• No results found

Representation Number Formulae for Some Mixed Quadratic Forms

N/A
N/A
Protected

Academic year: 2020

Share "Representation Number Formulae for Some Mixed Quadratic Forms"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

ISSN 1307-5543 – www.ejpam.com

Representation Number Formulae for Some Mixed Quadratic

Forms

Bülent Köklüce

Faculty of Education, Fatih University, Istanbul, Turkey

Abstract. We find formulae for the number of representations of a positive integer by some quadratic forms which are sums of squares and the formx12+x1x2+x22.

2010 Mathematics Subject Classifications: 11A25,11E25

Key Words and Phrases: Quadratic Forms, Representation Numbers

1. Introduction

LetN,N0,ZandCdenote the set of natural numbers, non-negative integers, integers and complex numbers so thatN0=N∪ {0}. Fork,n∈Nwe define

σk(n):= X d∈N d|n

dk (1)

where d runs through the positive integers dividingn. We write σ(n)forσ1(n) = P

d∈N d|n

d. If

n/N, we setσk(n) =0. Fora1, . . . ,a6∈Nandn∈N0we define

M(a1,a2,a3,a4,a5,a6;n):=car d

  

x1, . . . ,x8

∈Z8:

n=a1x12+a2x22+a3x32+a4x42

+a5(x52+x5x6+x62) +a6(x72+x7x8+x82)

  

. (2)

With our notation, the representation number formulae for

M(1, 1, 1, 1, 2, 2;n), M(3, 3, 3, 3, 2, 2;n), M(1, 1, 1, 1, 1, 1;n), M(3, 3, 3, 3, 1, 1;n),

M(1, 1, 3, 3, 1, 1;n), M(1, 1, 3, 3, 2, 2;n), M(1, 1, 3, 3, 4, 4;n), M(1, 1, 3, 3, 1, 2;n),

M(1, 1, 3, 3, 1, 4;n), M(1, 1, 3, 3, 2, 4;n), M(1, 1, 1, 1, 1, 2;n), M(3, 3, 3, 3, 1, 2;n),

M(1, 1, 1, 1, 1, 4;n), M(3, 3, 3, 3, 1, 4;n), M(1, 1, 1, 1, 2, 4;n), M(3, 3, 3, 3, 2, 4;n)

Email address:bkokluce@fatih.edu.tr

(2)

are given in[5]respectively by the equations from (2.10) to (2.25). In that study the authors firstly uses the(pk)parametrization of theta functions given by Alaca, Alaca and Williams to establish some new theta function identities and then uses them to determine formulae for the number of representations of positive integers by certain quadratic forms.

The aim of this paper is to determine explicit formulae for

M(1, 1, 2, 2, 2, 2;n), M(2, 2, 2, 2, 1, 1;n), M(3, 3, 6, 6, 4, 4;n), M(1, 1, 1, 1, 6, 6;n),

M(3, 3, 6, 6, 2, 2;n), M(1, 1, 2, 2, 1, 1;n), M(1, 1, 2, 2, 4, 4;n), M(3, 3, 6, 6, 1, 1;n),

M(1, 1, 3, 3, 6, 6;n), M(1, 2, 2, 4, 2, 2;n), M(1, 2, 2, 4, 4, 4;n)

.

We use some known representation number formulae for quaternary quadratic forms and convolutions sums of divisors. The method firstly have been used by Alaca, Alaca and Williams. The quadratic forms considered here have not been considered before. As in[5]the formulae are given in terms ofσ3(n)and the numbersc1,6(n),c1,8(n),c1,12(n),c3,4(n),c1,18(n),c2,9(n),

c1,24(n),c3,8(n).

