• No results found

Bis(μ cantharidinato)bis­­[(1,10 phenanthroline)manganese(II)] hexa­hydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis(μ cantharidinato)bis­­[(1,10 phenanthroline)manganese(II)] hexa­hydrate"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2007). E63, m241–m243 doi:10.1107/S1600536806053566 Shenget al. [Mn

2(C10H12O5)2(C12H8N2)2]6H2O

m241

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis(

l

-cantharidinato)bis[(1,10-phenanthroline)-manganese(II)] hexahydrate

Guo-Ding Sheng, Liang Shen,* Yin-Zhi Jin and Juan Mei

Department of Chemistry, Hangzhou Teachers College, Hangzhou, People’s Republic of China

Correspondence e-mail: shenchem@hotmail.com

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.030 wRfactor = 0.074

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 3 December 2006 Accepted 11 December 2006

#2007 International Union of Crystallography All rights reserved

The title compound {systematic name: bis( -2,3-dimethyl-7- oxobicyclo[2.2.1]heptane-2,3-dicarboxylato)bis[(1,10-phenan-throline)manganese(II)] hexahydrate}, [Mn2(C10H12O5)2

-(C12H8N2)2]6H2O, comprises centrosymmetric dinuclear

neutral molecules in which two MnIIcenters are bridged by a single carboxylate group of each of two cantharidinate ligands, together with water molecules. In the complex, each MnII atom is in a distorted octahedral geometry, being

coordinated by two N atoms of one 1,10-phenanthroline ligand, three O atoms from one cantharidinate dianion and one carboxylate O atom from another cantharidinate dianion. Adjacent molecules link to each other through hydrogen bonds involving solvent water molecules and carboxylate groups, forming a three-dimensional network.

Comment

Cantharidine has long been used as a Chinese medicine (Li, 1957). In the past few decades, several studies showed that cantharidine and its derivatives presented potential antitumor capability against lung, colon and breast cancer (Cui et al., 1984; Liet al., 1984; Shimiet al., 1982). A few metal canthar-idinate complexes have been synthesized. Some platinum cantharidine complexes have shown effective antitumor activity. To our knowledge, one platinum and one copper complex with cantharidinate have been structurally char-acterized (Wanget al., 1997; Yinet al., 2003). We report here the preparation and structure of a manganese(II) complex with cantharidinate and 1,10-phenanthroline.

[image:1.610.240.423.516.713.2]
(2)

dinuclear molecules. A cantharidinate dianion chelates an MnIIatom by two O atoms from one carboxylate group and one bridging oxo O atom. The MnIIatom is also coordinated by two N atoms of one 1,10-phenanthroline ligand and one carboxylate O atom from another cantharidinate dianion. Each Mn site exhibits a distorted octahedral coordination, withtransbond angles ranging from 153.59 (4) to 168.22 (4) and cis angles from 73.51 (4) to 105.02 (4) (Table 1). The Mn—O(carboxylate) bond distances are comparable with those in [Mn(phen)(cyclohexane-1,1-diacetato)(H2O)2]

trihy-drate (Shen et al., 2005). The Mn—O(bridging oxo) bond distance of 2.4032 (11) A˚ is much longer than those of Mn— O(carboxylate). The Mn—N bond lengths are comparable to the corresponding ones found in [Mn2(mal)(phen)3(H2O)2

Cl]-Cl (Sain et al., 2003). Cantharidinate adopts a chair confor-mation in this complex. One of the carboxylate groups behaves as a monodentate ligand, and the other carboxylate acts in a common syn–anti bridging coordination mode (Policaret al., 1999). The manganese–manganese separation is 4.441 (5) A˚ .

The hydrogen-bonding interactions (Table 2) play an important role in the solid-state structure of the title complex, (I). Adjacent molecules are linked to form a three-dimen-sional chain by hydrogen bonds between a coordinated O atom and water, and between water molecules.

Experimental

An aqueous solution (20 ml) of 2,3-dimethyl-7-oxobicyclo-[2,2,1]-heptane-2,3-dicarboxylic acid (0.214 g, 1 mmol) and Mn2(OH)2CO3 (0.102 g, 0.5 mmol) was heated to reflux temperature on a water-bath for 8 h and was then filtered. To this hot filtrate, an aqueous solution (10 ml) containing 1,10-phenanthroline (0.180 g, 1 mmol) was added. The reaction mixture was stirred at reflux temperature for 12 h. Yellow crystals were collected after cooling the reaction mixture. Yellow single crystals of (I) were obtained by recrystallizing from water.

