• No results found

(ii) α-strongly accretive if for each x, y C there exists. (iii) β-inverse-strongly-accretive if for each x, y C there

N/A
N/A
Protected

Academic year: 2021

Share "(ii) α-strongly accretive if for each x, y C there exists. (iii) β-inverse-strongly-accretive if for each x, y C there"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2013, Article ID 616549,14pages http://dx.doi.org/10.1155/2013/616549

Research Article

Mann-Type Extragradient Methods for General Systems of

Variational Inequalities with Multivalued Variational Inclusion

Constraints in Banach Spaces

Lu-Chuan Ceng,

1

Abdul Latif,

2

and Saleh A. Al-Mezel

2

1Department of Mathematics, Shanghai Normal University, and Scientific Computing Key Laboratory of Shanghai Universities,

Shanghai 200234, China

2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia Correspondence should be addressed to Abdul Latif; alatif@kau.edu.sa

Received 13 September 2013; Accepted 30 October 2013 Academic Editor: Jen-Chih Yao

Copyright © 2013 Lu-Chuan Ceng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce Mann-type extragradient methods for a general system of variational inequalities with solutions of a multivalued variational inclusion and common fixed points of a countable family of nonexpansive mappings in real smooth Banach spaces. Here the Mann-type extragradient methods are based on Korpelevich’s extragradient method and Mann iteration method. We first consider and analyze a Mann-type extragradient algorithm in the setting of uniformly convex and 2-uniformly smooth Banach space and then another Mann-type extragradient algorithm in a smooth and uniformly convex Banach space. Under suitable assumptions, we derive some weak and strong convergence theorems. The results presented in this paper improve, extend, supplement, and develop the corresponding results announced in the earlier and very recent literature.

1. Introduction

Let𝑋be a real Banach space whose dual space is denoted by

𝑋∗. The normalized duality mapping𝐽 : 𝑋 → 2𝑋∗

is defined by

𝐽 (𝑥) = {𝑥∗∈ 𝑋∗ : ⟨𝑥, 𝑥∗⟩ = ‖𝑥‖2= 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩2} , ∀𝑥 ∈ 𝑋,

(1)

where⟨⋅, ⋅⟩denotes the generalized duality pairing. It is an

immediate consequence of the Hahn-Banach theorem that

𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋. Let 𝐶 be a nonempty

closed convex subset of𝑋. A mapping𝑇 : 𝐶 → 𝐶is called

nonexpansive if‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖for every𝑥, 𝑦 ∈ 𝐶.

The set of fixed points of𝑇is denoted by Fix(𝑇). We use the

notation⇀to indicate the weak convergence and the one→

to indicate the strong convergence. A mapping𝐴 : 𝐶 → 𝑋

is said to be as follows:

(i) accretive if for each𝑥, 𝑦 ∈ 𝐶there exists𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦)such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0; (2)

(ii)𝛼-strongly accretive if for each𝑥, 𝑦 ∈ 𝐶there exists

𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦)such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2, (3)

for some𝛼 ∈ (0, 1);

(iii)𝛽-inverse-strongly-accretive if for each𝑥, 𝑦 ∈ 𝐶there

exists𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦)such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦󵄩󵄩󵄩󵄩2, (4)

for some𝛽 > 0;

(iv)𝜆-strictly pseudocontractive if for each𝑥, 𝑦 ∈ 𝐶there

exists𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦)such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2− 𝜆󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)󵄩󵄩󵄩󵄩2,

(5)

(2)

Let𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}denote the unite sphere of𝑋.

A Banach space𝑋is said to be uniformly convex if for each

𝜖 ∈ (0, 2], there exists𝛿 > 0such that for all𝑥, 𝑦 ∈ 𝑈

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ≥ 𝜖 󳨐⇒ 󵄩󵄩󵄩󵄩𝑥 + 𝑦󵄩󵄩󵄩󵄩2 ≤ 1 − 𝛿 . (6)

It is known that a uniformly convex Banach space is reflexive

and strictly convex. A Banach space𝑋is said to be smooth if

the limit

lim

𝑡 → 0󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦󵄩󵄩󵄩󵄩 − ‖𝑥‖𝑡 (7)

exists for all𝑥, 𝑦 ∈ 𝑈; in this case,𝑋 is also said to have

a G´ateaux differentiable norm. Moreover, it is said to be

uniformly smooth if this limit is attained uniformly for𝑥, 𝑦 ∈

𝑈. The norm of𝑋is said to be the Fr´echet differential if for

each𝑥 ∈ 𝑈, this limit is attained uniformly for𝑦 ∈ 𝑈. In the

meantime, we define a function𝜌 : [0, ∞) → [0, ∞)called

the modulus of smoothness of𝑋as follows:

𝜌 (𝜏) = sup{1

2(󵄩󵄩󵄩󵄩𝑥 + 𝑦󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩) − 1 :

𝑥, 𝑦 ∈ 𝑋, ‖𝑥‖ = 1, 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 = 𝜏}. (8)

It is known that 𝑋 is uniformly smooth if and only if

lim𝜏 → 0𝜌(𝜏)/𝜏 = 0. Let𝑞be a fixed real number with1 < 𝑞 ≤

2. Then a Banach space𝑋is said to be𝑞-uniformly smooth if

there exists a constant𝑐 > 0such that𝜌(𝜏) ≤ 𝑐𝜏𝑞for all𝜏 > 0.

As pointed out in [1], no Banach space is𝑞-uniformly smooth

for𝑞 > 2. In addition, it is also known that𝐽is single-valued

if and only if𝑋is smooth, whereas if𝑋is uniformly smooth,

then𝐽is norm-to-norm uniformly continuous on bounded

subsets of𝑋.

Very recently, Cai and Bu [2] considered the following general system of variational inequalities (GSVI) in a real

smooth Banach space𝑋, which involves finding(𝑥∗, 𝑦∗) ∈

𝐶 × 𝐶such that

⟨𝜇1𝐵1𝑦∗+ 𝑥∗− 𝑦∗, 𝐽 (𝑥 − 𝑥∗)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇2𝐵2𝑥∗+ 𝑦∗− 𝑥∗, 𝐽 (𝑥 − 𝑦∗)⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (9)

where 𝐶 is a nonempty, closed, and convex subset of 𝑋;

𝐵1, 𝐵2 : 𝐶 → 𝑋are two nonlinear mappings, and𝜇1and𝜇2

are two positive constants. Here the set of solutions of GSVI

(9) is denoted by GSVI(𝐶, 𝐵1, 𝐵2). In particular, if𝑋 = 𝐻,

a real Hilbert space, then GSVI (9) reduces to the following

GSVI of finding(𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶such that

⟨𝜇1𝐵1𝑦∗+ 𝑥∗− 𝑦∗, 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇2𝐵2𝑥∗+ 𝑦∗− 𝑥∗, 𝑥 − 𝑦∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (10)

where 𝜇1 and 𝜇2 are two positive constants. The set of

solutions of problem (10) is still denoted by GSVI(𝐶, 𝐵1, 𝐵2).

Recently, Ceng et al. [3] transformed problem (10) into a fixed point problem in the following way.

Lemma 1 (see [3]). For given𝑥, 𝑦 ∈ 𝐶, (𝑥, 𝑦)is a solution of

problem(10)if and only if𝑥is a fixed point of the mapping

𝐺 : 𝐶 → 𝐶defined by

𝐺 (𝑥) = 𝑃𝐶[𝑃𝐶(𝑥 − 𝜇2𝐵2𝑥) − 𝜇1𝐵1𝑃𝐶(𝑥 − 𝜇2𝐵2𝑥)] ,

∀𝑥 ∈ 𝐶, (11)

where𝑦 = 𝑃𝐶(𝑥−𝜇2𝐵2𝑥)and𝑃𝐶is the the projection of𝐻onto

𝐶.

In particular, if the mappings𝐵𝑖 : 𝐶 → 𝐻is𝛽𝑖-inverse

strongly monotone for𝑖 = 1, 2, then the mapping𝐺is

nonex-pansive provided𝜇𝑖∈ (0, 2𝛽𝑖)for𝑖 = 1, 2.