The representation numbers for the quaternary quadratic forms

f1:=x21+x 2 2+x

2 3+x

2

4, (3)

f2:=x21+x 2 2+2x

2 3+2x

2

4, (4)

f3:=x21+x 2 2+3x

2 3+3x

2

4, (5)

f4:=x21+2x22+2x32+4x24, (6)

f5:=x21+x1x2+x22+x 2

3+x3x4+x42, (7)

have been determined before. Forl∈N0, if we set

ri(l) =car d x1, . . . ,x4Z4:l = fi(x1,x2,x3,x4)

then clearlyri(0) =1 for each i∈ {1, 2, 3, 4, 5}. It is known (see for example[4]for the first four and[7]for the last one) that forl∈N,

r1(l) =8σ(l)−32σ(

l

4), (8)

r2(l) =4σ(l)−4σ(

l

2) +8σ(

l

4)−32σ(

l

8), (9)

r3(l) =4σ(l)8σ(l

2)−12σ(

l

3) +16σ(

l

4) +24σ(

l

6)−48σ(

l

12), (10)

r4(l) =2σ(l)−2σ(

l

2) +8σ(

l

8)−32σ(

l

16), (11)

r5(l) =12σ(l)−36σ(

l

3). (12)

Forr,s,n∈Nwithrsthe convolution sumWr,s(n)is defined by

Wr,s(n):= X

(l,m)∈N20 r l+sm=n

(3)

r,s 1,1

W1,2(n)andW1,4(n),[7–9, 11]forW1,3(n),[3]forW1,6(n)andW2,3(n),[12]forW1,8(n),[1]

forW1,12(n)andW3,4(n), and[2]forW1,24(n)andW3,8(n).

Theorem 1. Let nN then, (i)

M(1, 1, 2, 2, 2, 2;n) =14

5 σ3(n)− 14

5 σ3(

n

2)− 54

5 σ3(

n

3) + 28

5 σ3(

n

4) + 54

5σ3(

n

6) −448

5 σ3(

n

8)− 108

5 σ3(

n

12) + 1728

5 σ3(

n

24) + 6 5c1,6(n) +12

5 c1,6(

n

2)− 12

5 c3,4(

n

2),

(ii)

M(2, 2, 2, 2, 1, 1;n) =21

5 σ3(n) + 91

5 σ3(

n

2)− 81

5 σ3(

n

3)− 84

5 σ3(

n

4)− 351

5 σ3(

n

6) − 448

5 σ3(

n

8) + 324

5 σ3(

n

12) + 1728

5 σ3(

n

24) + 12

5 c1,6(n) +6c1,8(n)3

5c3,8(n),

(iii)

M(3, 3, 6, 6, 4, 4;n) = 1

10σ3(n)− 1 10σ3(

n

2)− 21 10σ3(

n

3) + 4 5σ3(

n

4) + 21 10σ3(

n

6) −64

5 σ3(

n

8)− 84

5 σ3(

n

12) + 1344

5 σ3(

n

24) + 2 5c1,6(

n

2) +16

5 c1,6(

n

4)− 1

10c3,4(n),

(iv)

M(1, 1, 1, 1, 6, 6;n) = 8

15σ3(n) + 76 15σ3(

n

3)− 128

15 σ3(

n

4)− 108

5 σ3(

n

9) − 1216

15 σ3(

n

12) + 1728

5 σ3(

n

36)− 4

5c1,6(n) + 16

5 c1,6(

n

2) + 124

5 c1,18(n)− 16 15c2,9(

n

2),

(v)

M(3, 3, 6, 6, 2, 2;n) =2

5σ3(n)− 2 5σ3(

n

2)− 42

5 σ3(

n

3) + 4 5σ3(

n

4) + 42

5 σ3(

n

6) −645 σ3(

n

8)− 84

5 σ3(

n

12) + 1344

5 σ3(

n

24)− 2 5c1,6(n) −4

5c1,6(

n

2) + 44

5 c1,12(

n

(4)

(vi)

M(1, 1, 2, 2, 1, 1;n) =56

5 σ3(n)− 56

5 σ3(

n

2)− 216

5 σ3(

n

3) + 28

5 σ3(

n

4) + 216

5 σ3(

n

6) −448

5 σ3(

n

8)− 108

5 σ3(

n

12) + 1728

5 σ3(

n

24)− 6 5c1,6(n) +6c1,8(n) +

3

5c3,4(n)− 3

5c3,8(n),

(vii)

