• No results found

Electric vehicles in a future energy system context

N/A
N/A
Protected

Academic year: 2021

Share "Electric vehicles in a future energy system context"

Copied!
31
0
0

Loading.... (view fulltext now)

Full text

(1)

lri ch H öfpne r w w w .i feu .de

43rd LCA Discussion Forum

LIFE CYCLE ASSESSMENT OF ELECTROMOBILITY ANSWERS AND CHALLENGES

Electric vehicles

in a future energy system context

April 6, 2011,

Zürich, ETH Central Building, Semper Aula

Dipl.-Phys. Udo Lambrecht

(2)

- 2 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

ifeu – Institute for Energy and Environmental Research

IFEU-Institute:

Founded in 1978 by scientists from the University of Heidelberg

Currently has a staff of about 50 persons with 40 scientists

Main Topics: Environmental impacts of transport, energy supply, LCAs, Air pollution control,
(3)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Expectations (from Gouverment/Politic) in Germany

(August 2009)

Energiekonzept – BMWi/BMU – 28.9.2010

Electric mobility is to contribute to

climate protection targets Consumption of renewable energy for electric vehicle should support overall introduction of renewable energy

Electric grid should become more efficient by use of modern information technology and integration of electric vehicles

What can be the real contribution of electric

vehicles?

Additional energy consumption from electric vehicles should be based on

Renewable Energy. Primary using Renew. by Demand Side Management

(4)

- 4 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Life cycle assessments accompanying various fleet tests:

Volkswagen Flottentest („Fleet Test Electric Mobility“):

Developing and testing of PHEV

Accompanying research:

Scenarios on development of car fleet

Scenarios on development of power generation system

Life cycle assessment of conventional and electric cars

Research accompanying electric mobility projects as part of the

German ‚Konjunkturprogramm 2‘:

Collection of data and information relevant for LCAs

Life cycle assessment of various forms of electric mobility

Development of an LCA online tool

(5)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

(6)

- 6 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 Differentiated consideration of power plant system

(7)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Assumptions Vehicle Fleet + Scenarios

Assumptions Scenario Vehicle Fleet in 2030 in Germany:

12 million electric vehicles (ambitious scenario)

Electricity demand in 2030: 18 TWh

Considered scenarios:

„Plug and play“:

Vehicles are charged directly after their last daily trip

„Demand Side Management“:

Incentives based on energy exchange prices; this considers wind

power and grid load => Charging is homogenized.

„DSM+RES“

: Additional renewable energy production capacity

to meet demand of electric vehicles

(8)

- 8 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Electricity supply: Overview of models

Availability of

renewable energy

Market penetration of electric vehicles and related electricity demand

Grid restricitions?

Long term development of European power system

Short term modelling of electricity market (merit order)

Other background data: - Commodity prices (World energy outlook 2008)

- Renewable targets - CO2 cap

Electric vehicle charging mix

Life cycle assessment model

eLCAr

(9)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Total Load, Feed-in of Renewable Energy, Tariff

Total system load

Renewable Generation

Thermal Rest Load Tariff

(10)

- 10 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Thermal Rest Load (schematic)

Source: ISI

TypA TypC TypB

Type of Power plant: e.g.: Nuclear, Lignite, Natural Gas

(11)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

(12)

- 12 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 More than 600 GWh of

electricity from wind turbines can be used additionally

(13)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 More than 600 GWh of

electricity from wind turbines can be used additionally

The peak load can be

reduced by more than 5 GW via load balancing

(14)

- 14 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

(15)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

LCA electromobility - example

Electric vehicle:

Electric engine

25kWh Li-Ion Battery

(1.5 batteries (2010) and

1 battery (2030) in life-time)

Electricity generation:

- average

Combustion vehicle:

Combustion engine

Euro-6 emission standard

Compact car (VW Golf type)

Life-time mileage of 150’000km

30% urban, 40% extra urban and 30% highway driving

Real world cycles including auxiliary consumers

Geographical reference: Germany

(16)

- 16 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Modeling of vehicle energy consumption

Driving behavior, road profile, vehicle characteristics... Energy consumption Auxiliary consumers, e.g. air conditioning Efficiencies: - Engine - Battery, etc. Fuel (diesel, gasoline, ..), electricity..

Quelle: Volkswagen

(17)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

GHG emission - life time mileage 150.000 km

Electricity Generation Tail pipe emissions

Well to tank emissions

Vehicle production (incl. Batterie)

(18)

- 18 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Electricity – German Average:

GWP: BEV comp. with Diesel/Petrol car

2010

(19)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 Clear GHG reduction

by using additional ren. energy

(20)

- 20 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 GHG reduction by better efficiency and more renew. energy

2010 2030

(21)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

GHG emission - life time mileage 150.000 km

„plug and play “: Residual (Thermal Rest Load) higher emissions as average

(22)

- 22 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 2010 2030

GHG emission - life time mileage 150.000 km

DSM could lead to higher emissions

(23)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

GHG emission - life time mileage 150.000 km

Clear GHG reduction with additional Renew.