Define the mapping𝐺 : 𝐶 → 𝐶as follows:

𝐺 (𝑥) := Π𝐶(𝐼 − 𝜇1𝐵1) Π𝐶(𝐼 − 𝜇2𝐵2) 𝑥, ∀𝑥 ∈ 𝐶. (12)

The fixed point set of𝐺is denoted byΩ.

Let 𝐶𝐵(𝑋) be the family of all nonempty, closed and

bounded subsets of a real smooth Banach space𝑋. Also, we

denote by𝐻(⋅, ⋅)the Hausdorff metric on𝐶𝐵(𝑋)defined by

𝐻 (𝐴, 𝐵) := max{sup

𝑥∈𝐵𝑦∈𝐴inf𝑑 (𝑥, 𝑦) ,sup𝑥∈𝐴inf𝑦∈𝐵𝑑 (𝑥, 𝑦)} ,

∀𝐴, 𝐵 ∈ 𝐶𝐵 (𝑋) . (13)

Let𝑇and𝐹 : 𝑋 → 𝐶𝐵(𝑋)be two multivalued mappings,

let𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 2𝑋be an𝑚-accretive mapping, let

𝑔 : 𝑋 → 𝐷(𝐴)be a single-valued mapping, and let𝑁(⋅, ⋅) :

𝑋 × 𝑋 → 𝑋be a nonlinear mapping. Then for any given

V ∈ 𝑋, 𝜆 > 0, Chidume et al. [4] introduced and studied

the multivalued variational inclusion (MVVI) of finding𝑥 ∈

𝐷(𝐴)such that(𝑥, 𝑤, 𝑘)is a solution of the following:

V∈ 𝑁 (𝑤, 𝑘) + 𝜆𝐴 (𝑔 (𝑥)) , ∀𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥. (14)

IfV = 0and𝜆 = 1, then the MVVI (14) reduces to the

problem of finding𝑥 ∈ 𝐷(𝐴)such that(𝑥, 𝑤, 𝑘)is a solution

of the following:

0 ∈ 𝑁 (𝑤, 𝑘) + 𝐴 (𝑔 (𝑥)) , ∀𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥. (15)

We denote byΓthe set of such solutions𝑥for MVVI (15).

The authors [4] first established an existence theorem for

MVVI (14) in smooth Banach space𝑋and then proved that

the sequence generated by their iterative algorithm converges strongly to a solution of MVVI (15).

Theorem 2 (see [4, Theorem 3.2]). Let 𝑋 be a real smooth

Banach space. Let𝑇and𝐹 : 𝑋 → 𝐶𝐵(𝑋), let𝐴 : 𝐷(𝐴) ⊂

𝑋 → 2𝑋be three multivalued mappings, let𝑔 : 𝑋 → 𝐷(𝐴)

be a single-valued mapping, and let𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋be a

single-valued continuous mapping satisfying the following con-ditions:

(C1)𝐴 ∘ 𝑔 : 𝑋 → 2𝑋is𝑚-accretive and𝐻-uniformly

con-tinuous;

(C2)𝑇 : 𝑋 → 𝐶𝐵(𝑋)is𝐻-uniformly continuous;

(3)

(C4)the mapping𝑥 󳨃→ 𝑁(𝑥, 𝑦)is𝜙-strongly accretive and

𝜇-𝐻-Lipschitz with respect to the mapping𝑇, where𝜙 :

[0, ∞) → [0, ∞)is a strictly increasing function with

𝜙(0) = 0;

(C5)the mapping 𝑦 󳨃→ 𝑁(𝑥, 𝑦) is accretive and

𝜉-𝐻-Lipschitz with respect to the mapping𝐹.

For arbitrary𝑥0∈ 𝐷(𝐴)define the sequence{𝑥𝑛}iteratively by

𝑥𝑛+1= 𝑥𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛) , 𝑢𝑛∈ 𝐴 (𝑔 (𝑥𝑛)) , (16)

where{𝑢𝑛}is defined by

󵄩󵄩󵄩󵄩𝑢𝑛− 𝑢𝑛+1󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻(𝐴(𝑔(𝑥𝑛+1)) , 𝐴 (𝑔 (𝑥𝑛))) ,

∀𝑛 ≥ 0, (17)

for any𝑤𝑛 ∈ 𝑇𝑥𝑛,𝑘𝑛 ∈ 𝐹𝑥𝑛and some𝜀 > 0, where{𝜎𝑛}is a

positive real sequence such thatlim𝑛 → ∞𝜎𝑛= 0and∑∞𝑛=0𝜎𝑛=

∞. Then, there exists𝑑 > 0such that for0 < 𝜎𝑛 ≤ 𝑑, for all

𝑛 ≥ 0,{𝑥𝑛}converges strongly to𝑥 ∈ Γ; and for any𝑤 ∈ 𝑇𝑥,

𝑘 ∈ 𝐹𝑥,(𝑥, 𝑤, 𝑘)is a solution of the MVVI(15).

Let 𝐶 be a nonempty closed convex subset of a real

smooth Banach space𝑋and letΠ𝐶be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Motivated and inspired by the

research going on this area, we introduce Mann-type extra-gradient methods for finding solutions of the GSVI (9) which are also ones of the MVVI (15) and common fixed points of a countable family of nonexpansive mappings. Here the Mann-type extragradient methods are based on Korpelevich’s extragradient method and Mann iteration method. We first consider and analyze a Mann-type extragradient algorithm

in the setting of uniformly convex and2-uniformly smooth

Banach space, and then another Mann-type extragradient algorithm in a smooth and uniformly convex Banach space. Under suitable assumptions, we derive some weak and strong convergence theorems. The results presented in this paper improve, extend, supplement, and develop the corresponding results announced in the earlier and very recent literature; see for example, [2–10].

2. Preliminaries

Let𝑋be a real Banach space with dual𝑋∗. We denote by𝐽

the normalized duality mapping from𝑋to2𝑋∗defined by

𝐽 (𝑥) = {𝑥∗∈ 𝑋∗: ⟨𝑥, 𝑥∗⟩ = ‖𝑥‖2= 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩2} , (18)

where⟨⋅, ⋅⟩denotes the generalized duality pairing.

Through-out this paper the single-valued normalized duality map is

still denoted by𝐽. Unless otherwise stated, we assume that𝑋

is a smooth Banach space with dual𝑋∗.

A multivalued mapping𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 2𝑋is said to

be as follows: (i) accretive, if

⟨𝑢 −V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 0, ∀𝑢 ∈ 𝐴𝑥, V∈ 𝐴𝑦; (19)

(ii)𝑚-accretive, if𝐴is accretive and(𝐼 + 𝑟𝐴)(𝐷(𝐴)) = 𝑋,

for all𝑟 > 0, where𝐼is the identity mapping;

(iii)𝜁-inverse strongly accretive, if there exists a constant

𝜁 > 0such that

⟨𝑢 −V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 𝜁‖𝑢 −V‖2, ∀𝑢 ∈ 𝐴𝑥, V∈ 𝐴𝑦; (20)

(iv)𝜙-strongly accretive, if there exists a strictly increasing

continuous function 𝜙 : [0, ∞) → [0, ∞) with

𝜙(0) = 0such that

⟨𝑢 −V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 𝜙 (󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩,

∀𝑢 ∈ 𝐴𝑥, V∈ 𝐴𝑦; (21)

(v)𝜙-expansive, if

‖𝑢 −V‖ ≥ 𝜙 (󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩), ∀𝑢 ∈ 𝐴𝑥, V∈ 𝐴𝑦. (22)

It is easy to see that if𝐴is𝜙-strongly accretive, then𝐴is

𝜙-expansive.

A mapping𝑇 : 𝑋 → 𝐶𝐵(𝑋)is said to be𝐻-uniformly

continuous, if for any given𝜀 > 0there exists a𝛿 > 0such

that whenever‖𝑥 − 𝑦‖ < 𝛿then𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀.