M(1, 1, 2, 2, 4, 4;n) = 7

10σ3(n)− 7 10σ3(

n

2)− 27 10σ3(

n

3) + 28

5 σ3(

n

4) + 27 10σ3(

n

6) −4485 σ3(

n

8)− 108

5 σ3(

n

12) + 1728

5 σ3(

n

24)− 6 5c1,6(

n

2) −48

5 c1,6(

n

4) + 33

10c1,12(n),

(viii)

M(3, 3, 6, 6, 1, 1;n) =8

5σ3(n)− 8 5σ3(

n

2)− 168

5 σ3(

n

3) + 4 5σ3(

n

4) + 168

5 σ3(

n

6) −64

5 σ3(

n

8)− 84

5 σ3(

n

12) + 1344

5 σ3(

n

24) + 2 5c1,6(n) −18c1,8(

n

3)− 11

5 c1,12(n) + 61

5 c1,24(n),

(ix)

M(1, 1, 3, 3, 6, 6;n) = 4

15σ3(n)− 8 15σ3(

n

2)− 88 15σ3(

n

3) + 64 15σ3(

n

4) + 176

15 σ3(

n

6) + 108

5 σ3(

n

9)− 1408

15 σ3(

n

12)− 216

5 σ3(

n

18)− 2 5c1,6(n) − 8

5c1,6(

n

2)− 18

5 c1,6(

n

3) + 1728

5 σ3(

n

36)− 72

5 c1,6(

n

6) − 16

3 c1,9(

n

2) + 62

15c1,18(n) + 8 15c2,9(

n

2),

(x)

M(1, 2, 2, 4, 2, 2;n) =7

5σ3(n)− 7 5σ3(

n

2)− 27

5 σ3(

n

3) + 27

5 σ3(

n

6) + 28

5 σ3(

n

8) − 448

5 σ3(

n

16)− 108

5 σ3(

n

24) + 1728

5 σ3(

n

48) + 3 5c1,6(n) +6c1,8(

n

2) + 3 5c3,4(

n

2)− 3 5c3,8(

n

(5)

M(1, 2, 2, 4, 4, 4;n) = 7

20σ3(n)− 7 20σ3(

n

2)− 27 20σ3(

n

3) + 27 20σ3(

n

6) + 28

5σ3(

n

8) −448

5 σ3(

n

16)− 108

5 σ3(

n

24) + 1728

5 σ3(

n

48)− 3 5c1,6(

n

2) +12

5 c1,6(

n

4) + 33

20c1,12(n)− 12

5 c3,4(

n

4),

2. Proof of Theorem 1

In this section we give the proof of Theorem 1. (i). The remaining parts can be proved by a similar way.

Proof. [(i)]The formf :=x12+x22+2x32+2x24+2x52+2x5x6+2x62+2x 2

7+2x7x8+2x82clearly

can be obtained from the sum of the quaternary quadratic forms f2 := x21+x 2 2+2x

2 3+2x

2 4

and f5:=x12+x1x2+x22+x32+x3x4+x42. It is obvious that

M(1, 1, 2, 2, 2, 2;n) = X

l,m∈N0 l+2m=n

r2(l)r5(m)

=r1(0)r5(

n

2) +r1(n)r5(0) + X l,m∈N l+2m=n

r2(l)r5(m).

