Bis(μ cantharidinato)bis­­[(1,10 phenanthroline)manganese(II)] hexa­hydrate

13 

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online. Bis(l-cantharidinato)bis[(1,10-phenanthroline)manganese(II)] hexahydrate. ISSN 1600-5368. Guo-Ding Sheng, Liang Shen,* Yin-Zhi Jin and Juan Mei Department of Chemistry, Hangzhou Teachers College, Hangzhou, People’s Republic of China Correspondence e-mail: shenchem@hotmail.com. Key indicators Single-crystal X-ray study T = 298 K ˚ Mean (C–C) = 0.002 A R factor = 0.030 wR factor = 0.074 Data-to-parameter ratio = 16.6. The title compound {systematic name: bis(-2,3-dimethyl-7oxobicyclo[2.2.1]heptane-2,3-dicarboxylato)bis[(1,10-phenanthroline)manganese(II)] hexahydrate}, [Mn2(C10H12O5)2(C12H8N2)2]6H2O, comprises centrosymmetric dinuclear neutral molecules in which two MnII centers are bridged by a single carboxylate group of each of two cantharidinate ligands, together with water molecules. In the complex, each MnII atom is in a distorted octahedral geometry, being coordinated by two N atoms of one 1,10-phenanthroline ligand, three O atoms from one cantharidinate dianion and one carboxylate O atom from another cantharidinate dianion. Adjacent molecules link to each other through hydrogen bonds involving solvent water molecules and carboxylate groups, forming a three-dimensional network.. Received 3 December 2006 Accepted 11 December 2006. Comment For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2007 International Union of Crystallography All rights reserved. Acta Cryst. (2007). E63, m241–m243. Cantharidine has long been used as a Chinese medicine (Li, 1957). In the past few decades, several studies showed that cantharidine and its derivatives presented potential antitumor capability against lung, colon and breast cancer (Cui et al., 1984; Li et al., 1984; Shimi et al., 1982). A few metal cantharidinate complexes have been synthesized. Some platinum cantharidine complexes have shown effective antitumor activity. To our knowledge, one platinum and one copper complex with cantharidinate have been structurally characterized (Wang et al., 1997; Yin et al., 2003). We report here the preparation and structure of a manganese(II) complex with cantharidinate and 1,10-phenanthroline.. The molecular structure of the title complex, (I), is shown in Fig. 1. This complex exists as discrete centrosymmetric doi:10.1107/S1600536806053566. Sheng et al.. . [Mn2(C10H12O5)2(C12H8N2)2]6H2O. m241.

(2) metal-organic papers Crystal data [Mn2(C10H12O5)2(C12H8N2)2]6H2O Mr = 1002.79 Monoclinic, C2=c ˚ a = 17.806 (5) A ˚ b = 20.600 (5) A ˚ c = 11.982 (3) A  = 90.812 (11) ˚3 V = 4395 (2) A. Z=4 Dx = 1.515 Mg m3 Mo K radiation  = 0.65 mm1 T = 298 (1) K Needle, yellow 0.30  0.15  0.10 mm. Data collection 21189 measured reflections 5033 independent reflections 3904 reflections with F 2 > 2(F 2) Rint = 0.029 max = 27.5. Rigaku R-AXIS RAPID diffractometer ! scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.830, Tmax = 0.937. Refinement Figure 1 Molecular structure of (I), showing 50% probability displacement ellipsoids. Water molecules have been omitted. [Symmetry code: (i) 1  x, 1  y, 1  z.]. dinuclear molecules. A cantharidinate dianion chelates an MnII atom by two O atoms from one carboxylate group and one bridging oxo O atom. The MnII atom is also coordinated by two N atoms of one 1,10-phenanthroline ligand and one carboxylate O atom from another cantharidinate dianion. Each Mn site exhibits a distorted octahedral coordination, with trans bond angles ranging from 153.59 (4) to 168.22 (4) and cis angles from 73.51 (4) to 105.02 (4) (Table 1). The Mn—O(carboxylate) bond distances are comparable with those in [Mn(phen)(cyclohexane-1,1-diacetato)(H2O)2] trihydrate (Shen et al., 2005). The Mn—O(bridging oxo) bond ˚ is much longer than those of Mn— distance of 2.4032 (11) A O(carboxylate). The Mn—N bond lengths are comparable to the corresponding ones found in [Mn2(mal)(phen)3(H2O)2Cl]Cl (Sain et al., 2003). Cantharidinate adopts a chair conformation in this complex. One of the carboxylate groups behaves as a monodentate ligand, and the other carboxylate acts in a common syn–anti bridging coordination mode (Policar et al., 1999). The manganese–manganese separation is ˚. 4.441 (5) A The hydrogen-bonding interactions (Table 2) play an important role in the solid-state structure of the title complex, (I). Adjacent molecules are linked to form a three-dimensional chain by hydrogen bonds between a coordinated O atom and water, and between water molecules.. Experimental. Sheng et al.. H-atom parameters constrained w = 1/[0.0003Fo2 + (Fo2)]/(4Fo2) (/)max < 0.001 ˚ 3 max = 0.35 e A ˚ 3 min = 0.34 e A. Table 1 ˚ ,  ). Selected geometric parameters (A Mn1—O1 Mn1—O3 Mn1—O4i Mn1—O5 Mn1—N1. 2.1206 2.1276 2.1222 2.4032 2.3042. O1—Mn1—O3 O1—Mn1—O4i O1—Mn1—N1 O1—Mn1—N2 O3—Mn1—O4i O3—Mn1—N1 O3—Mn1—N2 O4i—Mn1—N1. Mn1—N2 O1—C13 O2—C13 O3—C20 O4—C20. (11) (10) (11) (11) (12). O4i—Mn1—N2 O4i—Mn1—O5 O5—Mn1—O1 O5—Mn1—O3 O5—Mn1—N1 O5—Mn1—N2 N1—Mn1—N2. 95.40 (4) 104.27 (4) 92.69 (4) 153.59 (4) 91.41 (4) 159.30 (4) 91.27 (4) 105.02 (4). 2.2353 1.2824 1.2344 1.2533 1.2597. (11) (18) (18) (16) (16). 101.08 168.22 78.08 76.85 86.27 78.63 73.51. (4) (4) (4) (4) (4) (4) (4). Symmetry code: (i) x þ 12; y þ 12; z þ 1.. Table 2 ˚ ,  ). Hydrogen-bond geometry (A D—H  A i. O6—H601  O9 O7—H701  O9i O8—H801  O2 O8—H802  O7ii O9—H901  O1 O9—H902  O8. D—H. H  A. D  A. D—H  A. 0.91 0.90 0.91 0.92 0.91 0.92. 2.04 1.91 1.84 1.95 1.87 1.95. 2.949 (2) 2.809 (2) 2.7466 (18) 2.836 (2) 2.7710 (17) 2.772 (2). 174 176 176 161 178 147. Symmetry codes: (i) x þ 12; y þ 12; z þ 1; (ii) x þ 12; y  12; z.. An aqueous solution (20 ml) of 2,3-dimethyl-7-oxobicyclo-[2,2,1]heptane-2,3-dicarboxylic acid (0.214 g, 1 mmol) and Mn2(OH)2CO3 (0.102 g, 0.5 mmol) was heated to reflux temperature on a water-bath for 8 h and was then filtered. To this hot filtrate, an aqueous solution (10 ml) containing 1,10-phenanthroline (0.180 g, 1 mmol) was added. The reaction mixture was stirred at reflux temperature for 12 h. Yellow crystals were collected after cooling the reaction mixture. Yellow single crystals of (I) were obtained by recrystallizing from water.. m242. Refinement on F 2 R[F 2 > 2(F 2)] = 0.030 wR(F 2) = 0.074 S = 1.00 5033 reflections 303 parameters. . [Mn2(C10H12O5)2(C12H8N2)2]6H2O. All the water H atoms were located in a difference Fourier map and the remaining H atoms were placed in calculated positions, with ˚ and O—H = 0.90–0.92 A ˚ . All H atoms were C—H = 0.93–0.98 A included in the final cycle of refinement in riding mode, with Uiso(H) = 1.2Ueq(C,O). Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et Acta Cryst. (2007). E63, m241–m243.