Crystal data

[Mn2(C10H12O5)2(C12H8N2)2]6H2O

Mr= 1002.79 Monoclinic,C2=c a= 17.806 (5) A˚

b= 20.600 (5) A˚

c= 11.982 (3) A˚

= 90.812 (11)

V= 4395 (2) A˚3

Z= 4

Dx= 1.515 Mg m 3

MoKradiation

= 0.65 mm1

T= 298 (1) K Needle, yellow 0.300.150.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.830,Tmax= 0.937

21189 measured reflections 5033 independent reflections 3904 reflections withF2> 2(F2)

Rint= 0.029 max= 27.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.030

wR(F2) = 0.074

S= 1.00 5033 reflections 303 parameters

H-atom parameters constrained

w= 1/[0.0003Fo 2

+(Fo 2

)]/(4Fo 2

) (/)max< 0.001

max= 0.35 e A˚ 3

min=0.34 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Mn1—O1 2.1206 (11) Mn1—O3 2.1276 (10) Mn1—O4i 2.1222 (11) Mn1—O5 2.4032 (11) Mn1—N1 2.3042 (12)

Mn1—N2 2.2353 (11) O1—C13 1.2824 (18) O2—C13 1.2344 (18) O3—C20 1.2533 (16) O4—C20 1.2597 (16)

O1—Mn1—O3 95.40 (4) O1—Mn1—O4i

104.27 (4) O1—Mn1—N1 92.69 (4) O1—Mn1—N2 153.59 (4) O3—Mn1—O4i

91.41 (4) O3—Mn1—N1 159.30 (4) O3—Mn1—N2 91.27 (4) O4i

—Mn1—N1 105.02 (4) O4i

—Mn1—N2 101.08 (4) O4i

—Mn1—O5 168.22 (4) O5—Mn1—O1 78.08 (4) O5—Mn1—O3 76.85 (4) O5—Mn1—N1 86.27 (4) O5—Mn1—N2 78.63 (4) N1—Mn1—N2 73.51 (4)

Symmetry code: (i)xþ1 2;yþ

[image:2.610.48.292.69.249.2]

1 2;zþ1.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O6—H601 O9i

0.91 2.04 2.949 (2) 174 O7—H701 O9i

0.90 1.91 2.809 (2) 176 O8—H801 O2 0.91 1.84 2.7466 (18) 176 O8—H802 O7ii

0.92 1.95 2.836 (2) 161 O9—H901 O1 0.91 1.87 2.7710 (17) 178 O9—H902 O8 0.92 1.95 2.772 (2) 147

Symmetry codes: (i)xþ1 2;yþ

1

2;zþ1; (ii)xþ 1 2;y

1 2;z.

All the water H atoms were located in a difference Fourier map and the remaining H atoms were placed in calculated positions, with C—H = 0.93–0.98 A˚ and O—H = 0.90–0.92 A˚. All H atoms were included in the final cycle of refinement in riding mode, withUiso(H) = 1.2Ueq(C,O).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure(Rigaku/ Figure 1

[image:2.610.314.562.565.639.2]
(3)

al., 1999); program(s) used to refine structure:CRYSTALS (Better-idge et al., 2003); molecular graphics: ORTEP-3 for Windows

(Farrugia, 1997); software used to prepare material for publication:

CrystalStructure(Rigaku/MSC, 2004).

We express our gratitude to the Zhejiang Provincial Natural Science Foundation of China for financial Support through Project No. M203077. We gratefully acknowledge Professor Jian-Ming Gu for the structure analysis and advice.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115–119.

Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Cui, Z. Y., Xu, S. Y., Wang, S. Q., Huang, D. T. & Wang, G. S. (1984).Chin. Pharm. Bull.19, 567–570.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, D. H., Li, H. K., Chang, S. K., Hao, X. G., Ma, K. S. & Wang, Z. L. (1984).

Nat. Med. J. China,18, 785–788.

Li, S. Z. (1957).Encyclopedia of Chinese Medical Herbs,40, 1528–1529. Policar, C., Lambert, F., Cesario, M. & Morgenstern-Badarau, I. (1999).Eur. J.

Inorg. Chem.pp. 2201–2207.

Rigaku (1998).PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.

Sain, S., Maji, T. K., Mostafa, G., Lu, T. H. & Chaudhuri, N. R. (2003).Inorg. Chim. Acta,351, 12–20.

Shen, L., Yan, L.-C., Jin, Z.-M. & Zhang, Y.-J. (2005).Acta Cryst.E61, m1419– m1421.

Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982).Eur. J. Cancer Clin. Oncol.18, 785–789.