Thus by using the equations (9) and (12) we have

M(1, 1, 2, 2, 2, 2;n)−(4σ(n)−4σ(n

2) +8σ(

n

4)−32σ(

n

8) +12σ(n)−36σ(

n

3))

= X

l,m∈N l+2m=n

(4σ(l)−4σ(l

2) +8σ(

l

4)−32σ(

l

8))(12σ(m)−36σ(

m

3))

=48 X

l,m∈N l+2m=n

σ(l)σ(m)−144 X l,m∈N l+2m=n

σ(l)σ(m

3)−48 X

l,m∈N l+2m=n

σ(l 2)σ(m)

+144 X

l,m∈N l+2m=n

σ(l 2)σ(

m

3) +96 X

l,m∈N l+2m=n

σ(l

4)σ(m)−288 X

l,m∈N l+2m=n

σ(l 4)σ(

m

3)

−384 X l,m∈N l+2m=n

σ(l

8)σ(m) +1156 X

l,m∈N l+2m=n

σ(l 8)σ(

m

3).

So,

M(1, 1, 2, 2, 2, 2;n) =4σ(n)−4σ(n

2) +8σ(

n

4)−32σ(

n

(6)

−36σ(n

3) +48W1,2(n)−144W1,6(n)−48W1,1(

n

2) +144W1,3(n

2) +96W1,2(

n

2)−288W2,3(

n

2) −384W1,4(

n

2) +1156W3,4(

n

2) (13)

where

W1,1(n) = 5

12σ3(n)−

n

2σ(n) + 1

12σ(n), (14)

W1,2(n) =

1

12σ3(n) + 1 3σ3(

n

2)−

n

8σ(n)−

n

4σ(

n

2) + 1

24σ(n) + 1 24σ(

n

2), (15)

W1,3(n) =

1

24σ3(n) + 3 8σ3(

n

3)− 1

12(n)− 1 4(

n

3) + 1 24σ(n)

+ 1

24σ(

n

3), (16)

W1,4(n) =

1

48σ3(n) + 1 16σ3(

n

2) + 1 3σ(

n

4)−

n

16σ(n)−

n

4σ(

n

4) + 1 24σ(n)

+ 1

24σ(

n

4), (17)

W1,6(n) =

1

120σ3(n) + 1 30σ3(

n

2) + 3 40σ3(

n

3) + 3 10σ3(

n

6) + ( 1 24 −

n

24)σ(n) + ( 1

24 −

n

4)σ(

n

6)− 1

120c1,6(n) (18)

W2,3(n) =

1

120σ3(n) + 1 30σ3(

n

2) + 3 40σ3(

n

3) + 3 10σ3(

n

6) + ( 1 24 −

n

12)σ(

n

2) + ( 1

24 −

n

8)σ(

n

3)− 1

120c1,6(n), (19)

where

X n=1

c1,6(n)qn=q

Y n=1

(1−qn)2(1−q2n)2(1−q3n)2(1−q6n)2, (20)

and

W3,4(n) =

1

480σ3(n) + 1 160σ3(

n

2) + 3 160σ3(

n

3) + 1 30σ3(

n

4) + 9 160σ3(

n

6) + 3

10σ3(

n

12) + ( 1 24−

n

16)σ(

n

3) + ( 1 24−

n

12)σ(

n

4) − 1

480c3,4(n), (21)

where

X n=1

c3,4(n)qn=10q2 ∞

Y n=1

(7)

+q

n=1

(1qn)−2(1q2n)8(1q3n)−2(1q4n)−2(1q6n)8(1q12n)−2. (22) In any formulan∈Nandq∈C. Substituting (14)-(22) in (13) gives

M(1, 1, 2, 2, 2, 2;n) =14

5σ3(n)− 14

5 σ3(

n

2)− 54

5σ3(

n

3) + 28

5 σ3(

n

4) + 54

5 σ3(

n

6) − 448

5 σ3(

n

8)− 108

5 σ3(

n

12) + 1728

5 σ3(

n

24) + 6 5c1,6(n) + 12

5 c1,6(

n

2)− 12

5 c3,4(

n

2), (23)

which is the asserted formula.

Denoting the right hand side of (23) byF(n), we give a list of values ofM(1, 1, 1, 1, 2, 2;n)

andF(n)in Table 1 to illustrate the equations.