(3) metal-organic papers al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).. We express our gratitude to the Zhejiang Provincial Natural Science Foundation of China for financial Support through Project No. M203077. We gratefully acknowledge Professor Jian-Ming Gu for the structure analysis and advice.. References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.. Acta Cryst. (2007). E63, m241–m243. Cui, Z. Y., Xu, S. Y., Wang, S. Q., Huang, D. T. & Wang, G. S. (1984). Chin. Pharm. Bull. 19, 567–570. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Li, D. H., Li, H. K., Chang, S. K., Hao, X. G., Ma, K. S. & Wang, Z. L. (1984). Nat. Med. J. China, 18, 785–788. Li, S. Z. (1957). Encyclopedia of Chinese Medical Herbs, 40, 1528–1529. Policar, C., Lambert, F., Cesario, M. & Morgenstern-Badarau, I. (1999). Eur. J. Inorg. Chem. pp. 2201–2207. Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA. Sain, S., Maji, T. K., Mostafa, G., Lu, T. H. & Chaudhuri, N. R. (2003). Inorg. Chim. Acta, 351, 12–20. Shen, L., Yan, L.-C., Jin, Z.-M. & Zhang, Y.-J. (2005). Acta Cryst. E61, m1419– m1421. Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789. Wang, Y. H., Huang, Z. X. & Wu, G. (1997). Polyhedron, 1, 57–59. Yin, F. L., Shen, J. & Li, R. C. (2003). Acta Chem. Sinica, 4, 556–561.. Sheng et al.. . [Mn2(C10H12O5)2(C12H8N2)2]6H2O. m243.

(4) supporting information. supporting information Acta Cryst. (2007). E63, m241–m243. [https://doi.org/10.1107/S1600536806053566]. Bis(µ-cantharidinato)bis[(1,10-phenanthroline)manganese(II)] hexahydrate Guo-Ding Sheng, Liang Shen, Yin-Zhi Jin and Juan Mei bis(µ-2,3-dimethyl-7-oxobicyclo[2.2.1]heptane-2,3- dicarboxylato)bis[(1,10-phenanthroline)manganese(II)] hexahydrate Crystal data F(000) = 2088.00 Dx = 1.515 Mg m−3 Mo Kα radiation, λ = 0.71075 Å Cell parameters from 17413 reflections θ = 3.0–27.5° µ = 0.65 mm−1 T = 298 K Needle, yellow 0.30 × 0.15 × 0.10 mm. [Mn2(C10H12O5)2(C12H8N2)2]·6H2O Mr = 1002.79 Monoclinic, C2/c Hall symbol: -C 2yc a = 17.806 (5) Å b = 20.600 (5) Å c = 11.982 (3) Å β = 90.812 (11)° V = 4395 (2) Å3 Z=4 Data collection Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.00 pixels mm-1 ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.830, Tmax = 0.937 21189 measured reflections. 5033 independent reflections 3904 reflections with F2 > 2σ(F2) Rint = 0.029 θmax = 27.5° h = −23→23 k = −26→26 l = −15→14. Refinement Refinement on F2 R[F2 > 2σ(F2)] = 0.030 wR(F2) = 0.074 S = 1.00 5033 reflections 303 parameters. H-atom parameters constrained w = 1/[0.0003Fo2 + σ(Fo2)]/(4Fo2) (Δ/σ)max < 0.001 Δρmax = 0.35 e Å−3 Δρmin = −0.34 e Å−3. Special details Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. Rfactor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). Mn1 O1. x. y. z. Uiso*/Ueq. 0.241000 (10) 0.27975 (6). 0.199050 (10) 0.12197 (6). 0.66256 (2) 0.56117 (9). 0.02785 (6) 0.0343 (2). Acta Cryst. (2007). E63, m241–m243. sup-1.