Wang, Y. H., Huang, Z. X. & Wu, G. (1997).Polyhedron,1, 57–59. Yin, F. L., Shen, J. & Li, R. C. (2003).Acta Chem. Sinica,4, 556–561.

metal-organic papers

Acta Cryst.(2007). E63, m241–m243 Shenget al. [Mn

(4)

supporting information

Acta Cryst. (2007). E63, m241–m243 [https://doi.org/10.1107/S1600536806053566]

Bis(

µ

-cantharidinato)bis[(1,10-phenanthroline)manganese(II)] hexahydrate

Guo-Ding Sheng, Liang Shen, Yin-Zhi Jin and Juan Mei

bis(µ-2,3-dimethyl-7-oxobicyclo[2.2.1]heptane-2,3- dicarboxylato)bis[(1,10-phenanthroline)manganese(II)]

hexahydrate

Crystal data

[Mn2(C10H12O5)2(C12H8N2)2]·6H2O

Mr = 1002.79

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 17.806 (5) Å

b = 20.600 (5) Å

c = 11.982 (3) Å

β = 90.812 (11)°

V = 4395 (2) Å3

Z = 4

F(000) = 2088.00

Dx = 1.515 Mg m−3

Mo radiation, λ = 0.71075 Å Cell parameters from 17413 reflections

θ = 3.0–27.5°

µ = 0.65 mm−1

T = 298 K Needle, yellow 0.30 × 0.15 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.830, Tmax = 0.937

21189 measured reflections

5033 independent reflections 3904 reflections with F2 > 2σ(F2)

Rint = 0.029

θmax = 27.5°

h = −23→23

k = −26→26

l = −15→14

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.030

wR(F2) = 0.074

S = 1.00 5033 reflections 303 parameters

H-atom parameters constrained

w = 1/[0.0003Fo2 + σ(Fo2)]/(4Fo2)

(Δ/σ)max < 0.001

Δρmax = 0.35 e Å−3

Δρmin = −0.34 e Å−3

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R

-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2007). E63, m241–m243

O2 0.28038 (6) 0.09050 (6) 0.38385 (9) 0.0455 (3) O3 0.17367 (6) 0.24311 (5) 0.53552 (8) 0.0299 (2) O4 0.17555 (6) 0.22806 (6) 0.35272 (8) 0.0338 (2) O5 0.13254 (6) 0.12974 (5) 0.65226 (6) 0.0281 (2) O6 0.000000 (10) 0.29861 (12) 0.250000 (10) 0.0930 (9) O7 0.000000 (10) 0.47324 (10) 0.250000 (10) 0.0642 (6) O8 0.43323 (8) 0.07894 (6) 0.36334 (12) 0.0589 (4) O9 0.43373 (8) 0.10863 (9) 0.58903 (12) 0.0714 (5) N1 0.27147 (6) 0.14483 (6) 0.82519 (10) 0.0309 (3) N2 0.16934 (6) 0.24152 (6) 0.79571 (9) 0.0282 (3) C1 0.32145 (10) 0.09838 (9) 0.84055 (13) 0.0414 (4) C2 0.33484 (11) 0.06794 (9) 0.94276 (14) 0.0473 (5) C3 0.29435 (11) 0.08682 (8) 1.03268 (13) 0.0426 (4) C4 0.24000 (9) 0.13520 (8) 1.02118 (12) 0.0329 (4) C5 0.19501 (10) 0.15837 (9) 1.11146 (12) 0.0378 (4) C6 0.14336 (10) 0.20472 (9) 1.09595 (12) 0.0375 (4) C7 0.13074 (9) 0.23361 (8) 0.98846 (12) 0.0309 (3) C8 0.07725 (10) 0.28202 (9) 0.96785 (12) 0.0389 (4) C9 0.07090 (10) 0.30905 (9) 0.86346 (13) 0.0422 (4) C10 0.11869 (10) 0.28751 (8) 0.77998 (12) 0.0359 (4) C11 0.17556 (8) 0.21388 (6) 0.89842 (11) 0.0263 (3) C12 0.23003 (8) 0.16342 (6) 0.91417 (11) 0.0272 (3) C13 0.24742 (9) 0.10079 (6) 0.47205 (12) 0.0289 (3) C14 0.16239 (9) 0.08531 (6) 0.47822 (11) 0.0267 (3) C15 0.14330 (9) 0.06695 (6) 0.60028 (11) 0.0296 (3) C16 0.06492 (10) 0.03735 (8) 0.61249 (12) 0.0372 (4) C17 0.01408 (9) 0.09706 (8) 0.59338 (12) 0.0350 (4) C18 0.07212 (8) 0.15092 (8) 0.57799 (11) 0.0269 (3) C19 0.11037 (8) 0.14838 (6) 0.46227 (10) 0.0247 (3) C20 0.15695 (8) 0.21127 (6) 0.44957 (11) 0.0251 (3) C21 0.05506 (9) 0.14505 (8) 0.36363 (12) 0.0328 (4) C22 0.14496 (10) 0.03072 (8) 0.39478 (12) 0.0387 (4)