Table 1: The first ten values of M(1, 1, 1, 1, 2, 2;n)andF(n)

n M(1, 1, 2, 2, 2, 2;n) σ3(n) c1,6(n) c1,6(n2) c3,4(n2) F(n)

1 4 1 1 0 0 4

2 20 9 2 1 1 20

3 64 28 3 0 0 64

4 156 73 4 −2 12 156

5 360 126 6 0 0 360

6 620 252 6 3 33 620

7 944 344 −16 0 0 944

8 1452 585 8 4 24 1452

9 1828 757 9 0 0 1828

10 2520 1134 −12 6 126 2520

References

[1] A. Alaca, ¸S. Alaca, and K. S. Williams. Evaluation of the convolution sums P

l+12m=n

σ(l)σ(m)and P

3l+4m=n

σ(l)σ(m), Advances in Theoretical and Applied Mathemat-ics, 1, 1, 27–48. 2006.

[2] A. Alaca, ¸S. Alaca, and K. S. Williams. Evaluation of the convolution sums P

l+24m=n

σ(l)σ(m) and P

3l+8m=n

σ(l)σ(m), Mathematical Journal of Okayama University, 49, 93–111. 2007.

[3] S. Alaca and K. S. Williams. Evaluation of the convolution sums¸ P l+6m=n

σ(l)σ(m) and P

2l+3m=n

(8)

[4] A. Alaca, ¸S. Alaca, M. F. Lemire, and K. S. Williams. Nineteen quaternary quadratic forms, Acta Arithmetica, 130, 277–310. 2007.

[5] X. W. X. Ernest and X. M. Y. Olivia. On the representations of integers by certain quadratic forms, International Journal of Number Theory, 9, 189–204. 2013.

[6] J. W. L. Glaisher. On the square of the series in which the coefficients are the sums of the divisors of the exponents, Messenger of Mathematics, 14, 156–163. 1885.

[7] J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams. “Elementary Theory for the Millenium II” edited by M.A. Bennet, B. C. Berndt, N. Boston, H. G. Diamond, A. J. H. Hildebrand, and W. Philipp, A. K. Peters, Natick, Massachusetts, pp. 229–274. 2002.

[8] G. Melfi. “On some modular identities” Number Theory (K. Györy, A.Pethö, and V. Sos, eds), de Gruyter, Berlin, pp. 371–382. 1998.

[9] G. Melfi. “Some Problems in Elementary Number Theory and Modular Forms,” Ph.D. thesis, University of Pisa. 1998.

[10] K.S. Ramanujan. On certain arithmetical functions, Transactions of the Cambridge Philo-sophical Society, 22, 159–184. 1916.

[11] K. S. Williams. A cubic transformation formula for 2F(12,23; 1,z) and some arithmetic convolution formulae, Mathematical Proceedings of the Cambridge Philosophical Soci-ety, 137, pp 519–539. 2004.

[12] K. S. Williams. The convolution sum P m<n

8

Figure

Table 1: The first ten values of M (1, 1, 1, 1, 2, 2; n) and F (n)

References

Related documents

The aim of this research is to investigate the comfort and safety of a novel device for measuring P-A trunk stiffness in a sample of young adults.. Methods: A sample of young

It was decided that with the presence of such significant red flag signs that she should undergo advanced imaging, in this case an MRI, that revealed an underlying malignancy, which

After Day, in the lighting of Moon Night wakens under a prayer to call hush to Day, time to commune. with Night, windswept under

To conclude, this data analysis shows that the extensive reading practice lets students learn new incidental vocabulary in context, acquire new knowledge, use different

Since, financial development of India as of late is driven principally by administrations division and inside administrations segment by data innovation (IT) and

There are infinitely many principles of justice (conclusion). 24 “These, Socrates, said Parmenides, are a few, and only a few of the difficulties in which we are involved if

A.. Banks were asked to indicate to what degree their involvement with SMEs is driven by the factors presented in this figure. The options available to qualify the importance of

In dimeric unit (ii) two copper (II) atoms are bridged via four thio- phene carboxylate anions while the apical positions are occupied by AMPY molecule and Cu atom, thus forming