(5) supporting information O2 O3 O4 O5 O6 O7 O8 O9 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 H1 H2 H3 H5 H6 H8 H9 H10 H15 H18 H161 H162 H171 H172 H211 H212. 0.28038 (6) 0.17367 (6) 0.17555 (6) 0.13254 (6) 0.000000 (10) 0.000000 (10) 0.43323 (8) 0.43373 (8) 0.27147 (6) 0.16934 (6) 0.32145 (10) 0.33484 (11) 0.29435 (11) 0.24000 (9) 0.19501 (10) 0.14336 (10) 0.13074 (9) 0.07725 (10) 0.07090 (10) 0.11869 (10) 0.17556 (8) 0.23003 (8) 0.24742 (9) 0.16239 (9) 0.14330 (9) 0.06492 (10) 0.01408 (9) 0.07212 (8) 0.11037 (8) 0.15695 (8) 0.05506 (9) 0.14496 (10) 0.3494 0.3708 0.3029 0.2020 0.1150 0.0461 0.0354 0.1147 0.1827 0.0529 0.0555 0.0582 −0.0174 −0.0172 0.0189 0.0819. Acta Cryst. (2007). E63, m241–m243. 0.09050 (6) 0.24311 (5) 0.22806 (6) 0.12974 (5) 0.29861 (12) 0.47324 (10) 0.07894 (6) 0.10863 (9) 0.14483 (6) 0.24152 (6) 0.09838 (9) 0.06794 (9) 0.08682 (8) 0.13520 (8) 0.15837 (9) 0.20472 (9) 0.23361 (8) 0.28202 (9) 0.30905 (9) 0.28751 (8) 0.21388 (6) 0.16342 (6) 0.10079 (6) 0.08531 (6) 0.06695 (6) 0.03735 (8) 0.09706 (8) 0.15092 (8) 0.14838 (6) 0.21127 (6) 0.14505 (8) 0.03072 (8) 0.0852 0.0353 0.0674 0.1407 0.2185 0.2959 0.3411 0.3065 0.0411 0.1941 0.0041 0.0191 0.0919 0.1053 0.1114 0.1356. 0.38385 (9) 0.53552 (8) 0.35272 (8) 0.65226 (6) 0.250000 (10) 0.250000 (10) 0.36334 (12) 0.58903 (12) 0.82519 (10) 0.79571 (9) 0.84055 (13) 0.94276 (14) 1.03268 (13) 1.02118 (12) 1.11146 (12) 1.09595 (12) 0.98846 (12) 0.96785 (12) 0.86346 (13) 0.77998 (12) 0.89842 (11) 0.91417 (11) 0.47205 (12) 0.47822 (11) 0.60028 (11) 0.61249 (12) 0.59338 (12) 0.57799 (11) 0.46227 (10) 0.44957 (11) 0.36363 (12) 0.39478 (12) 0.7796 0.9494 1.1018 1.1823 1.1561 1.0247 0.8487 0.7097 0.6370 0.5965 0.5567 0.6863 0.5273 0.6574 0.3766 0.2966. 0.0455 (3) 0.0299 (2) 0.0338 (2) 0.0281 (2) 0.0930 (9) 0.0642 (6) 0.0589 (4) 0.0714 (5) 0.0309 (3) 0.0282 (3) 0.0414 (4) 0.0473 (5) 0.0426 (4) 0.0329 (4) 0.0378 (4) 0.0375 (4) 0.0309 (3) 0.0389 (4) 0.0422 (4) 0.0359 (4) 0.0263 (3) 0.0272 (3) 0.0289 (3) 0.0267 (3) 0.0296 (3) 0.0372 (4) 0.0350 (4) 0.0269 (3) 0.0247 (3) 0.0251 (3) 0.0328 (4) 0.0387 (4) 0.050* 0.057* 0.051* 0.045* 0.045* 0.047* 0.051* 0.043* 0.036* 0.032* 0.045* 0.045* 0.042* 0.042* 0.039* 0.039*. sup-2.