A mapping𝑁 : 𝑋 × 𝑋 → 𝑋is𝜙-strongly accretive, with

respect to𝑇 : 𝑋 → 𝐶𝐵(𝑋), in the first argument if

⟨𝑁 (𝑢, 𝑧) − 𝑁 (V, 𝑧) , 𝐽 (𝑥 − 𝑦)⟩

≥ 𝜙 (󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩, ∀𝑢 ∈ 𝑇𝑥, V∈ 𝑇𝑦. (23)

A mapping𝑆 : 𝑋 → 2𝑋is called lower semicontinuous if

𝑆−1(𝑉) := {𝑥 ∈ 𝑋 : 𝑆𝑥 ∩ 𝑉 ̸= 0}is open in𝑋whenever𝑉 ⊂ 𝑌

is open.

We list some propositions and lemmas that will be used in the sequel.

Proposition 3 (see [11]). Let {𝜆𝑛} and{𝑏𝑛}be sequences of

nonnegative numbers and{𝛼𝑛} ⊂ (0, 1)a sequence satisfying

the conditions that{𝜆𝑛}is bounded,∑∞𝑛=0𝛼𝑛 = ∞, and𝑏𝑛

0, as𝑛 → ∞. Let the recursive inequality

𝜆2𝑛+1≤ 𝜆2𝑛− 2𝛼𝑛𝜓 (𝜆𝑛+1) + 2𝛼𝑛𝑏𝑛𝜆𝑛+1, ∀𝑛 ≥ 0, (24)

be given where𝜓 : [0, ∞) → [0, ∞)is a strictly increasing

function such that it is positive on(0, ∞)and𝜓(0) = 0. Then

𝜆𝑛 → 0, as𝑛 → ∞.

Proposition 4 (see [12]). Let𝑋be a real smooth Banach space.

Let𝑇and𝐹 : 𝑋 → 2𝑋be two multivalued mappings, and let

𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋be a nonlinear mapping satisfying the

following conditions:

(i) the mapping𝑥 󳨃→ 𝑁(𝑥, 𝑦)is𝜙-strongly accretive with

respect to the mapping𝑇;

(ii) the mapping𝑦 󳨃→ 𝑁(𝑥, 𝑦)is accretive with respect to

the mapping𝐹.

Then the mapping𝑆 : 𝑋 → 2𝑋defined by𝑆𝑥 = 𝑁(𝑇𝑥, 𝐹𝑥)is

(4)

Proposition 5 (see [13]). Let𝑋be a real Banach space and let

𝑆 : 𝑋 → 2𝑋\ {0}be a lower semicontinuous and𝜙-strongly

accretive mapping; then for any𝑥 ∈ 𝑋, 𝑆𝑥is a one-point set;

that is,𝑆is a single-valued mapping.

Recall that a Banach space 𝑋 is said to satisfy Opial’s

condition, if whenever {𝑥𝑛} is a sequence in 𝑋 which

converges weakly to𝑥as𝑛 → ∞, then

lim sup

𝑛 → ∞ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑥󵄩󵄩󵄩󵄩 <lim sup𝑛 → ∞ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦󵄩󵄩󵄩󵄩 ,

∀𝑦 ∈ 𝑋with𝑥 ̸= 𝑦.

(25)

Lemma 6 (Demiclosedness principle; see [14, Lemma 2]). Let

𝐶be a nonempty closed convex subset of a reflexive Banach

space𝑋that satisfies Opial’s condition and suppose that𝑇 :

𝐶 → 𝑋is nonexpansive. Then the mapping𝐼−𝑇is demiclosed

at zero, that is,𝑥𝑛⇀ 𝑥and𝑥𝑛− 𝑇𝑥𝑛 → 0imply𝑥 = 𝑇𝑥; that

is,𝑥 ∈Fix(𝑇).

The following lemma is an immediate consequence of the

subdifferential inequality of the function(1/2)‖ ⋅ ‖2.

Lemma 7. In a real smooth Banach space𝑋, there holds the

inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦󵄩󵄩󵄩󵄩2≤ ‖𝑥‖2+ 2⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩, ∀𝑥, 𝑦 ∈ 𝑋. (26)

Let𝐷be a subset of𝐶and letΠbe a mapping of𝐶into𝐷.

ThenΠis said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (27)

wheneverΠ(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶for𝑥 ∈ 𝐶and𝑡 ≥ 0. A

mappingΠof𝐶into itself is called a retraction ifΠ2 = Π. If

a mappingΠof𝐶into itself is a retraction, thenΠ(𝑧) = 𝑧for

every𝑧 ∈ 𝑅(Π), where𝑅(Π)is the range ofΠ. A subset𝐷of

𝐶is called a sunny nonexpansive retract of𝐶if there exists a

sunny nonexpansive retraction from𝐶onto𝐷. The following

lemma concerns the sunny nonexpansive retraction.

Lemma 8 (see [15]). Let𝐶be a nonempty closed convex subset

of a real smooth Banach space𝑋. Let𝐷be a nonempty subset

of𝐶. LetΠbe a retraction of𝐶onto𝐷. Then the following are

equivalent:

(i)Πis sunny and nonexpansive;

(ii)‖Π(𝑥) − Π(𝑦)‖2 ≤ ⟨𝑥 − 𝑦, 𝐽(Π(𝑥) − Π(𝑦))⟩, for all

𝑥, 𝑦 ∈ 𝐶;

(iii)⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, for all𝑥 ∈ 𝐶,𝑦 ∈ 𝐷.

It is well known that if 𝑋 = 𝐻 a Hilbert space, then

a sunny nonexpansive retractionΠ𝐶 is coincident with the

metric projection from𝑋 onto 𝐶; that is, Π𝐶 = 𝑃𝐶. If 𝐶

is a nonempty closed convex subset of a strictly convex and

uniformly smooth Banach space𝑋and if𝑇 : 𝐶 → 𝐶 is

a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,

then the set Fix(𝑇)is a sunny nonexpansive retract of𝐶. The

following result is an easy consequence ofLemma 8.

Lemma 9. Let 𝐶 be a nonempty closed convex subset of a

smooth Banach space 𝑋. Let Π𝐶 be a sunny nonexpansive

retraction from𝑋onto𝐶and let𝐵1, 𝐵2: 𝐶 → 𝑋be nonlinear

mappings. For given𝑥∗, 𝑦∗∈ 𝐶, (𝑥∗, 𝑦∗)is a solution of GSVI

(9)if and only if𝑥∗= Π𝐶(𝑦∗− 𝜇1𝐵1𝑦∗), where𝑦∗= Π𝐶(𝑥∗−

𝜇2𝐵2𝑥∗).

In terms ofLemma 9, we observe that

𝑥∗ = Π𝐶𝐶(𝑥∗− 𝜇2𝐵2𝑥∗) − 𝜇1𝐵1Π𝐶(𝑥∗− 𝜇2𝐵2𝑥∗)] ,

(28)

which implies that 𝑥∗ is a fixed point of the mapping 𝐺.

Throughout this paper, the set of fixed points of the mapping

𝐺is denoted byΩ.

Lemma 10 (see [16]). Given a number𝑟 > 0. A real Banach

space 𝑋 is uniformly convex if and only if there exists a

continuous strictly increasing function𝜑 : [0, ∞) → [0, ∞),

𝜑(0) = 0, such that

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆)𝑦󵄩󵄩󵄩󵄩2≤ 𝜆‖𝑥‖2+ (1 − 𝜆) 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2

− 𝜆 (1 − 𝜆) 𝜑 (󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩), (29)

for all𝜆 ∈ [0, 1], and𝑥, 𝑦 ∈ 𝑋such that‖𝑥‖ ≤ 𝑟and‖𝑦‖ ≤ 𝑟.

Lemma 11 (see [17]). Let𝐶be a nonempty closed convex subset

of a Banach space𝑋. Let𝑆0, 𝑆1, . . .be a sequence of mappings

of𝐶into itself. Suppose that∑∞𝑛=1sup{‖𝑆𝑛𝑥−𝑆𝑛−1𝑥‖ : 𝑥 ∈ 𝐶} <

∞. Then for each𝑦 ∈ 𝐶,{𝑆𝑛𝑦}converges strongly to some point

of𝐶. Moreover, let𝑆be a mapping of𝐶into itself defined by

𝑆𝑦 =lim𝑛 → ∞𝑆𝑛𝑦for all𝑦 ∈ 𝐶. Thenlim𝑛 → ∞sup{‖𝑆𝑥−𝑆𝑛𝑥‖ : 𝑥 ∈ 𝐶} = 0.

