tape  the   knot  hit  full  extension.  This  measurement  is  also  known  as  the  height,  or  h.  

Displacement,  x,  was  calculated  by  subtracting  l  from  h  (Figure  1:  Step  3).    

  By  deriving  Equation  1,  we  found  that  the  restoring  force,  F,  was  equal  to  the   weight,  or  mass  multiplied  by  gravity,  of  the  hanger  (Equation  3).  Using  algebra,  we   are  able  to  find  k  (Equation  2).  Graphically,  a  weight  vs.  displacement  graph  shows       K  =  (mg)/x                                                                                                                                                                                                                                    (3)   that  the  spring  constant  was  the  slope  of  each  linearized  graph.  Each  k  was  then   graphed  vs.  length  of  cord.  The  result  of  the  linearized  version  of  this  graph  gave  us   an  equation  of  the  relationship  between  length  of  cord  and  spring  constant.  This   equation  will  be  used  to  determine  was  length  of  cord  to  use  when  dropping  our   egg.    


  The  results  indicate  that  as  a  double  stranded  bungee  cord  gets  longer,  the   spring  constant  weakens  (Table  1).  Equation  3  provides  support  the  results  as  k  is   inversely  related  to  x.  In  Figure  2,  the  relationship  is  apparent  based  off  the  slope  of   each  weight  vs.  displacement  line.    




  Table  1:  Spring  constant  per  bungee  resting  length.  


Figure  2:  Weight  versus  displacement  for  each  length  of  bungee  cord.  The  slope  of   each  line  represents  the  spring  constant,  k.    


Bungee  Resting  Length  

L  (m,  ±  0.01)   Spring  Constant  k  (uncertainty)  

0.10   8.37  (±0.71)  

0.16   5.45  (±0.36)  

0.21   3.52  (±0.16)  

0.28   2.91  (±0.03)  

y  =  8.3721x  +  0.1179  

y  =  5.4494x  -­‐  0.023   y  =  3.5211x  +  0.1301  

y  =  2.9104x  -­‐  0.0257  

0.9   1   1.1   1.2   1.3   1.4   1.5   1.6   1.7  

0   0.1   0.2   0.3   0.4   0.5   0.6  

Weight  (N)  

Displacement  (X)  

Weight  Vs.  Displacement  

Length  =  0.10  m   Length  =  0.16  m   Length  =  0.21  m   Length  =  0.275  m  


  The  bungee  cord’s  spring  constants  per  resting  lengths  were  then  graphed  in   order  to  derive  a  formula  that  represents  a  relationship  between  the  two  (Figure  3).  

This  formula  will  be  the  formula  used  in  determining  the  length  of  bungee  needed   for  the  egg  drop.  

Figure  3:  Spring  constant  versus  Length.  The  relationship  between  the  two   variables  is  shown;  as  the  cord  lengthens,  k  drops.    


  The  linearization  of  Figure  3  results  in  the  final  equation  (Equation  4)  needed   to  determine  the  length  of  cord  necessary  to  successfully  drop  an  egg  without  


K  =  0.881L  –  0.3652.                      (4)  


  The  goal  of  this  experiment  was  to  determine  an  equation  that  we  could  use   to  determine  the  length  of  cord  we  need.  On  the  egg  drop  day,  we  will  be  given  the  

y  =  0.6997x-­‐1.084  

0   1   2   3   4   5   6   7   8   9  

0   0.05   0.1   0.15   0.2   0.25   0.3  


Length  of  Bungee    (m)  

K-­‐value  Vs.  Length  of  Bungee  


height  that  the  egg  will  drop  from  and  mass  of  the  egg.  Using  this  information,  we   can  combine  Equations  2  and  4  to  solve  for  the  length  of  cord  necessary  (Equation       Mgh  =  ½  (0.881L  -­‐  0.3652)(h  –  L)  2                                                                     (5)   5).  The  height  of  jump,  length  of  cord,  and  length  of  elongation  all  relate  to  each   other;  the  length  plus  elongation  should  equal  the  height.  So  in  Equation  2,  

elongation,  x,  can  be  substituted  for  length  subtracted  from  height,  or  h-­‐l.  Equation  4   is  solving  for  the  spring  constant,  k,  so  0.881L  –  0.3652  can  be  substituted  in  for  k  in   Equation  4.    

On  egg  drop  day,  Equation  5  should  result  in  the  length  of  bungee  cord  we   need  in  order  to  safely  drop  the  egg  from  a  certain  height  without  it  breaking.  

However,  sources  of  uncertainty  undoubtedly  exist.  First,  we  completed  this   experiment  with  the  assumption  that  the  bungee  cord  acts  as  an  ideal  spring.  

However,  after  reading  the  Bungee  Journal,  some  of  our  peers  concluded  that  their   bungee  cord  did  not  behave  like  an  ideal  spring  (Busch  &  Wilbur,  section  5;  Melkun  

&  Towne,  section  5).  If  their  experiments  generalize  to  our  bungee  cord,  then  we  did   not  take  other  external  forces  acting  on  the  system  into  account.  This  implication   could  result  in  the  wrong  length  of  cord  being  used;  too  long  and  the  egg  will  crash   or  too  short  and  the  rebound  might  crack  the  egg.    

A  further  source  of  uncertainty  is  our  bungee  cord.  During  experimentation,   the  cord  snapped  on  four  different  occasions.  We  were  able  to  continue  the  

experiment  only  by  piecing  together  the  broken  pieces.  We  would  have  liked  to  have   trials  at  longer  lengths,  but  our  cord  did  not  allow  for  that.  There  are  several  

implications  of  the  cord  snapping.  First,  we  will  be  dropping  the  egg  with  a  


completely  different  cord.  Equation  5  was  derived  specifically  from  the  first  cord.  

It’s  a  relationship  based  on  that  cord’s  spring  constant  and  length  of  cord.  A   different  cord  could  have  a  varying  relationship,  and  the  length  of  cord  obtained   might  not  translate  to  the  new  cord.  We  can  try  to  avoid  this  by  prestretching  the   cord  as  much  as  possible.  Second,  the  limit  of  trial  lengths  that  could  be  completed   might  have  affected  the  result  of  Equation  5.  The  egg  is  going  to  be  dropped  from   between  8  –  9m,  and  0.275  m  is  not  the  best  representation  of  the  actual  height.  

Getting  a  longer  length  might  have  resulted  in  an  equation  that  serves  as  a  better   model  than  Equation  5  will.    

A  final  source  of  error  lies  in  how  elongation,  x,  was  measured.  In  theory,  the   application  on  the  iPad  should  have  worked  fine.  However,  the  quality  of  the  video,   after  zooming  in  enough  to  see  where  on  the  measuring  tape  the  cord  stretched  to,   was  very  poor.  We  attempted  to  be  as  accurate  as  possible  by  counting  the  blurry   lines  as  best  as  possible.  Perhaps  using  just  the  iPad  camera  application  and  slow   motion  feature  would  have  worked  better  


  In  conclusion,  this  experiment  sought  to  unveil  an  equation  that  could  be   used  to  find  the  length  of  bungee  cord  necessary  to  safely  drop  an  egg  from  a  great   height.  Equation  5  takes  the  height  of  the  drop,  length  of  the  cord,  spring  constant  of   bungee,  mass  of  egg,  elongation  of  bungee,  and  gravity  into  account.  On  drop  day,  we   will  enter  in  the  mass  of  the  egg  and  height  of  the  drop  to  obtain  the  necessary   length.    





Related subjects :