(6) supporting information H213 H221 H222 H223 H601 H701 H801 H802 H901 H902. 0.0297 0.1743 0.1572 0.0925 0.0230 0.0200 0.3826 0.4438 0.3835 0.4526. 0.1860 −0.0069 0.0448 0.0201 0.3250 0.4481 0.0823 0.0423 0.1141 0.0941. 0.3557 0.4138 0.3209 0.3975 0.3010 0.3040 0.3665 0.3225 0.5812 0.5222. 0.039* 0.046* 0.046* 0.046* 0.112* 0.078* 0.071* 0.071* 0.086* 0.085*. Atomic displacement parameters (Å2). Mn1 O1 O2 O3 O4 O5 O6 O7 O8 O9 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22. U11. U22. U33. U12. U13. U23. 0.02837 (12) 0.0252 (5) 0.0343 (6) 0.0355 (6) 0.0363 (6) 0.0299 (5) 0.115 (2) 0.0614 (13) 0.0407 (8) 0.0403 (8) 0.0335 (7) 0.0309 (7) 0.0432 (10) 0.0524 (11) 0.0532 (11) 0.0381 (9) 0.0440 (10) 0.0391 (9) 0.0299 (8) 0.0343 (9) 0.0379 (9) 0.0422 (9) 0.0268 (7) 0.0291 (7) 0.0282 (8) 0.0271 (7) 0.0338 (8) 0.0394 (9) 0.0292 (8) 0.0237 (7) 0.0234 (7) 0.0215 (7) 0.0277 (8) 0.0420 (10). 0.03242 (12) 0.0417 (6) 0.0666 (8) 0.0313 (5) 0.0438 (6) 0.0343 (5) 0.0718 (17) 0.0582 (13) 0.0600 (9) 0.1151 (13) 0.0339 (7) 0.0311 (6) 0.0433 (10) 0.0390 (10) 0.0394 (9) 0.0346 (8) 0.0481 (10) 0.0504 (10) 0.0372 (8) 0.0470 (9) 0.0446 (10) 0.0361 (9) 0.0307 (7) 0.0296 (7) 0.0274 (7) 0.0283 (7) 0.0286 (7) 0.0399 (9) 0.0477 (9) 0.0347 (8) 0.0313 (7) 0.0319 (8) 0.0442 (9) 0.0374 (9). 0.02283 (11) 0.0360 (5) 0.0359 (5) 0.0228 (4) 0.0214 (4) 0.0202 (4) 0.0920 (18) 0.0732 (13) 0.0763 (9) 0.0587 (8) 0.0254 (5) 0.0226 (5) 0.0378 (8) 0.0504 (10) 0.0348 (8) 0.0258 (6) 0.0213 (6) 0.0230 (6) 0.0256 (6) 0.0355 (8) 0.0441 (9) 0.0292 (7) 0.0214 (6) 0.0230 (6) 0.0311 (7) 0.0245 (6) 0.0263 (6) 0.0324 (7) 0.0282 (7) 0.0224 (6) 0.0193 (5) 0.0219 (6) 0.0262 (6) 0.0365 (8). −0.00451 (10) −0.0008 (4) −0.0013 (5) −0.0075 (4) −0.0124 (5) −0.0047 (4) 0.0000 0.0000 −0.0020 (6) 0.0111 (8) 0.0007 (5) −0.0024 (5) 0.0083 (8) 0.0123 (8) −0.0029 (8) −0.0086 (7) −0.0107 (8) −0.0096 (8) −0.0070 (6) −0.0006 (7) 0.0095 (7) 0.0037 (7) −0.0073 (6) −0.0071 (6) 0.0025 (6) −0.0037 (5) −0.0043 (6) −0.0135 (7) −0.0101 (7) −0.0023 (6) −0.0041 (5) 0.0013 (5) −0.0076 (7) −0.0041 (7). 0.00119 (8) −0.0013 (4) 0.0099 (5) −0.0021 (4) 0.0009 (4) −0.0013 (4) −0.0127 (16) 0.0089 (11) 0.0130 (6) −0.0062 (6) 0.0013 (5) −0.0002 (4) 0.0025 (7) −0.0070 (8) −0.0084 (7) −0.0029 (6) 0.0009 (6) 0.0069 (6) 0.0035 (5) 0.0081 (6) −0.0027 (7) −0.0034 (6) 0.0003 (5) −0.0002 (5) 0.0007 (6) −0.0007 (5) −0.0034 (6) 0.0004 (6) 0.0032 (6) 0.0010 (5) −0.0004 (5) −0.0014 (5) −0.0046 (5) −0.0010 (7). −0.00046 (9) −0.0090 (4) −0.0121 (5) −0.0006 (4) 0.0044 (4) 0.0005 (4) 0.0000 0.0000 −0.0050 (7) −0.0096 (8) −0.0022 (5) 0.0007 (5) −0.0031 (7) 0.0027 (8) 0.0088 (7) 0.0038 (6) 0.0056 (6) −0.0027 (6) −0.0050 (6) −0.0105 (7) −0.0061 (7) 0.0001 (6) −0.0028 (5) −0.0009 (5) −0.0013 (6) −0.0020 (5) 0.0039 (6) 0.0061 (6) 0.0039 (7) 0.0004 (6) 0.0016 (5) 0.0039 (5) 0.0031 (6) −0.0089 (7). Acta Cryst. (2007). E63, m241–m243. sup-3.