H1 0.3494 0.0852 0.7796 0.050*

H2 0.3708 0.0353 0.9494 0.057*

H3 0.3029 0.0674 1.1018 0.051*

H5 0.2020 0.1407 1.1823 0.045*

H6 0.1150 0.2185 1.1561 0.045*

H8 0.0461 0.2959 1.0247 0.047*

H9 0.0354 0.3411 0.8487 0.051*

H10 0.1147 0.3065 0.7097 0.043*

H15 0.1827 0.0411 0.6370 0.036*

H18 0.0529 0.1941 0.5965 0.032*

H161 0.0555 0.0041 0.5567 0.045*

H162 0.0582 0.0191 0.6863 0.045*

H171 −0.0174 0.0919 0.5273 0.042*

H172 −0.0172 0.1053 0.6574 0.042*

H211 0.0189 0.1114 0.3766 0.039*

(6)

H213 0.0297 0.1860 0.3557 0.039*

H221 0.1743 −0.0069 0.4138 0.046*

H222 0.1572 0.0448 0.3209 0.046*

H223 0.0925 0.0201 0.3975 0.046*

H601 0.0230 0.3250 0.3010 0.112*

H701 0.0200 0.4481 0.3040 0.078*

H801 0.3826 0.0823 0.3665 0.071*

H802 0.4438 0.0423 0.3225 0.071*

H901 0.3835 0.1141 0.5812 0.086*

H902 0.4526 0.0941 0.5222 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2007). E63, m241–m243

Geometric parameters (Å, º)

Mn1—O1 2.1206 (11) C16—C17 1.542 (2)

Mn1—O3 2.1276 (10) C17—C18 1.529 (2)

Mn1—O4i 2.1222 (11) C18—C19 1.5543 (18)

Mn1—O5 2.4032 (11) C19—C20 1.547 (2)

Mn1—N1 2.3042 (12) C19—C21 1.5292 (19)

Mn1—N2 2.2353 (11) O6—H601 0.911

O1—C13 1.2824 (18) O6—H601ii 0.911

O2—C13 1.2344 (18) O7—H701 0.899

O3—C20 1.2533 (16) O7—H701ii 0.899

O4—C20 1.2597 (16) O8—H801 0.906

O5—C15 1.4495 (17) O8—H802 0.920

O5—C18 1.4535 (17) O9—H901 0.905

N1—C1 1.318 (2) O9—H902 0.923

N1—C12 1.3602 (18) C1—H1 0.930

N2—C10 1.320 (2) C2—H2 0.930

N2—C11 1.3591 (17) C3—H3 0.930

C1—C2 1.393 (2) C5—H5 0.930

C2—C3 1.362 (2) C6—H6 0.930

C3—C4 1.395 (2) C8—H8 0.930

C4—C5 1.437 (2) C9—H9 0.930

C4—C12 1.4167 (19) C10—H10 0.930

C5—C6 1.337 (2) C15—H15 0.980

C6—C7 1.434 (2) C16—H161 0.970

C7—C8 1.399 (2) C16—H162 0.970

C7—C11 1.411 (2) C17—H171 0.970

C8—C9 1.372 (2) C17—H172 0.970

C9—C10 1.395 (2) C18—H18 0.980

C11—C12 1.432 (2) C21—H211 0.960

C13—C14 1.550 (2) C21—H212 0.960

C14—C15 1.5530 (19) C21—H213 0.960

C14—C19 1.605 (2) C22—H221 0.960

C14—C22 1.534 (2) C22—H222 0.960

C15—C16 1.532 (2) C22—H223 0.960

O1···O9 2.7710 (17) C10···H9xiv 3.317

O2···O8 2.7466 (18) C10···H801i 3.206

O2···C2iii 3.475 (2) C12···H221xi 3.374

O4···C5iv 3.2506 (18) C13···H2iii 3.575

O4···C6iv 3.1584 (17) C13···H801 2.761

O6···O7 3.597 (3) C13···H901 2.751

O6···O9i 2.949 (2) C15···H222xi 3.511

O6···O9v 2.949 (2) C16···H161xviii 3.051

O6···C21 3.575 (2) C16···H162xiv 3.303

O6···C21ii 3.575 (2) C16···H171xviii 3.251

O7···O6 3.597 (3) C16···H172xiv 3.217

(8)