3. Mann-Type Extragradient Algorithms in

Uniformly Convex and 2-Uniformly Smooth

Banach Spaces

In this section, we introduce Mann-type extragradient algo-rithms in uniformly convex and 2-uniformly smooth Banach spaces and show weak and strong convergence theorems. We will use some useful lemmas in the sequel.

Lemma 12 (see [2, Lemma 2.8]). Let𝐶be a nonempty closed

convex subset of a real2-uniformly smooth Banach space𝑋.

Let the mapping𝐵𝑖 : 𝐶 → 𝑋be𝛼𝑖-inverse-strongly accretive.

Then, we have 󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝑖𝐵𝑖) 𝑥 − (𝐼 − 𝜇𝑖𝐵𝑖) 𝑦󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2+ 2𝜇 𝑖(𝜇𝑖𝜅2− 𝛼𝑖) 󵄩󵄩󵄩󵄩𝐵𝑖𝑥 − 𝐵𝑖𝑦󵄩󵄩󵄩󵄩2, ∀𝑥, 𝑦 ∈ 𝐶, (30)

for𝑖 = 1, 2, where𝜇𝑖> 0. In particular, if0 < 𝜇𝑖 ≤ 𝛼𝑖/𝜅2, then

𝐼 − 𝜇𝑖𝐵𝑖is nonexpansive for𝑖 = 1, 2.

Lemma 13 (see [2, Lemma 2.9]). Let𝐶be a nonempty closed

(5)

LetΠ𝐶be a sunny nonexpansive retraction from𝑋onto𝐶. Let

the mapping𝐵𝑖 : 𝐶 → 𝑋be𝛼𝑖-inverse-strongly accretive for

𝑖 = 1, 2. Let𝐺 : 𝐶 → 𝐶be the mapping defined by

𝐺𝑥 = Π𝐶𝐶(𝑥 − 𝜇2𝐵2𝑥) − 𝜇1𝐵1Π𝐶(𝑥 − 𝜇2𝐵2𝑥)] ,

∀𝑥 ∈ 𝐶. (31)

If0 < 𝜇𝑖≤ 𝛼𝑖/𝜅2for𝑖 = 1, 2, then𝐺 : 𝐶 → 𝐶is nonexpansive.

Theorem 14. Let 𝑋 be a uniformly convex and2-uniformly

smooth Banach space satisfying Opial’s condition and let𝐶be a

nonempty closed convex subset of𝑋such that𝐶±𝐶 ⊂ 𝐶. LetΠ𝐶

be a sunny nonexpansive retraction from𝑋onto𝐶. Let𝑇and

𝐹 : 𝑋 → CB(𝑋)and let𝐴 : 𝐶 → 2𝐶be three multivalued

mappings, let𝑔 : 𝑋 → 𝐶be a single-valued mapping, and let

𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝐶be a single-valued continuous mapping

satisfying conditions(𝐶1)–(𝐶5)inTheorem 2and

(C6)𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 2𝐶 \ {0}is𝜁-inverse

strongly accretive with𝜁 ≥ 𝜅2.

Let𝐵𝑖 : 𝐶 → 𝑋be𝛼𝑖-inverse strongly accretive for𝑖 = 1, 2.

Let{𝑆𝑖}∞𝑖=0be a countable family of nonexpansive mappings of𝐶

into itself such thatΔ := ⋂∞𝑖=0Fix(𝑆𝑖)∩Ω∩Γ ̸= 0, whereΩis the

fixed point set of the mapping𝐺 = Π𝐶(𝐼 − 𝜇1𝐵1𝐶(𝐼 − 𝜇2𝐵2)

with0 < 𝜇𝑖 < 𝛼𝑖/𝜅2for𝑖 = 1, 2. Assume that{𝛼𝑛},{𝛽𝑛}, and

{𝜎𝑛}are sequences in[0, 1]such that

(i)0 <lim inf𝑛 → ∞𝛼𝑛 ≤lim sup𝑛 → ∞𝛼𝑛< 1;

(ii)0 <lim inf𝑛 → ∞𝛽𝑛≤lim sup𝑛 → ∞𝛽𝑛 < 1;

(iii)0 <lim inf𝑛 → ∞𝜎𝑛≤lim sup𝑛 → ∞𝜎𝑛 < 1.

For arbitrary𝑥0∈ 𝐶define the sequence{𝑥𝑛}iteratively by

𝑦𝑛= 𝛽𝑛𝑆𝑛𝑥𝑛+ (1 − 𝛽𝑛) Π𝐶(𝐼 − 𝜇1𝐵1) × Π𝐶(𝐼 − 𝜇2𝐵2) 𝑥𝑛, 𝑥𝑛+1= 𝛼𝑛[𝑥𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)] + (1 − 𝛼𝑛) 𝑦𝑛, 𝑢𝑛 ∈ 𝐴 (𝑔 (𝑥𝑛)) , ∀𝑛 ≥ 0, (32) where{𝑢𝑛}is defined by 󵄩󵄩󵄩󵄩𝑢𝑛− 𝑢𝑛+1󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻(𝐴(𝑔(𝑥𝑛+1)) , 𝐴 (𝑔 (𝑥𝑛))) , ∀𝑛 ≥ 0, (33)

for any𝑤𝑛 ∈ 𝑇𝑥𝑛,𝑘𝑛 ∈ 𝐹𝑥𝑛 and some 𝜀 > 0. Assume

that∑∞𝑛=0sup𝑥∈𝐷‖𝑆𝑛+1𝑥 − 𝑆𝑛𝑥‖ < ∞for any bounded subset

𝐷 of 𝐶 and let𝑆 be a mapping of𝐶 into itself defined by

𝑆𝑥 = lim𝑛 → ∞𝑆𝑛𝑥for all𝑥 ∈ 𝐶and suppose thatFix(𝑆) =

⋂∞𝑖=0Fix(𝑆𝑖). Then{𝑥𝑛}converges weakly to some𝑥 ∈ Δ, and

for any𝑤 ∈ 𝑇𝑥,𝑘 ∈ 𝐹𝑥, (𝑥, 𝑤, 𝑘)is a solution of the MVVI

(15).

Proof. First of all, let us show that for anyV ∈ 𝐶,𝜆 > 0,

there exists a point ̃𝑥 ∈ 𝐶such that(̃𝑥, 𝑤, 𝑘)is a solution

of the MVVI (14), for any𝑤 ∈ 𝑇̃𝑥and 𝑘 ∈ 𝐹̃𝑥. Indeed,

following the argument idea in the proof of Chidume et al.

[4, Theorem 3.1], we put 𝑉𝑥 := 𝑁(𝑇𝑥, 𝐹𝑥)for all𝑥 ∈ 𝑋.

Then by Proposition 4, 𝑉 is 𝜙-strongly accretive. Since 𝑇

and𝐹are𝐻-uniformly continuous and𝑁(⋅, ⋅)is continuous,

𝑉𝑥is continuous and hence lower semicontinuous. Thus, by

Proposition 5𝑉𝑥 is single-valued. Moreover, since 𝑉is

𝜙-strongly accretive and by assumption 𝐴 ∘ 𝑔 : 𝑋 → 2𝐶

is 𝑚-accretive, we have that𝑉 + 𝜆𝐴 ∘ 𝑔is an 𝑚-accretive

and𝜙-strongly accretive mapping, and hence by Cioranescu

[18, page 184] for any𝑥 ∈ 𝑋we have(𝑉 + 𝜆𝐴 ∘ 𝑔)(𝑥) is

closed and bounded. Therefore, by Morales [19],𝑉 + 𝜆𝐴 ∘ 𝑔

is surjective. Hence, for anyV ∈ 𝑋and 𝜆 > 0there exists

̃𝑥 ∈ 𝐷(𝐴) = 𝐶such thatV ∈ 𝑉̃𝑥 + 𝜆𝐴(𝑔(̃𝑥)) = 𝑁(𝑤, 𝑘) +

𝜆𝐴(𝑔(̃𝑥)), where𝑤 ∈ 𝑇̃𝑥and𝑘 ∈ 𝐹̃𝑥. In addition, in terms

ofProposition 5we know that𝑉 + 𝜆𝐴 ∘ 𝑔is a single-valued

mapping. Assume that𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)) : 𝑋 → 𝐶is

𝜁-inverse strongly accretive with𝜁 ≥ 𝜅2. Then by Lemma12, we

conclude that the mapping𝑥 󳨃→ 𝑥 − (𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)))

is nonexpansive. Meantime, byLemma 13we know that𝐺 :

𝐶 → 𝐶is also nonexpansive.