(7) supporting information Geometric parameters (Å, º) Mn1—O1 Mn1—O3 Mn1—O4i Mn1—O5 Mn1—N1 Mn1—N2 O1—C13 O2—C13 O3—C20 O4—C20 O5—C15 O5—C18 N1—C1 N1—C12 N2—C10 N2—C11 C1—C2 C2—C3 C3—C4 C4—C5 C4—C12 C5—C6 C6—C7 C7—C8 C7—C11 C8—C9 C9—C10 C11—C12 C13—C14 C14—C15 C14—C19 C14—C22 C15—C16. 2.1206 (11) 2.1276 (10) 2.1222 (11) 2.4032 (11) 2.3042 (12) 2.2353 (11) 1.2824 (18) 1.2344 (18) 1.2533 (16) 1.2597 (16) 1.4495 (17) 1.4535 (17) 1.318 (2) 1.3602 (18) 1.320 (2) 1.3591 (17) 1.393 (2) 1.362 (2) 1.395 (2) 1.437 (2) 1.4167 (19) 1.337 (2) 1.434 (2) 1.399 (2) 1.411 (2) 1.372 (2) 1.395 (2) 1.432 (2) 1.550 (2) 1.5530 (19) 1.605 (2) 1.534 (2) 1.532 (2). C16—C17 C17—C18 C18—C19 C19—C20 C19—C21 O6—H601 O6—H601ii O7—H701 O7—H701ii O8—H801 O8—H802 O9—H901 O9—H902 C1—H1 C2—H2 C3—H3 C5—H5 C6—H6 C8—H8 C9—H9 C10—H10 C15—H15 C16—H161 C16—H162 C17—H171 C17—H172 C18—H18 C21—H211 C21—H212 C21—H213 C22—H221 C22—H222 C22—H223. 1.542 (2) 1.529 (2) 1.5543 (18) 1.547 (2) 1.5292 (19) 0.911 0.911 0.899 0.899 0.906 0.920 0.905 0.923 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.980 0.970 0.970 0.970 0.970 0.980 0.960 0.960 0.960 0.960 0.960 0.960. O1···O9 O2···O8 O2···C2iii O4···C5iv O4···C6iv O6···O7 O6···O9i O6···O9v O6···C21 O6···C21ii O7···O6 O7···O8vi. 2.7710 (17) 2.7466 (18) 3.475 (2) 3.2506 (18) 3.1584 (17) 3.597 (3) 2.949 (2) 2.949 (2) 3.575 (2) 3.575 (2) 3.597 (3) 2.836 (2). C10···H9xiv C10···H801i C12···H221xi C13···H2iii C13···H801 C13···H901 C15···H222xi C16···H161xviii C16···H162xiv C16···H171xviii C16···H172xiv C16···H211xviii. 3.317 3.206 3.374 3.575 2.761 2.751 3.511 3.051 3.303 3.251 3.217 3.412. Acta Cryst. (2007). E63, m241–m243. sup-4.

(8) supporting information O7···O8vii O7···O9i O7···O9v O8···O2 O8···O7viii O8···O9 O8···C9i O8···C9ix O8···C10i O9···O1 O9···O6i O9···O7i O9···O8 O9···C13 N1···C6x N2···C5x C2···O2xi C3···C8x C3···C9x C4···C7x C4···C11x C5···O4xii C5···N2x C5···C11x C6···O4xii C6···N1x C6···C12x C7···C4x C7···C12x C8···C3x C9···O8i C9···O8xiii C9···C3x C10···O8i C11···C4x C11···C5x C12···C6x C12···C7x C13···O9 C21···O6 C21···C21ii Mn1···H901 O1···H801 O1···H901 O1···H902 O2···H2iii O2···H3iv O2···H5iv. Acta Cryst. (2007). E63, m241–m243. 2.836 (2) 2.809 (2) 2.809 (2) 2.7466 (18) 2.836 (2) 2.772 (2) 3.565 (2) 3.367 (2) 3.366 (2) 2.7710 (17) 2.949 (2) 2.809 (2) 2.772 (2) 3.587 (2) 3.572 (2) 3.354 (2) 3.475 (2) 3.540 (2) 3.438 (2) 3.553 (2) 3.580 (2) 3.2506 (18) 3.354 (2) 3.501 (2) 3.1584 (17) 3.572 (2) 3.533 (2) 3.553 (2) 3.453 (2) 3.540 (2) 3.565 (2) 3.367 (2) 3.438 (2) 3.366 (2) 3.580 (2) 3.501 (2) 3.533 (2) 3.453 (2) 3.587 (2) 3.575 (2) 3.333 (2) 3.244 3.095 1.867 3.173 3.145 3.442 2.959. C16···H222xi C16···H223xviii C17···H161xviii C17···H162xiv C17···H172xiv C17···H223xviii C18···H172xiv C20···H6iv C21···H5iv C21···H6iv C21···H6xiv C21···H211ii C21···H212ii C21···H213ii C22···H5iv C22···H15iii C22···H162iii C22···H171xviii H1···O7i H1···O9 H221···N1iii H221···C1iii H221···C2iii H221···C3iii H221···C4iii H221···C12iii H221···H2iii H221···H3iii H221···H15iii H221···H162iii H221···H171xviii H221···H172xviii H222···C5iv H222···C15iii H222···C16iii H222···H5iv H222···H15iii H222···H162iii H223···C16xviii H223···C17xviii H223···H161xviii H223···H162xviii H223···H162iii H223···H171xviii H223···H172xviii H601···O4 H601···O7 H601···O9i. 3.418 3.044 3.008 3.361 2.990 3.073 3.461 3.587 3.425 3.113 3.391 3.224 3.088 3.128 3.567 3.499 3.093 3.531 2.965 2.793 3.499 3.355 3.138 3.037 3.157 3.374 3.567 3.426 3.396 3.406 3.380 3.548 3.503 3.511 3.418 2.708 2.868 2.712 3.044 3.073 2.745 2.965 2.717 2.820 2.980 3.421 3.139 2.042. sup-5.