O7···O8vii 2.836 (2) C16···H222xi 3.418

O7···O9i 2.809 (2) C16···H223xviii 3.044

O7···O9v 2.809 (2) C17···H161xviii 3.008

O8···O2 2.7466 (18) C17···H162xiv 3.361

O8···O7viii 2.836 (2) C17···H172xiv 2.990

O8···O9 2.772 (2) C17···H223xviii 3.073

O8···C9i 3.565 (2) C18···H172xiv 3.461

O8···C9ix 3.367 (2) C20···H6iv 3.587

O8···C10i 3.366 (2) C21···H5iv 3.425

O9···O1 2.7710 (17) C21···H6iv 3.113

O9···O6i 2.949 (2) C21···H6xiv 3.391

O9···O7i 2.809 (2) C21···H211ii 3.224

O9···O8 2.772 (2) C21···H212ii 3.088

O9···C13 3.587 (2) C21···H213ii 3.128

N1···C6x 3.572 (2) C22···H5iv 3.567

N2···C5x 3.354 (2) C22···H15iii 3.499

C2···O2xi 3.475 (2) C22···H162iii 3.093

C3···C8x 3.540 (2) C22···H171xviii 3.531

C3···C9x 3.438 (2) H1···O7i 2.965

C4···C7x 3.553 (2) H1···O9 2.793

C4···C11x 3.580 (2) H221···N1iii 3.499

C5···O4xii 3.2506 (18) H221···C1iii 3.355

C5···N2x 3.354 (2) H221···C2iii 3.138

C5···C11x 3.501 (2) H221···C3iii 3.037

C6···O4xii 3.1584 (17) H221···C4iii 3.157

C6···N1x 3.572 (2) H221···C12iii 3.374

C6···C12x 3.533 (2) H221···H2iii 3.567

C7···C4x 3.553 (2) H221···H3iii 3.426

C7···C12x 3.453 (2) H221···H15iii 3.396

C8···C3x 3.540 (2) H221···H162iii 3.406

C9···O8i 3.565 (2) H221···H171xviii 3.380

C9···O8xiii 3.367 (2) H221···H172xviii 3.548

C9···C3x 3.438 (2) H222···C5iv 3.503

C10···O8i 3.366 (2) H222···C15iii 3.511

C11···C4x 3.580 (2) H222···C16iii 3.418

C11···C5x 3.501 (2) H222···H5iv 2.708

C12···C6x 3.533 (2) H222···H15iii 2.868

C12···C7x 3.453 (2) H222···H162iii 2.712

C13···O9 3.587 (2) H223···C16xviii 3.044

C21···O6 3.575 (2) H223···C17xviii 3.073

C21···C21ii 3.333 (2) H223···H161xviii 2.745

Mn1···H901 3.244 H223···H162xviii 2.965

O1···H801 3.095 H223···H162iii 2.717

O1···H901 1.867 H223···H171xviii 2.820

O1···H902 3.173 H223···H172xviii 2.980

O2···H2iii 3.145 H601···O4 3.421

O2···H3iv 3.442 H601···O7 3.139

(9)

supporting information

sup-6

Acta Cryst. (2007). E63, m241–m243

O2···H801 1.842 H601···O9v 3.276

O2···H802 3.170 H601···C8xiv 3.433

O2···H901 3.013 H601···H1i 3.095

O2···H902 3.466 H601···H6iv 3.255

O3···H901i 3.407 H601···H6xiv 3.340

O4···H5iv 2.767 H601···H8iv 3.395

O4···H6iv 2.584 H601···H8xiv 2.511

O4···H601 3.421 H601···H213 2.941

O4···H901i 3.512 H601···H213ii 3.545

O5···H172xiv 3.131 H601···H701 2.535

O6···H6iv 2.872 H601···H701ii 2.926

O6···H6xiv 2.872 H601···H901i 2.504

O6···H8iv 2.833 H601···H902i 2.725

O6···H8xiv 2.833 H701···O6 3.165

O6···H213 2.693 H701···O8vi 3.193

O6···H213ii 2.693 H701···O8vii 3.469

O6···H701 3.165 H701···O9i 1.912

O6···H701ii 3.165 H701···O9v 3.201

O6···H901i 3.393 H701···C1i 3.468

O6···H901v 3.393 H701···H1i 2.636

O7···H1i 2.965 H701···H1v 3.123

O7···H1v 2.965 H701···H2v 3.217

O7···H2i 3.346 H701···H601 2.535

O7···H2v 3.346 H701···H601ii 2.926

O7···H601 3.139 H701···H802vi 2.381

O7···H601ii 3.139 H701···H802vii 2.552

O7···H801vi 3.384 H701···H901i 2.533

O7···H801vii 3.384 H701···H902i 2.303

O7···H802vi 1.951 H801···O1 3.095

O7···H802vii 1.951 H801···O2 1.842

O7···H901i 3.392 H801···O7viii 3.384

O7···H901v 3.392 H801···O9 2.857

O7···H902i 3.166 H801···C2iii 3.340

O7···H902v 3.166 H801···C10i 3.206

O8···H2iii 2.807 H801···C13 2.761

O8···H9i 3.085 H801···H2iii 2.628

O8···H9ix 2.462 H801···H3iv 3.470

O8···H10i 2.654 H801···H9i 3.373

O8···H701viii 3.193 H801···H9ix 3.155

O8···H701xv 3.469 H801···H10i 2.467

O8···H802xvi 3.235 H801···H901 2.654

O8···H901 2.861 H801···H902 2.242

O8···H902 1.954 H802···O2 3.170

O9···H1 2.793 H802···O7viii 1.951

O9···H2iii 3.577 H802···O8xvi 3.235

O9···H8ix 2.917 H802···O9 3.480

O9···H9ix 3.577 H802···C2iii 3.328

(10)