Without loss of generality we may assume thatV= 0and

𝜆 = 1. Let𝑝 ∈ Δand let𝑟 > 0be sufficiently large such that

𝑥0∈ 𝐵𝑟(𝑝) =: 𝐵. Then𝑝 ∈ 𝐷(𝐴) = 𝐶such that0 ∈ 𝑁(𝑤, 𝑘) +

𝐴 ∘ 𝑔(𝑝)for any𝑤 ∈ 𝑇𝑝and𝑘 ∈ 𝐹𝑝. Let𝑀 := sup{‖𝑢‖ :

𝑢 ∈ 𝑁(𝑤, 𝑘) + 𝐴(𝑔(𝑥)), 𝑥 ∈ 𝐵, 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥}. Then as

𝐴 ∘ 𝑔, 𝑇and𝐹are𝐻-uniformly continuous on𝑋, for𝜀1 :=

𝜙(𝑟)/8(1 + 𝜀), and𝜀2 := 𝜙(𝑟)/8𝜇(1 + 𝜀),𝜀3 := 𝜙(𝑟)/8𝜉(1 + 𝜀),

there exist𝛿1, 𝛿2, 𝛿3> 0such that for any𝑥, 𝑦 ∈ 𝑋,‖𝑥 − 𝑦‖ <

𝛿1,‖𝑥−𝑦‖ < 𝛿2and‖𝑥−𝑦‖ < 𝛿3imply𝐻(𝐴∘𝑔(𝑥), 𝐴∘𝑔(𝑦)) <

𝜀1,𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀2and𝐻(𝐹𝑥, 𝐹𝑦) < 𝜀3, respectively.

Let us show that𝑥𝑛 ∈ 𝐵for all𝑛 ≥ 0. We show this by

induction. First,𝑥0∈ 𝐵by construction. Assume that𝑥𝑛 ∈ 𝐵.

We show that𝑥𝑛+1 ∈ 𝐵. If possible we assume that𝑥𝑛+1 ∉ 𝐵,

then‖𝑥𝑛+1− 𝑝‖ > 𝑟. Further from (32) it follows that

󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑛𝑥𝑛+ (1 − 𝛽𝑛) Π𝐶(𝐼 − 𝜇1𝐵1) Π𝐶 × (𝐼 − 𝜇2𝐵2) 𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩𝐺𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 , (34) and hence 󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2 = ⟨𝛼𝑛[𝑥𝑛− 𝑝 − 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)] + (1 − 𝛼𝑛) (𝑦𝑛− 𝑝) , 𝐽 (𝑥𝑛+1− 𝑝)⟩ = ⟨𝛼𝑛(𝑥𝑛− 𝑝) + (1 − 𝛼𝑛) × (𝑦𝑛− 𝑝) , 𝐽 (𝑥𝑛+1− 𝑝)⟩ − 𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛, 𝐽 (𝑥𝑛+1− 𝑝)⟩

(6)

≤ 󵄩󵄩󵄩󵄩𝛼𝑛(𝑥𝑛− 𝑝) + (1 − 𝛼𝑛) (𝑦𝑛− 𝑝)󵄩󵄩󵄩󵄩 × 󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 − 𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛, 𝐽 (𝑥𝑛+1− 𝑝)⟩ ≤ (𝛼𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩) × 󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 − 𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛, 𝐽 (𝑥𝑛+1− 𝑝)⟩ = 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 − 𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛, 𝐽 (𝑥𝑛+1− 𝑝)⟩ ≤ 12(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ 󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2) − 𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛, 𝐽 (𝑥𝑛+1− 𝑝)⟩ , (35)

which immediately yields

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛, 𝐽 (𝑥𝑛+1− 𝑝)⟩ = 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 2𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛+1, 𝑘𝑛+1) + 𝑢𝑛+1, 𝐽 (𝑥𝑛+1− 𝑝)⟩ − 2𝛼𝑛𝜎𝑛⟨𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛− (𝑁 (𝑤𝑛+1, 𝑘𝑛+1) + 𝑢𝑛+1) , 𝐽 (𝑥𝑛+1− 𝑝)⟩ . (36)

Since 𝑁(⋅, ⋅) is 𝜙-strongly accretive with respect to 𝑇 and

𝐴(𝑔(⋅))is accretive, we deduce from (36) that

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 + 2𝛼𝑛𝜎𝑛[󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛+1, 𝑘𝑛+1) − 𝑁 (𝑤𝑛, 𝑘𝑛)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢𝑛+1− 𝑢𝑛󵄩󵄩󵄩󵄩]󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 + 2𝛼𝑛𝜎𝑛[󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛+1, 𝑘𝑛+1) − 𝑁 (𝑤𝑛+1, 𝑘𝑛)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛+1, 𝑘𝑛) − 𝑁 (𝑤𝑛, 𝑘𝑛)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢𝑛+1− 𝑢𝑛󵄩󵄩󵄩󵄩]󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 . (37)

Again from (32) we have that

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝 − 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛[󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 + 𝜎𝑛󵄩󵄩󵄩󵄩𝑁(𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩] + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛[𝑟 + 𝜎𝑛𝑀] + (1 − 𝛼𝑛) 𝑟 ≤ 2𝑟. (38)

Also, fromProposition 5,𝑉𝑥 = 𝑁(𝑇𝑥, 𝐹𝑥)is a single-valued

mapping; that is, for any𝑘, 𝑘󸀠 ∈ 𝐹𝑥and𝑤, 𝑤󸀠 ∈ 𝑇𝑥we have

𝑁(𝑤, 𝑘) = 𝑁(𝑤, 𝑘󸀠)and𝑁(𝑤, 𝑘) = 𝑁(𝑤󸀠, 𝑘). On the other

hand, it follows from Nadler [20] that, for𝑘𝑛+1 ∈ 𝐹𝑥𝑛+1and

𝑤𝑛+1∈ 𝑇𝑥𝑛+1, there exist𝑘𝑛󸀠 ∈ 𝐹𝑥𝑛and𝑤󸀠𝑛∈ 𝑇𝑥𝑛such that

󵄩󵄩󵄩󵄩

󵄩𝑘𝑛+1− 𝑘󸀠𝑛󵄩󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀) 𝐻 (𝐹𝑥𝑛+1, 𝐹𝑥𝑛) ,

󵄩󵄩󵄩󵄩

󵄩𝑤𝑛+1− 𝑤󸀠𝑛󵄩󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀) 𝐻 (𝑇𝑥𝑛+1, 𝑇𝑥𝑛) ,

(39)

respectively. Therefore, from (37) and (33), we have that

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (𝑟) 𝑟 + 2𝛼𝑛𝜎𝑛[󵄩󵄩󵄩󵄩󵄩𝑁(𝑤𝑛+1, 𝑘𝑛+1) − 𝑁 (𝑤𝑛+1, 𝑘󸀠𝑛)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑁(𝑤𝑛+1, 𝑘𝑛) − 𝑁 (𝑤𝑛󸀠, 𝑘𝑛)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢𝑛+1− 𝑢𝑛󵄩󵄩󵄩󵄩]2𝑟 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (𝑟) 𝑟 + 2𝛼𝑛𝜎𝑛[𝜉 (1 + 𝜀) 𝐻 (𝐹𝑥𝑛+1, 𝐹𝑥𝑛) + 𝜇 (1 + 𝜀) 𝐻 (𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + (1 + 𝜀) 𝐻 (𝐴 (𝑔 (𝑥𝑛+1)) , 𝐴 (𝑔 (𝑥𝑛)))] 2𝑟 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (𝑟) 𝑟 + 2𝛼𝑛𝜎𝑛[𝜙 (𝑟) 8 + 𝜙 (𝑟) 8 + 𝜙 (𝑟) 8 ] 2𝑟 = 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (𝑟) 𝑟 + 𝛼𝑛𝜎𝑛32𝜙 (𝑟) 𝑟 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2. (40)

So, we get‖𝑥𝑛+1− 𝑝‖ ≤ 𝑟, a contradiction. Therefore,{𝑥𝑛}is

bounded.