(9) supporting information O2···H801 O2···H802 O2···H901 O2···H902 O3···H901i O4···H5iv O4···H6iv O4···H601 O4···H901i O5···H172xiv O6···H6iv O6···H6xiv O6···H8iv O6···H8xiv O6···H213 O6···H213ii O6···H701 O6···H701ii O6···H901i O6···H901v O7···H1i O7···H1v O7···H2i O7···H2v O7···H601 O7···H601ii O7···H801vi O7···H801vii O7···H802vi O7···H802vii O7···H901i O7···H901v O7···H902i O7···H902v O8···H2iii O8···H9i O8···H9ix O8···H10i O8···H701viii O8···H701xv O8···H802xvi O8···H901 O8···H902 O9···H1 O9···H2iii O9···H8ix O9···H9ix O9···H601i. Acta Cryst. (2007). E63, m241–m243. 1.842 3.170 3.013 3.466 3.407 2.767 2.584 3.421 3.512 3.131 2.872 2.872 2.833 2.833 2.693 2.693 3.165 3.165 3.393 3.393 2.965 2.965 3.346 3.346 3.139 3.139 3.384 3.384 1.951 1.951 3.392 3.392 3.166 3.166 2.807 3.085 2.462 2.654 3.193 3.469 3.235 2.861 1.954 2.793 3.577 2.917 3.577 2.042. H601···O9v H601···C8xiv H601···H1i H601···H6iv H601···H6xiv H601···H8iv H601···H8xiv H601···H213 H601···H213ii H601···H701 H601···H701ii H601···H901i H601···H902i H701···O6 H701···O8vi H701···O8vii H701···O9i H701···O9v H701···C1i H701···H1i H701···H1v H701···H2v H701···H601 H701···H601ii H701···H802vi H701···H802vii H701···H901i H701···H902i H801···O1 H801···O2 H801···O7viii H801···O9 H801···C2iii H801···C10i H801···C13 H801···H2iii H801···H3iv H801···H9i H801···H9ix H801···H10i H801···H901 H801···H902 H802···O2 H802···O7viii H802···O8xvi H802···O9 H802···C2iii H802···H1iii. 3.276 3.433 3.095 3.255 3.340 3.395 2.511 2.941 3.545 2.535 2.926 2.504 2.725 3.165 3.193 3.469 1.912 3.201 3.468 2.636 3.123 3.217 2.535 2.926 2.381 2.552 2.533 2.303 3.095 1.842 3.384 2.857 3.340 3.206 2.761 2.628 3.470 3.373 3.155 2.467 2.654 2.242 3.170 1.951 3.235 3.480 3.328 3.156. sup-6.

(10) supporting information O9···H601xvii O9···H701i O9···H701xvii O9···H801 O9···H802 N1···H6x N1···H221xi N2···H5x C1···H8x C1···H221xi C1···H701i C1···H901 C2···H8x C2···H221xi C2···H801xi C2···H802xi C3···H15xi C3···H221xi C4···H221xi C5···H212xii C5···H222xii C6···H171xiv C6···H211xiv C6···H212xii C6···H213xiv C7···H18xiv C7···H171xiv C7···H213xiv C8···H18xiv C8···H213xiv C8···H601xiv C8···H902xiii C9···H3x C9···H9xiv C9···H10xiv C9···H18xiv C9···H902xiii C10···H3x C10···H5x. 3.276 1.912 3.201 2.857 3.480 3.471 3.499 3.345 3.579 3.355 3.468 3.328 3.535 3.138 3.340 3.328 3.540 3.037 3.157 3.054 3.503 3.538 3.489 3.013 3.168 3.506 3.552 3.573 3.032 3.482 3.433 3.449 3.416 3.216 3.407 3.275 3.485 3.581 3.542. H802···H2iii H802···H9i H802···H9ix H802···H10i H802···H701viii H802···H701xv H802···H802xvi H802···H902 H901···Mn1 H901···O1 H901···O2 H901···O3i H901···O4i H901···O6i H901···O7i H901···O8 H901···C1 H901···C13 H901···H1 H901···H2iii H901···H8ix H901···H601i H901···H701i H901···H801 H902···O1 H902···O2 H902···O7i H902···O8 H902···C8ix H902···C9ix H902···H2xix H902···H2iii H902···H8ix H902···H9ix H902···H601i H902···H701i H902···H801 H902···H802. 2.572 3.183 2.917 3.305 2.381 2.552 2.670 2.622 3.244 1.867 3.013 3.407 3.512 3.393 3.392 2.861 3.328 2.751 2.533 3.465 3.512 2.504 2.533 2.654 3.173 3.466 3.166 1.954 3.449 3.485 3.383 3.156 2.812 2.891 2.725 2.303 2.242 2.622. O1—Mn1—O3 O1—Mn1—O4i O1—Mn1—N1 O1—Mn1—N2 O3—Mn1—O4i O3—Mn1—N1 O3—Mn1—N2 O4i—Mn1—N1. 95.40 (4) 104.27 (4) 92.69 (4) 153.59 (4) 91.41 (4) 159.30 (4) 91.27 (4) 105.02 (4). O5—C18—C19 C17—C18—C19 C14—C19—C18 C14—C19—C20 C14—C19—C21 C18—C19—C20 C18—C19—C21 C20—C19—C21. 101.90 (10) 112.87 (12) 100.39 (10) 112.35 (11) 114.83 (11) 107.57 (11) 113.92 (11) 107.57 (11). Acta Cryst. (2007). E63, m241–m243. sup-7.