O9···H601xvii 3.276 H802···H2iii 2.572

O9···H701i 1.912 H802···H9i 3.183

O9···H701xvii 3.201 H802···H9ix 2.917

O9···H801 2.857 H802···H10i 3.305

O9···H802 3.480 H802···H701viii 2.381

N1···H6x 3.471 H802···H701xv 2.552

N1···H221xi 3.499 H802···H802xvi 2.670

N2···H5x 3.345 H802···H902 2.622

C1···H8x 3.579 H901···Mn1 3.244

C1···H221xi 3.355 H901···O1 1.867

C1···H701i 3.468 H901···O2 3.013

C1···H901 3.328 H901···O3i 3.407

C2···H8x 3.535 H901···O4i 3.512

C2···H221xi 3.138 H901···O6i 3.393

C2···H801xi 3.340 H901···O7i 3.392

C2···H802xi 3.328 H901···O8 2.861

C3···H15xi 3.540 H901···C1 3.328

C3···H221xi 3.037 H901···C13 2.751

C4···H221xi 3.157 H901···H1 2.533

C5···H212xii 3.054 H901···H2iii 3.465

C5···H222xii 3.503 H901···H8ix 3.512

C6···H171xiv 3.538 H901···H601i 2.504

C6···H211xiv 3.489 H901···H701i 2.533

C6···H212xii 3.013 H901···H801 2.654

C6···H213xiv 3.168 H902···O1 3.173

C7···H18xiv 3.506 H902···O2 3.466

C7···H171xiv 3.552 H902···O7i 3.166

C7···H213xiv 3.573 H902···O8 1.954

C8···H18xiv 3.032 H902···C8ix 3.449

C8···H213xiv 3.482 H902···C9ix 3.485

C8···H601xiv 3.433 H902···H2xix 3.383

C8···H902xiii 3.449 H902···H2iii 3.156

C9···H3x 3.416 H902···H8ix 2.812

C9···H9xiv 3.216 H902···H9ix 2.891

C9···H10xiv 3.407 H902···H601i 2.725

C9···H18xiv 3.275 H902···H701i 2.303

C9···H902xiii 3.485 H902···H801 2.242

C10···H3x 3.581 H902···H802 2.622

C10···H5x 3.542

O1—Mn1—O3 95.40 (4) O5—C18—C19 101.90 (10)

O1—Mn1—O4i 104.27 (4) C17—C18—C19 112.87 (12)

O1—Mn1—N1 92.69 (4) C14—C19—C18 100.39 (10) O1—Mn1—N2 153.59 (4) C14—C19—C20 112.35 (11) O3—Mn1—O4i 91.41 (4) C14—C19—C21 114.83 (11)

(11)

supporting information

sup-8

Acta Cryst. (2007). E63, m241–m243

O4i—Mn1—N2 101.08 (4) O3—C20—O4 123.42 (13)

O4i—Mn1—O5 168.22 (4) O3—C20—C19 118.61 (11)

O5—Mn1—O1 78.08 (4) O4—C20—C19 117.96 (11)