Let us show that lim𝑛 → ∞‖𝑥𝑛− 𝑦𝑛‖ = 0and lim𝑛 → ∞‖𝑥𝑛

(7)

Indeed, utilizingLemma 10and the nonexpansivity of the

mapping𝑥 󳨃→ 𝑥−(𝑁(𝑇𝑥, 𝐹𝑥)+𝐴(𝑔(𝑥))), we obtain from (32)

that for all𝑛 ≥ 0

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝛼𝑛[𝑥𝑛− 𝑝 − 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)] + (1 − 𝛼𝑛) (𝑦𝑛− 𝑝)󵄩󵄩󵄩󵄩2 ≤ 𝛼𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝 − 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩2 + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩2− 𝛼𝑛(1 − 𝛼𝑛) 𝜑 × (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) = 𝛼𝑛󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛− 𝑝) + 𝜎𝑛[𝑥𝑛− (𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛) − 𝑝]󵄩󵄩󵄩󵄩2 + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩2− 𝛼𝑛(1 − 𝛼𝑛) 𝜑 × (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) ≤ 𝛼𝑛[(1 − 𝜎𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 + 𝜎𝑛󵄩󵄩󵄩󵄩𝑥𝑛− (𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛) − 𝑝󵄩󵄩󵄩󵄩2 − 𝜎𝑛(1 − 𝜎𝑛) 𝜑1(󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩)] + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 𝛼𝑛(1 − 𝛼𝑛) 𝜑 × (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) ≤ 𝛼𝑛[(1 − 𝜎𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ 𝜎𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝜎𝑛(1 − 𝜎𝑛) 𝜑1(󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩)] + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 𝛼𝑛(1 − 𝛼𝑛) 𝜑 × (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) = 𝛼𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 𝛼𝑛𝜎𝑛(1 − 𝜎𝑛) 𝜑1 × (󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩) + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 𝛼𝑛(1 − 𝛼𝑛) 𝜑 × (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) = 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝛼𝑛𝜎𝑛(1 − 𝜎𝑛) 𝜑1(󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩) − 𝛼𝑛(1 − 𝛼𝑛) 𝜑 × (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2. (41)

It is easy to see that the limit lim𝑛 → ∞‖𝑥𝑛 − 𝑝‖ exists.

Meantime, it can be readily seen from (41) that

𝛼𝑛𝜎𝑛(1 − 𝜎𝑛) 𝜑1(󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩)

+ 𝛼𝑛(1 − 𝛼𝑛) 𝜑

× (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩)

≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2,

(42)

which together with conditions (i) and (iii) and the existence

of lim𝑛 → ∞‖𝑥𝑛− 𝑝‖, implies that

lim

𝑛 → ∞𝜑1(󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩) = 0,

lim

𝑛 → ∞𝜑 (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩) = 0.

(43)

Utilizing the properties of𝜑and𝜑1, we get

lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑁(𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩 = 0, lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩 = 0. (44) Note that 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛− 𝜎𝑛(𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛)󵄩󵄩󵄩󵄩 + 𝜎𝑛󵄩󵄩󵄩󵄩𝑁(𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩. (45) So, we have lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛󵄩󵄩󵄩󵄩 = 0. (46)

Also, observe that

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛𝜎𝑛󵄩󵄩󵄩󵄩𝑁(𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩

+ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛, 𝑘𝑛) + 𝑢𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛󵄩󵄩󵄩󵄩.

(47)

Thus, from (44) and (46) it follows that lim

𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑥𝑛󵄩󵄩󵄩󵄩 = 0. (48)

Let us show that lim𝑛 → ∞‖𝑥𝑛 − 𝐺𝑥𝑛‖ = lim𝑛 → ∞‖𝑥𝑛

(8)

Indeed, for simplicity, put 𝑞 = Π𝐶(𝑝 − 𝜇2𝐵2𝑝), 𝑢𝑛 =

Π𝐶(𝑥𝑛− 𝜇2𝐵2𝑥𝑛)andV𝑛 = Π𝐶(𝑢𝑛− 𝜇1𝐵1𝑢𝑛). ThenV𝑛= 𝐺𝑥𝑛

for all𝑛 ≥ 0. FromLemma 12we have

󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩Π𝐶(𝑥𝑛− 𝜇2𝐵2𝑥𝑛) − Π𝐶(𝑝 − 𝜇2𝐵2𝑝)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝 − 𝜇2(𝐵2𝑥𝑛− 𝐵2𝑝)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝜇2(𝛼2− 𝜅2𝜇2) × 󵄩󵄩󵄩󵄩𝐵2𝑥𝑛− 𝐵2𝑝󵄩󵄩󵄩󵄩2, (49) 󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩Π𝐶(𝑢𝑛− 𝜇1𝐵1𝑢𝑛) − Π𝐶(𝑞 − 𝜇1𝐵1𝑞)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞 − 𝜇1(𝐵1𝑢𝑛− 𝐵1𝑞)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2− 2𝜇1(𝛼1− 𝜅2𝜇1) × 󵄩󵄩󵄩󵄩𝐵1𝑢𝑛− 𝐵1𝑞󵄩󵄩󵄩󵄩2. (50)

Substituting (49) for (50), we obtain

󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2

− 2𝜇2(𝛼2− 𝜅2𝜇2) 󵄩󵄩󵄩󵄩𝐵2𝑥𝑛− 𝐵2𝑝󵄩󵄩󵄩󵄩2

− 2𝜇1(𝛼1− 𝜅2𝜇1) 󵄩󵄩󵄩󵄩𝐵1𝑢𝑛− 𝐵1𝑞󵄩󵄩󵄩󵄩2.

(51)

Utilizing [21, Proposition 1] andLemma 10, from (32) and (51)

we have 󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩2 ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩𝐺𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝛽𝑛(1 − 𝛽𝑛) 𝜑2(󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩) ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝛽𝑛(1 − 𝛽𝑛) 𝜑2(󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩) ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝛽𝑛(1 − 𝛽𝑛) 𝜑2(󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩) + (1 − 𝛽𝑛) [󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 2𝜇2(𝛼2− 𝜅2𝜇2) 󵄩󵄩󵄩󵄩𝐵2𝑥𝑛− 𝐵2𝑝󵄩󵄩󵄩󵄩2 − 2𝜇1(𝛼1− 𝜅2𝜇1) 󵄩󵄩󵄩󵄩𝐵1𝑢𝑛− 𝐵1𝑞󵄩󵄩󵄩󵄩2] = 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝛽𝑛(1 − 𝛽𝑛) 𝜑2(󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩) − 2 (1 − 𝛽𝑛) [𝜇2(𝛼2− 𝜅2𝜇2) 󵄩󵄩󵄩󵄩𝐵2𝑥𝑛− 𝐵2𝑝󵄩󵄩󵄩󵄩2 + 2𝜇1(𝛼1− 𝜅2𝜇1) 󵄩󵄩󵄩󵄩𝐵1𝑢𝑛− 𝐵1𝑞󵄩󵄩󵄩󵄩2] , (52) which hence implies that

𝛽𝑛(1 − 𝛽𝑛) 𝜑2(󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩) + 2 (1 − 𝛽𝑛) [𝜇2(𝛼2− 𝜅2𝜇2) × 󵄩󵄩󵄩󵄩𝐵2𝑥𝑛− 𝐵2𝑝󵄩󵄩󵄩󵄩2 + 𝜇1(𝛼1− 𝜅2𝜇1) × 󵄩󵄩󵄩󵄩𝐵1𝑢𝑛− 𝐵1𝑞󵄩󵄩󵄩󵄩2] ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩2 ≤ (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 +󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛󵄩󵄩󵄩󵄩. (53)

Since0 < 𝜇𝑖 < 𝛼𝑖/𝜅2for𝑖 = 1, 2and{𝑥𝑛},{𝑦𝑛}are bounded,

we obtain from (46), (53), condition (ii) and the properties of

𝜑2that lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝐵2𝑥𝑛− 𝐵2𝑝󵄩󵄩󵄩󵄩 =𝑛 → ∞lim 󵄩󵄩󵄩󵄩𝐵1𝑢𝑛− 𝐵1𝑞󵄩󵄩󵄩󵄩 = 0, lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩 = 0. (54)

UtilizingProposition 3andLemma 8, we have

󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩Π𝐶(𝑥𝑛− 𝜇2𝐵2𝑥𝑛) − Π𝐶(𝑝 − 𝜇2𝐵2𝑝)󵄩󵄩󵄩󵄩2 ≤ ⟨𝑥𝑛− 𝜇2𝐵2𝑥𝑛− (𝑝 − 𝜇2𝐵2𝑝) , 𝐽 (𝑢𝑛− 𝑞)⟩ = ⟨𝑥𝑛− 𝑝, 𝐽 (𝑢𝑛− 𝑞)⟩ + 𝜇2⟨𝐵2𝑝 − 𝐵2𝑥𝑛, 𝐽 (𝑢𝑛− 𝑞)⟩ ≤ 12[󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ 󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2 − 𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) ] + 𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 , (55)

which implies that

󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2

− 𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩)

+ 2𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 .