(11) supporting information O4i—Mn1—N2 O4i—Mn1—O5 O5—Mn1—O1 O5—Mn1—O3 O5—Mn1—N1 O5—Mn1—N2 N1—Mn1—N2 Mn1—O1—C13 Mn1—O3—C20 Mn1i—O4—C20 C15—O5—C18 Mn1—N1—C1 Mn1—N1—C12 C1—N1—C12 Mn1—N2—C10 Mn1—N2—C11 C10—N2—C11 N1—C1—C2 C1—C2—C3 C2—C3—C4 C3—C4—C5 C3—C4—C12 C5—C4—C12 C4—C5—C6 C5—C6—C7 C6—C7—C8 C6—C7—C11 C8—C7—C11 C7—C8—C9 C8—C9—C10 N2—C10—C9 N2—C11—C7 N2—C11—C12 C7—C11—C12 N1—C12—C4 N1—C12—C11 C4—C12—C11 O1—C13—O2 O1—C13—C14 O2—C13—C14 C13—C14—C15 C13—C14—C19 C13—C14—C22 C15—C14—C19 C15—C14—C22 C19—C14—C22 O5—C15—C14 O5—C15—C16. Acta Cryst. (2007). E63, m241–m243. 101.08 (4) 168.22 (4) 78.08 (4) 76.85 (4) 86.27 (4) 78.63 (4) 73.51 (4) 125.87 (9) 119.31 (9) 117.86 (9) 96.08 (10) 128.35 (10) 113.74 (9) 117.89 (12) 125.09 (9) 116.25 (9) 118.48 (12) 123.80 (15) 118.75 (17) 120.03 (15) 123.82 (14) 117.42 (13) 118.75 (14) 121.50 (14) 121.34 (14) 123.53 (14) 118.96 (14) 117.49 (13) 119.83 (15) 118.77 (16) 123.27 (14) 122.14 (13) 118.01 (12) 119.84 (12) 122.10 (13) 118.35 (12) 119.54 (12) 123.92 (14) 117.23 (12) 118.82 (13) 108.78 (11) 112.96 (11) 107.97 (12) 100.11 (10) 112.98 (12) 113.88 (11) 102.67 (10) 100.84 (11). O3—C20—O4 O3—C20—C19 O4—C20—C19 H601—O6—H601ii H701—O7—H701ii H801—O8—H802 H901—O9—H902 N1—C1—H1 C2—C1—H1 C1—C2—H2 C3—C2—H2 C2—C3—H3 C4—C3—H3 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8 C9—C8—H8 C8—C9—H9 C10—C9—H9 N2—C10—H10 C9—C10—H10 O5—C15—H15 C14—C15—H15 C16—C15—H15 C15—C16—H161 C15—C16—H162 C17—C16—H161 C17—C16—H162 H161—C16—H162 C16—C17—H171 C16—C17—H172 C18—C17—H171 C18—C17—H172 H171—C17—H172 O5—C18—H18 C17—C18—H18 C19—C18—H18 C19—C21—H211 C19—C21—H212 C19—C21—H213 H211—C21—H212 H211—C21—H213 H212—C21—H213 C14—C22—H221 C14—C22—H222 C14—C22—H223. 123.42 (13) 118.61 (11) 117.96 (11) 106.6 109.5 107.2 108.8 118.1 118.1 120.6 120.6 120.0 120.0 119.3 119.3 119.3 119.3 120.1 120.1 120.6 120.6 118.4 118.4 112.9 112.9 112.9 111.4 111.4 111.4 111.4 109.5 111.4 111.4 111.4 111.4 109.5 113.1 113.1 113.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5. sup-8.

(12) supporting information C14—C15—C16 C15—C16—C17 C16—C17—C18 O5—C18—C17. 113.50 (12) 101.65 (12) 101.55 (12) 101.77 (11). H221—C22—H222 H221—C22—H223 H222—C22—H223. 109.5 109.5 109.5. O1—Mn1—O3—C20 O3—Mn1—O1—C13 O1—Mn1—O4i—C20i O4i—Mn1—O1—C13 O1—Mn1—N1—C1 O1—Mn1—N1—C12 N1—Mn1—O1—C13 O1—Mn1—N2—C10 O1—Mn1—N2—C11 N2—Mn1—O1—C13 O3—Mn1—O4i—C20i O4i—Mn1—O3—C20 O3—Mn1—N1—C1 O3—Mn1—N1—C12 N1—Mn1—O3—C20 O3—Mn1—N2—C10 O3—Mn1—N2—C11 N2—Mn1—O3—C20 O4i—Mn1—N1—C1 O4i—Mn1—N1—C12 N1—Mn1—O4i—C20i O4i—Mn1—N2—C10 O4i—Mn1—N2—C11 N2—Mn1—O4i—C20i N1—Mn1—N2—C10 N1—Mn1—N2—C11 N2—Mn1—N1—C1 N2—Mn1—N1—C12 Mn1—O1—C13—O2 Mn1—O1—C13—C14 Mn1—O3—C20—O4 Mn1—O3—C20—C19 Mn1i—O4—C20—O3 Mn1i—O4—C20—C19 C15—O5—C18—C17 C15—O5—C18—C19 C18—O5—C15—C14 C18—O5—C15—C16 Mn1—N1—C1—C2 Mn1—N1—C12—C4 Mn1—N1—C12—C11 C1—N1—C12—C4 C1—N1—C12—C11. 16.28 (10) −22.09 (12) 51.85 (11) −114.93 (12) 23.69 (14) −154.53 (9) 138.83 (12) −117.50 (13) 57.55 (15) 81.81 (15) −44.09 (10) 120.76 (10) 136.71 (14) −41.52 (17) −96.27 (15) −12.65 (12) 162.40 (10) −138.13 (10) −81.85 (14) 99.92 (10) 148.65 (10) 79.03 (13) −105.92 (10) −135.65 (10) −178.41 (13) −3.36 (9) −179.21 (14) 2.57 (9) 132.53 (13) −49.57 (17) −119.08 (13) 61.55 (15) 14.25 (19) −166.39 (9) 57.46 (11) −59.25 (12) 58.77 (12) −58.56 (11) −179.01 (13) 179.37 (11) −1.60 (16) 0.9 (2) 179.98 (11). C5—C4—C12—N1 C5—C4—C12—C11 C12—C4—C5—C6 C4—C5—C6—C7 C5—C6—C7—C8 C5—C6—C7—C11 C6—C7—C8—C9 C6—C7—C11—N2 C6—C7—C11—C12 C8—C7—C11—N2 C8—C7—C11—C12 C11—C7—C8—C9 C7—C8—C9—C10 C8—C9—C10—N2 N2—C11—C12—N1 N2—C11—C12—C4 C7—C11—C12—N1 C7—C11—C12—C4 O1—C13—C14—C15 O1—C13—C14—C19 O1—C13—C14—C22 O2—C13—C14—C15 O2—C13—C14—C19 O2—C13—C14—C22 C13—C14—C15—O5 C13—C14—C15—C16 C13—C14—C19—C18 C13—C14—C19—C20 C13—C14—C19—C21 C15—C14—C19—C18 C15—C14—C19—C20 C15—C14—C19—C21 C19—C14—C15—O5 C19—C14—C15—C16 C22—C14—C15—O5 C22—C14—C15—C16 C22—C14—C19—C18 C22—C14—C19—C20 C22—C14—C19—C21 O5—C15—C16—C17 C14—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18—O5. 178.81 (14) −0.2 (2) 1.3 (2) −0.3 (2) 179.74 (17) −2.0 (2) 177.27 (16) −176.56 (14) 3.1 (2) 1.8 (2) −178.55 (14) −1.0 (2) −0.3 (2) 1.0 (2) −1.4 (2) 177.65 (13) 178.95 (13) −2.0 (2) −27.46 (17) 82.75 (15) −150.41 (13) 150.55 (13) −99.24 (15) 27.60 (18) 83.87 (13) −168.19 (12) −116.63 (12) −2.59 (14) 120.76 (13) −1.11 (13) 112.92 (11) −123.72 (12) −34.76 (13) 73.17 (14) −156.24 (12) −48.31 (17) 119.73 (12) −126.24 (12) −2.89 (17) 37.15 (12) −71.92 (14) −2.06 (13) −33.60 (13). Acta Cryst. (2007). E63, m241–m243. sup-9.