O5—Mn1—O3 76.85 (4) H601—O6—H601ii 106.6

O5—Mn1—N1 86.27 (4) H701—O7—H701ii 109.5

O5—Mn1—N2 78.63 (4) H801—O8—H802 107.2

N1—Mn1—N2 73.51 (4) H901—O9—H902 108.8

Mn1—O1—C13 125.87 (9) N1—C1—H1 118.1

Mn1—O3—C20 119.31 (9) C2—C1—H1 118.1

Mn1i—O4—C20 117.86 (9) C1—C2—H2 120.6

C15—O5—C18 96.08 (10) C3—C2—H2 120.6

Mn1—N1—C1 128.35 (10) C2—C3—H3 120.0

Mn1—N1—C12 113.74 (9) C4—C3—H3 120.0

C1—N1—C12 117.89 (12) C4—C5—H5 119.3

Mn1—N2—C10 125.09 (9) C6—C5—H5 119.3

Mn1—N2—C11 116.25 (9) C5—C6—H6 119.3

C10—N2—C11 118.48 (12) C7—C6—H6 119.3

N1—C1—C2 123.80 (15) C7—C8—H8 120.1

C1—C2—C3 118.75 (17) C9—C8—H8 120.1

C2—C3—C4 120.03 (15) C8—C9—H9 120.6

C3—C4—C5 123.82 (14) C10—C9—H9 120.6

C3—C4—C12 117.42 (13) N2—C10—H10 118.4

C5—C4—C12 118.75 (14) C9—C10—H10 118.4

C4—C5—C6 121.50 (14) O5—C15—H15 112.9

C5—C6—C7 121.34 (14) C14—C15—H15 112.9

C6—C7—C8 123.53 (14) C16—C15—H15 112.9

C6—C7—C11 118.96 (14) C15—C16—H161 111.4

C8—C7—C11 117.49 (13) C15—C16—H162 111.4

C7—C8—C9 119.83 (15) C17—C16—H161 111.4

C8—C9—C10 118.77 (16) C17—C16—H162 111.4

N2—C10—C9 123.27 (14) H161—C16—H162 109.5

N2—C11—C7 122.14 (13) C16—C17—H171 111.4

N2—C11—C12 118.01 (12) C16—C17—H172 111.4 C7—C11—C12 119.84 (12) C18—C17—H171 111.4

N1—C12—C4 122.10 (13) C18—C17—H172 111.4

N1—C12—C11 118.35 (12) H171—C17—H172 109.5

C4—C12—C11 119.54 (12) O5—C18—H18 113.1

O1—C13—O2 123.92 (14) C17—C18—H18 113.1

O1—C13—C14 117.23 (12) C19—C18—H18 113.1

(12)

C14—C15—C16 113.50 (12) H221—C22—H222 109.5 C15—C16—C17 101.65 (12) H221—C22—H223 109.5 C16—C17—C18 101.55 (12) H222—C22—H223 109.5 O5—C18—C17 101.77 (11)

O1—Mn1—O3—C20 16.28 (10) C5—C4—C12—N1 178.81 (14) O3—Mn1—O1—C13 −22.09 (12) C5—C4—C12—C11 −0.2 (2) O1—Mn1—O4i—C20i 51.85 (11) C12—C4—C5—C6 1.3 (2)

O4i—Mn1—O1—C13 −114.93 (12) C4—C5—C6—C7 −0.3 (2)

O1—Mn1—N1—C1 23.69 (14) C5—C6—C7—C8 179.74 (17) O1—Mn1—N1—C12 −154.53 (9) C5—C6—C7—C11 −2.0 (2) N1—Mn1—O1—C13 138.83 (12) C6—C7—C8—C9 177.27 (16) O1—Mn1—N2—C10 −117.50 (13) C6—C7—C11—N2 −176.56 (14) O1—Mn1—N2—C11 57.55 (15) C6—C7—C11—C12 3.1 (2) N2—Mn1—O1—C13 81.81 (15) C8—C7—C11—N2 1.8 (2) O3—Mn1—O4i—C20i −44.09 (10) C8—C7—C11—C12 −178.55 (14)

O4i—Mn1—O3—C20 120.76 (10) C11—C7—C8—C9 −1.0 (2)

O3—Mn1—N1—C1 136.71 (14) C7—C8—C9—C10 −0.3 (2) O3—Mn1—N1—C12 −41.52 (17) C8—C9—C10—N2 1.0 (2) N1—Mn1—O3—C20 −96.27 (15) N2—C11—C12—N1 −1.4 (2) O3—Mn1—N2—C10 −12.65 (12) N2—C11—C12—C4 177.65 (13) O3—Mn1—N2—C11 162.40 (10) C7—C11—C12—N1 178.95 (13) N2—Mn1—O3—C20 −138.13 (10) C7—C11—C12—C4 −2.0 (2) O4i—Mn1—N1—C1 −81.85 (14) O1—C13—C14—C15 −27.46 (17)

O4i—Mn1—N1—C12 99.92 (10) O1—C13—C14—C19 82.75 (15)

N1—Mn1—O4i—C20i 148.65 (10) O1—C13—C14—C22 −150.41 (13)

O4i—Mn1—N2—C10 79.03 (13) O2—C13—C14—C15 150.55 (13)

O4i—Mn1—N2—C11 −105.92 (10) O2—C13—C14—C19 −99.24 (15)

N2—Mn1—O4i—C20i −135.65 (10) O2—C13—C14—C22 27.60 (18)