(9)

In the same way, we derive 󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩Π𝐶(𝑢𝑛− 𝜇1𝐵1𝑢𝑛) − Π𝐶(𝑞 − 𝜇1𝐵1𝑞)󵄩󵄩󵄩󵄩2 ≤ ⟨𝑢𝑛− 𝜇1𝐵1𝑢𝑛− (𝑞 − 𝜇1𝐵1𝑞) , 𝐽 (V𝑛− 𝑝)⟩ = ⟨𝑢𝑛− 𝑞, 𝐽 (V𝑛− 𝑝)⟩ + 𝜇1⟨𝐵1𝑞 − 𝐵1𝑢𝑛, 𝐽 (V𝑛− 𝑝)⟩ ≤12[󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2+ 󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2 −𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) ] + 𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 , (57)

which implies that

󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2≤ 󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩2

− 𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩)

+ 2𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 .

(58)

Substituting (56) for (58), we get

󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) − 𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) + 2𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 + 2𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 . (59)

ByLemma 7, we have from (52) and (59)

󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩2 ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩2 ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2+ (1 − 𝛽𝑛) × [󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2 − 𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) − 𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) + 2𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 + 2𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 ] ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− (1 − 𝛽𝑛) × [𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) + 𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩)] + 2𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 + 2𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 , (60) which hence leads to

(1 − 𝛽𝑛) [𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) +𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩)] ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩2 + 2𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 + 2𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 ≤ (󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 +󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥𝑛− 𝑦𝑛󵄩󵄩󵄩󵄩 + 2𝜇2󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵2𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢𝑛− 𝑞󵄩󵄩󵄩󵄩 + 2𝜇1󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵1𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V𝑛− 𝑝󵄩󵄩󵄩󵄩 . (61)

From (46), (54), (61), condition (ii), and the boundedness of

{𝑥𝑛},{𝑦𝑛},{𝑢𝑛}, and{V𝑛}, we deduce that

lim

𝑛 → ∞𝜓1(󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) = 0,

lim

𝑛 → ∞𝜓2(󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩) = 0.

(62)

Utilizing the properties of𝜓1and𝜓2, we deduce that

lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩 = 0, lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩 = 0. (63) From (63) we get 󵄩󵄩󵄩󵄩𝑥𝑛−V𝑛󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑢𝑛− (𝑝 − 𝑞)󵄩󵄩󵄩󵄩 +󵄩󵄩󵄩󵄩𝑢𝑛−V𝑛+ (𝑝 − 𝑞)󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞, (64)

which together with (54), leads to lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛− 𝐺𝑥𝑛󵄩󵄩󵄩󵄩 = 0, lim 𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛− 𝑆𝑛𝑥𝑛󵄩󵄩󵄩󵄩 = 0. (65) Since 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑆𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑆𝑛𝑥𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝑆𝑥𝑛󵄩󵄩󵄩󵄩. (66)

Utilizing the assumption on{𝑆𝑛}andLemma 11, from (65) we

get

lim

(10)

Next, let us show that{𝑥𝑛}converges weakly to some𝑥 ∈ Δ.

Indeed, since 𝑋 is reflexive and{𝑥𝑛} is bounded, there

exists a subsequence{𝑥𝑛𝑖}of{𝑥𝑛}such that𝑥𝑛𝑖 ⇀ 𝑥 ∈ 𝐶. Then

byLemma 6, we obtain from (44), (65), and (67) that𝑥 ∈ Γ,

𝑥 ∈Fix(𝐺) = Ω, and𝑥 ∈Fix(𝑆) = ⋂∞𝑖=0Fix(𝑆𝑖). Thus,𝑥 ∈ Δ.

In addition, if{𝑥𝑚𝑗}is another subsequence of{𝑥𝑛}such that

𝑥𝑚𝑗 ⇀ ̂𝑥, then byLemma 6we also deduce from (44), (65),

and (67) that ̂𝑥 ∈ Δ. Thus, the limits lim𝑛 → ∞‖𝑥𝑛− 𝑥‖and

lim𝑛 → ∞‖𝑥𝑛 − ̂𝑥‖exist. Now we claim that𝑥 = ̂𝑥. Assume

that𝑥 ̸= ̂𝑥. Then in terms of Opial’s condition, we get

lim

𝑛 → ∞󵄩󵄩󵄩󵄩𝑥𝑛− 𝑥󵄩󵄩󵄩󵄩 =lim sup𝑖 → ∞ 󵄩󵄩󵄩󵄩󵄩𝑥𝑛𝑖− 𝑥󵄩󵄩󵄩󵄩󵄩 <lim sup

𝑖 → ∞ 󵄩󵄩󵄩󵄩󵄩𝑥𝑛𝑖− ̂𝑥󵄩󵄩󵄩󵄩󵄩 =lim sup 𝑛 → ∞ 󵄩󵄩󵄩󵄩𝑥𝑛− ̂𝑥󵄩󵄩󵄩󵄩 =lim sup𝑗 → ∞ 󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑚𝑗− ̂𝑥󵄩󵄩󵄩󵄩󵄩󵄩 <lim sup 𝑗 → ∞ 󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑚𝑗− 𝑥󵄩󵄩󵄩󵄩󵄩󵄩 =𝑛 → ∞lim 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑥󵄩󵄩󵄩󵄩 , (68)

which leads to a contradiction. So, we must have 𝑥 = ̂𝑥.

Therefore,𝑥𝑛 ⇀ 𝑥 ∈ Δ. This completes the proof.

Theorem 15. Let 𝑋be a uniformly convex and2-uniformly

smooth Banach space and let𝐶be a nonempty closed convex

subset of 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π𝐶 be a sunny

nonexpansive retraction from𝑋onto𝐶. Let𝑇and𝐹 : 𝑋 →

𝐶𝐵(𝑋)and let𝐴 : 𝐶 → 2𝐶be three multivalued mappings,

let𝑔 : 𝑋 → 𝐶be a single-valued mapping, and let𝑁(⋅, ⋅) :

𝑋 × 𝑋 → 𝐶be a single-valued continuous mapping satisfying

conditions (C1)–(C5) inTheorem 2. Let𝐵𝑖 : 𝐶 → 𝑋be𝛼𝑖

-inverse strongly accretive for𝑖 = 1, 2. Let{𝑆𝑖}∞𝑖=0be a countable

family of nonexpansive mappings of𝐶into itself such thatΔ :=

⋂∞𝑖=0Fix(𝑆𝑖) ∩ Ω ∩ Γ ̸= 0, whereΩis the fixed point set of the

mapping𝐺 = Π𝐶(𝐼 − 𝜇1𝐵1𝐶(𝐼 − 𝜇2𝐵2)with0 < 𝜇𝑖< 𝛼𝑖/𝜅2

for𝑖 = 1, 2. Let{𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1], and{𝜎𝑛} ⊂ (0, ∞)such

thatlim𝑛 → ∞𝛼𝑛𝜎𝑛 = 0 and∑∞𝑛=0𝛼𝑛𝜎𝑛 = ∞. For arbitrary

𝑥0 ∈ 𝐶define the sequence{𝑥𝑛}iteratively by(32), where{𝑢𝑛}

is defined by (33) for any 𝑤𝑛 ∈ 𝑇𝑥𝑛,𝑘𝑛 ∈ 𝐹𝑥𝑛 and some

𝜀 > 0. Then, there exists𝑑 > 0such that for0 < 𝛼𝑛𝜎𝑛 ≤ 𝑑,

for all𝑛 ≥ 0, {𝑥𝑛} converges strongly to 𝑝 ∈ Δ provided

lim𝑛 → ∞‖𝑥𝑛+1− 𝑥𝑛‖ = 0; in this case, for any𝑤 ∈ 𝑇𝑥,𝑘 ∈ 𝐹𝑥,

(𝑥, 𝑤, 𝑘)is a solution of the MVVI(15).