(13) supporting information C12—N1—C1—C2 Mn1—N2—C10—C9 Mn1—N2—C11—C7 Mn1—N2—C11—C12 C10—N2—C11—C7 C10—N2—C11—C12 C11—N2—C10—C9 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—C12 C3—C4—C5—C6 C3—C4—C12—N1 C3—C4—C12—C11. −0.9 (2) 174.67 (12) −176.57 (11) 3.80 (16) −1.2 (2) 179.19 (13) −0.3 (2) −0.0 (2) 0.8 (2) −179.65 (17) −0.7 (2) −179.71 (17) −0.2 (2) −179.22 (14). C16—C17—C18—C19 O5—C18—C19—C14 O5—C18—C19—C20 O5—C18—C19—C21 C17—C18—C19—C14 C17—C18—C19—C20 C17—C18—C19—C21 C14—C19—C20—O3 C14—C19—C20—O4 C18—C19—C20—O3 C18—C19—C20—O4 C21—C19—C20—O3 C21—C19—C20—O4. 74.85 (14) 36.49 (13) −81.13 (13) 159.74 (11) −71.88 (13) 170.50 (11) 51.37 (17) −90.97 (14) 89.64 (14) 18.59 (17) −160.80 (12) 141.71 (13) −37.69 (17). Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2; (iii) x, −y, z−1/2; (iv) x, y, z−1; (v) x−1/2, −y+1/2, z−1/2; (vi) x−1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x+1/2, y−1/2, z; (ix) x+1/2, −y+1/2, z−1/2; (x) −x+1/2, −y+1/2, −z+2; (xi) x, −y, z+1/2; (xii) x, y, z+1; (xiii) x−1/2, −y+1/2, z+1/2; (xiv) −x, y, −z+3/2; (xv) −x+1/2, y−1/2, −z+1/2; (xvi) −x+1, y, −z+1/2; (xvii) x+1/2, −y+1/2, z+1/2; (xviii) −x, −y, −z+1; (xix) −x+1, y, −z+3/2.. Hydrogen-bond geometry (Å, º) D—H···A i. O(6)—H(601)···O(9) O(7)—H(701)···O(9)i O(8)—H(801)···O(2) O(8)—H(802)···O(7)viii O(9)—H(901)···O(1) O(9)—H(902)···O(8). D—H. H···A. D···A. D—H···A. 0.91 0.90 0.91 0.92 0.91 0.92. 2.04 1.91 1.84 1.95 1.87 1.95. 2.949 (2) 2.809 (2) 2.7466 (18) 2.836 (2) 2.7710 (17) 2.772 (2). 174 176 176 161 178 147. Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (viii) x+1/2, y−1/2, z.. Acta Cryst. (2007). E63, m241–m243. sup-10.

(14)

New documents

We explore six challenges for neural machine translation: domain mismatch, amount of training data, rare words, long sentences, word alignment, and beam search.. We show both

the subspace of image space in which the images generated by plenoptic function.. for an object have their

Our recommended techniques include: 1 a training approach using Adam with multiple restarts and learning rate annealing, 2 sub-word translation via byte pair encoding, and 3 decoding

This new algorithm called GAWES Genetic Algorithm With Early Stopping reduces the level of overfitting and yields feature subsets that have a better generalization accuracy... The

Model performance As shown in the table, we can improve the translation performance by 0.5 BLEU point by using the Ensemble system to rescore n-best list generated by the same system,

In this evaluation two methods for producing ensemble members are used, one selects feature subsets at random after Ho, 1998, the other uses a search approach.. This evaluation

In this paper, we investigate the adequate vision span of attention mod- els in the context of machine translation, by proposing a novel attention framework that is capable of reducing

Fluorochrome, Rhodamine, was used to label the nano lipid to observe its uptaking ratio and targeting property by confocal microscopy; CCK-8 method was used to detect the effect of

binding of a family of cyclophilins and cyclophilin-like proteins of the human malarial parasite Plasmodium.. This is a PDF file of an unedited manuscript that has been accepted for

Before any analysis of the differences in micropat- tern occurrence between users with mental health conditions and their matched controls, we demon- strate that these micropatterns are