N1—Mn1—N2—C10 −178.41 (13) C13—C14—C15—O5 83.87 (13) N1—Mn1—N2—C11 −3.36 (9) C13—C14—C15—C16 −168.19 (12) N2—Mn1—N1—C1 −179.21 (14) C13—C14—C19—C18 −116.63 (12) N2—Mn1—N1—C12 2.57 (9) C13—C14—C19—C20 −2.59 (14) Mn1—O1—C13—O2 132.53 (13) C13—C14—C19—C21 120.76 (13) Mn1—O1—C13—C14 −49.57 (17) C15—C14—C19—C18 −1.11 (13) Mn1—O3—C20—O4 −119.08 (13) C15—C14—C19—C20 112.92 (11) Mn1—O3—C20—C19 61.55 (15) C15—C14—C19—C21 −123.72 (12) Mn1i—O4—C20—O3 14.25 (19) C19—C14—C15—O5 −34.76 (13)

Mn1i—O4—C20—C19 −166.39 (9) C19—C14—C15—C16 73.17 (14)

(13)

supporting information

sup-10

Acta Cryst. (2007). E63, m241–m243

C12—N1—C1—C2 −0.9 (2) C16—C17—C18—C19 74.85 (14) Mn1—N2—C10—C9 174.67 (12) O5—C18—C19—C14 36.49 (13) Mn1—N2—C11—C7 −176.57 (11) O5—C18—C19—C20 −81.13 (13) Mn1—N2—C11—C12 3.80 (16) O5—C18—C19—C21 159.74 (11) C10—N2—C11—C7 −1.2 (2) C17—C18—C19—C14 −71.88 (13) C10—N2—C11—C12 179.19 (13) C17—C18—C19—C20 170.50 (11) C11—N2—C10—C9 −0.3 (2) C17—C18—C19—C21 51.37 (17) N1—C1—C2—C3 −0.0 (2) C14—C19—C20—O3 −90.97 (14) C1—C2—C3—C4 0.8 (2) C14—C19—C20—O4 89.64 (14) C2—C3—C4—C5 −179.65 (17) C18—C19—C20—O3 18.59 (17) C2—C3—C4—C12 −0.7 (2) C18—C19—C20—O4 −160.80 (12) C3—C4—C5—C6 −179.71 (17) C21—C19—C20—O3 141.71 (13) C3—C4—C12—N1 −0.2 (2) C21—C19—C20—O4 −37.69 (17) C3—C4—C12—C11 −179.22 (14)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2; (iii) x, −y, z−1/2; (iv) x, y, z−1; (v) x−1/2, −y+1/2, z−1/2; (vi) x−1/2, y+1/2, z; (vii) −x+1/2,

y+1/2, −z+1/2; (viii) x+1/2, y−1/2, z; (ix) x+1/2, −y+1/2, z−1/2; (x) −x+1/2, −y+1/2, −z+2; (xi) x, −y, z+1/2; (xii) x, y, z+1; (xiii) x−1/2, −y+1/2, z+1/2; (xiv) −x, y, −z+3/2; (xv) −x+1/2, y−1/2, −z+1/2; (xvi) −x+1, y, −z+1/2; (xvii) x+1/2, −y+1/2, z+1/2; (xviii) −x, −y, −z+1; (xix) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O(6)—H(601)···O(9)i 0.91 2.04 2.949 (2) 174

O(7)—H(701)···O(9)i 0.90 1.91 2.809 (2) 176

O(8)—H(801)···O(2) 0.91 1.84 2.7466 (18) 176 O(8)—H(802)···O(7)viii 0.92 1.95 2.836 (2) 161

O(9)—H(901)···O(1) 0.91 1.87 2.7710 (17) 178 O(9)—H(902)···O(8) 0.92 1.95 2.772 (2) 147

Figure

Fig. 1. This complex exists as discrete centrosymmetric
Figure 1Molecular structure of (I), showing 50% probability displacementellipsoids. Water molecules have been omitted

References

Related documents

For the first time an INADEQUATE NMR experiment was successfully carried out using CapNMR spectroscopy, thus demonstrating the capability for carrying out biosynthetic studies on

Primary goal of this project is to acquire strong ground-motion (SGM) data for various studies in the field of earthquake engineering and seismology in general and in particular

Our findings showed that individuals with AS had higher NAA/ Cho in the right anterior cingulate compared with healthy control subjects and that higher anterior cingulate NAA/Cho

(2014), the development of “common goods” (in this case those aimed as alternatives to plastic for promotion of waste reduction), may contribute to increased awareness in

In comparison, two widely used no-price methods, based on using food Engel curves to derive deflators and based on using unit values (survey group expenditures over group

Furthermore, a novel model is proposed by adopting Fuzzy Analytics Network Process (FANP) to quantify the priority weights of the sustainability indicators to provide guidelines

Starting from July 1989, the SOEC is publishing (in the monthly bulletin) a complete monthly primary balance sheet in toe, replacing the previous quarterly balance sheets. The

Pour les entreprises fabriquant exclusivement des produits du traité CECA, sont recensés non seulement les travailleurs du secteur de production mais aussi ceux