(24)

- 24 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Not conventional oil (oil sand……)

2010 2030

GHG emission - life time mileage 150.000 km

German Situation:

DSM helps to integrate fluctuating renewable energy ..and to stabilize the grid….

..but can lead to higher GHG emission

Only additional renewable energy leads and DSM to clear GHG advantages for electric vehicles!

(25)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

……some thoughts

……..battery

(26)

- 26 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

How many kilometres a electric vehicle has to drive……..

Battery

Life time mileage Life time mileage

(27)

d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

GHG per km – only considering battery production

Lesehilfe für Beispiel :

Bei einer Reichweite der Batterie von 100 km (bestimmt durch die Kapazität der Batterie und den Verbrauch des Fahrzeuges) liegen die zugeordneten CO2-Emissionen (Abschreibung der

Herstellungsemissionen auf den Fahrzeug-km) bei einer Gesamtfahrleistung pro Batterie von 150.000 km bei etwa 17 g CO2-Äqui./km.

Mit Größe der Batterie (x-Achse) und Anzahl benötigter Batterien steigen die dem Fzg.-km zugeordneten CO2

-Emissionen an.

GHG per km – considering only battery production

2 batteries per life time(150.000 km) 1,5 batteries per life time(150.000 km) 1 batteries per life time(150.000 km)

(28)

- 28 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1 Beispielhafte Berechnung …definiert die Batteriegröße……

Lesehilfe für Beispiel :

Bei einer Reichweite der Batterie von 100 km (bestimmt durch die Kapazität der Batterie und den Verbrauch des Fahrzeuges) liegen die zugeordneten CO2-Emissionen (Abschreibung der

Herstellungsemissionen auf den Fahrzeug-km) bei einer Gesamtfahrleistung pro Batterie 150.000 km bei etwa 17 g CO2-Äqui./km.

Bei geringerer Lebensfahrleistung (andere Geraden) und mit der Batteriegröße (x-Achse) steigen die dem Fzg.-km zugeordneten CO2-Emissionen an.

GHG per km – only considering battery production

Life time mileage: 50.000 km

Life time mileage: 100.000 km

Life time mileage: 150.000 km GHG per km – considering only battery production (1 battery per vehicle lifetime)

Electric range per charge (km) defined by battery size

10 kWh 50 kWh

(29)

- 29 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

1. Battery size

- Start-Stopp to „pure“ electric vehicle

- Electric Range

2. Further development of battery

- very dynamic:

Material composition (anode, cathode, electrolyth)

Energy density

Life time / cycles

3. Production

- …mass production…

- …alternative materials

- …energy mix in mining and production

4. Recycling

- Why (econ. [Cobalt] vs. autonomy)

- technique/procedure

(30)

- 30 - U d o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

1. Battery size

- Start-Stopp to „pure“ electric vehicle

- Electric Range

2. Further development of battery

- very dynamic:

Material composition (anode, cathode, electrolyth)

Energy density

Life time / cycles

3. Production

- …mass production…

- …alternative materials

- …energy mix in mining and production

4. Recycling

- Why (econ. [Cobalt] vs. autonomy

- technique/procedure

Factors influencing impact of battery in LCA

Assumptions/Informations

neccessary:

- materials

- Life time (calendar – cycles)

- Environmental profiles (…2030…) - Recycling

- ……

(31)

o L a m b re c h t, 6 .4 .. 2 .2 0 1 1

Thank you for your attention

and thanks BMU and others for support

Further information:

www.ifeu.de

www.ifeu.de/emobil

References

Related documents

• $4,500 incentive for the purchase of a new battery electric vehicle and ChargePoint Home charging station.. • Incentive applies only to new battery

Cloud Insights acquires the following inventory information from the NetApp SolidFire All-Flash Array data collector. For each asset type acquired by Cloud Insights, the most

Using iPSC neuronal models derived from fibroblasts from patients [199] carrying FTD/ALS associated valosin-protein containing mutations VCPR155C and VCPR191Q, both PAD2 and

Program Name Location City Contact Information Administrator E-mail

database. Secondary tasks were not tabulated as “Distractions” in the control Behavior variables, as they were in the case variables, but “Drowsy” was. That left only 2

● Initiate the submission of the biologics license application to the FDA, on a rolling basis, in the fourth quarter of 2020 ● Report additional data from the Phase 1/2 study

• Rebalance Rebalance MD goal: single entry referral goal: single entry referral with standardized referral form. • Drafts reviewed and discussed in detail • Drafts reviewed