Proof. First of all, repeating the same arguments as those in

the proof ofTheorem 14, we can prove that for anyV ∈ 𝐶,

𝜆 > 0, there exists a point ̃𝑥 ∈ 𝐷(𝐴) = 𝐶such that(̃𝑥, 𝑤, 𝑘)is

a solution of the MVVI (14), for any𝑤 ∈ 𝑇̃𝑥and𝑘 ∈ 𝐹̃𝑥. In

addition, in terms ofProposition 5we know that𝑉 + 𝜆𝐴 ∘ 𝑔

is a single-valued mapping due to the fact that𝑉 + 𝜆𝐴 ∘ 𝑔is

𝜙-strongly accretive. Meantime, byLemma 13we know that

𝐺 : 𝐶 → 𝐶is nonexpansive.

Without loss of generality we may assume thatV= 0and

𝜆 = 1. Let𝑝 ∈ Δ and let𝑟 > 0be sufficiently large such

that𝑥0 ∈ 𝐵𝑟(𝑝) =: 𝐵. Let𝑀 := sup{‖𝑢‖ : 𝑢 ∈ 𝑁(𝑤, 𝑘) +

𝐴(𝑔(𝑥)), 𝑥 ∈ 𝐵, 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥}. Then as𝐴 ∘ 𝑔, 𝑇and𝐹

are𝐻-uniformly continuous on𝑋, for𝜀1 := 𝜙(𝑟)/8(1 + 𝜀)

and𝜀2 := 𝜙(𝑟)/8𝜇(1 + 𝜀),𝜀3 := 𝜙(𝑟)/8𝜉(1 + 𝜀), there exist

𝛿1, 𝛿2, 𝛿3 > 0such that for any𝑥, 𝑦 ∈ 𝑋, ‖𝑥 − 𝑦‖ < 𝛿1,

‖𝑥 − 𝑦‖ < 𝛿2, and ‖𝑥 − 𝑦‖ < 𝛿3 imply 𝐻(𝐴 ∘ 𝑔(𝑥), 𝐴 ∘

𝑔(𝑦)) < 𝜀1,𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀2and𝐻(𝐹𝑥, 𝐹𝑦) < 𝜀3, respectively.

Let 𝑑 := (1/2)min{𝛿2/𝑀, 𝛿3/𝑀, 𝛿1/𝑀, 𝑟/𝑀}. Taking into

account lim𝑛 → ∞𝛼𝑛𝜎𝑛= 0we may assume that0 < 𝛼𝑛𝜎𝑛≤ 𝑑,

for all𝑛 ≥ 0.

Let us show that𝑥𝑛 ∈ 𝐵for all𝑛 ≥ 0. We show this by

induction. First,𝑥0∈ 𝐵by construction. Assume that𝑥𝑛 ∈ 𝐵.

We show that𝑥𝑛+1 ∈ 𝐵. If possible we assume that𝑥𝑛+1 ∉ 𝐵,

then‖𝑥𝑛+1− 𝑝‖ > 𝑟. Further from (32) it follows that

󵄩󵄩󵄩󵄩𝑦𝑛− 𝑝󵄩󵄩󵄩󵄩 ≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩𝐺𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩

≤ 𝛽𝑛󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩 .

(69)

Repeating the same arguments as those of (37) in the proof

ofTheorem 14, we can get

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 + 2𝛼𝑛𝜎𝑛[󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛+1, 𝑘𝑛+1) − 𝑁 (𝑤𝑛, 𝑘𝑛)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢𝑛+1− 𝑢𝑛󵄩󵄩󵄩󵄩]󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛− 𝑝󵄩󵄩󵄩󵄩2− 2𝛼𝑛𝜎𝑛𝜙 (󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 + 2𝛼𝑛𝜎𝑛[󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛+1, 𝑘𝑛+1) − 𝑁 (𝑤𝑛+1, 𝑘𝑛)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑁 (𝑤𝑛+1, 𝑘𝑛) − 𝑁 (𝑤𝑛, 𝑘𝑛)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢𝑛+1− 𝑢𝑛󵄩󵄩󵄩󵄩]󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑝󵄩󵄩󵄩󵄩 . (70)

Utilizing (33) and (70) and repeating the same arguments

as those of (40) in the proof ofTheorem 14, we can derive

‖𝑥𝑛+1− 𝑝‖2 ≤ ‖𝑥𝑛− 𝑝‖2. So, we have‖𝑥𝑛+1 − 𝑝‖ ≤ 𝑟, a

contradiction. Therefore,{𝑥𝑛}is bounded.

Next let us show that𝑥𝑛 → 𝑥as𝑛 → ∞.

Indeed, since ‖𝑥𝑛+1 − 𝑥𝑛‖ → 0as𝑛 → ∞, we have

that 𝐻(𝐴(𝑔(𝑥𝑛+1)), 𝐴(𝑔(𝑥𝑛))) → 0 and ‖𝑁(𝑤𝑛+1, 𝑘𝑛+1) −

𝑁(𝑤𝑛, 𝑘𝑛)‖ → 0as𝑛 → ∞. The conclusion now follows

from inequality (70) with the use ofProposition 3and hence

(𝑥, 𝑤, 𝑘)is a solution of the MVVI (15) for any 𝑤 ∈ 𝑇𝑥,

𝑘 ∈ 𝐹𝑥. This completes the proof.

Remark 16. Theorems14and15improve, extend, supplement,

and develop [4, Theorem 3.2] and [2, Theorem 3.1] in the following aspects.

(i) The problem of finding a point of⋂∞𝑖=0Fix(𝑆𝑖) ∩ Ω ∩ Γ

in Theorems14and15is more general and more subtle

than every one of the problem of finding a point ofΓ

in [4, Theorem 3.2] and the problem of finding a point

of⋂∞𝑖=1Fix(𝑆𝑖) ∩ Ωin [2, Theorem 3.1].

(ii) The iterative scheme in [2, Theorem 3.1] is extended to

develop the iterative scheme (32) of Theorems14and

15by virtue of the iterative schemes of [4, Theorems

3.2]. The iterative scheme (32) of Theorems 14 and

References

Related documents

Ami infant or a child with persistent vom- iting is thirsty, crying, and the vomiting excites him. Intramuscular aciniimi istratiomi of secoharhital sociiimm quiets the

Next, the comparative regulatory effects of nimbidin with known antioxidant N-Acetyl Cysteine (NAC) as well as NF-κB inhibitor SN50 and its control peptide SN50M, on

When the age of the woman is controlled for, the risks of having a second child (Table 6a) decrease significantly for all marriage cohorts of sharecroppers and farmers, for the last

Computing the solution for the planning problem, where abrupt change in demand exists in the demand pattern, involves the determination of the type of weekly working hours to

freedom for model fit; AD: Alzheimer ’ s disease; APOE : Apolipoprotein E ; CFI: Comparative fit index; CR: Cognitive reserve; CR-P: E-CR + L-CR; DLB: Dementia with Lewy bodies;

Phylogenetic analyses of homeodomains divide the TALE class into six gene families (Figure 3; Additional files 1, 2 and 5), including an Mkx family con- taining the recently described

Induction of robust intraneuronal α S pathology by ex- ogenous Δ 71-82 α S challenge does not appear to be attrib- utable to the neonatal injection paradigm as we have observed

To determine if the loss of TRPML1 or the activation of microglia or astrocytes observed in the Mcoln1 − / − brain affects the physiological status of neurons, we measured