• No results found

ÔÔÐÝ Ò ÖÙÐ º ºÖ Ù Ò Ù ¹ ÓÖÑÙÐ µøóó ÖÐÝÑ ÝØ Ù Ð Ø ÓÖÑÙÐ ÔÖÓÓ Ö Ø ÒØ Ö ØÖ Ø ÓÒ Ù ÓÖÑÙÐ ØÓ Ð Ø ÖÓÑ ÕÙ Òغ «Ö Ò ØÛ ÒÐ Ð Ò ÒØÙ Ø ÓÒ Ø Ö ÓÒ Ò ÜÔÖ Ý ÖØ Ò Ö Ø

N/A
N/A
Protected

Academic year: 2021

Share "ÔÔÐÝ Ò ÖÙÐ º ºÖ Ù Ò Ù ¹ ÓÖÑÙÐ µøóó ÖÐÝÑ ÝØ Ù Ð Ø ÓÖÑÙÐ ÔÖÓÓ Ö Ø ÒØ Ö ØÖ Ø ÓÒ Ù ÓÖÑÙÐ ØÓ Ð Ø ÖÓÑ ÕÙ Òغ «Ö Ò ØÛ ÒÐ Ð Ò ÒØÙ Ø ÓÒ Ø Ö ÓÒ Ò ÜÔÖ Ý ÖØ Ò Ö Ø"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

for Intuitionisti Logi

Jens Otten ChristophKreitz

Fa hgebietIntellektik,Fa hberei h Informatik

Te hnis he Ho hs hule Darmstadt

Alexanderstr. 10, 64283 Darmstadt, Germany

fjeotten,kreitzgintellektik.i nfor matik .th- darm stadt .de

th

Abstra t. We present a proof method for intuitionisti logi based on

Wallen's matrix hara terization. Ourapproa h ombines the onne tion

al ulus and the sequent al ulus. The sear h te hnique is based on

no-tionsofpathsand onne tionsandthusavoidsredundan iesinthesear h

spa e. During the proof sear h the omputed rst-order and

intuition-isti substitutions are used to simultaneously onstru t a sequent proof

whi h is morehuman oriented thanthe matrixproof. This allowsto use

our method within intera tive proof environments. Furthermore we an

onsiderlo al substitutions instead ofglobal onesandtreatsubstitutions

o urring in di erent bran hes of the sequent proof independently. This

redu es thenumberofextra opies offormulae tobe onsidered.

1 Introdu tion

Intuitionisti logi (J),duetoits onstru tivenature,isoftenviewedasthelogi

of omputation.Ithasanessentialsigni an eforthederivationofveri ably

or-re tprogramssin e theoremsprovenwithinJ anbe onsideredasspe i ations

of algorithmswhi hare impli itly ontainedin the proof. Everyformula validin

intuitionisti logi isvalidin lassi allogi aswell.Theintuitionisti proof,

how-ever, ontains more informationthan a lassi aloneandmanyof thewell known

lassi alnormal formsand equivalen esare notvalid intuitionisti ally.As a

on-sequen e, it is onsiderablymore diÆ ult toproveatheorem in J than ndinga

lassi alproof.Reasoningin lassi allogi anbeautomated suÆ iently well(see

e.g. [5,12,19,2℄) but there isnot yet an eÆ ientintuitionisti proofpro edure.

Godelhas shownthat J anbe embedded into themodallogi S4[10℄:there

is a mapping M from J into S4 su h that a formula F is valid in J if M(F)

is valid in S4. In his investigations on non- lassi al logi s Wallen has used this

embedding to develop a matrix hara terization for the validity of intuitionisti

formulae[18℄whi h extendsBibel's hara terizationfor lassi alvalidity[3,4℄.

In propositional lassi al logi a formula F is valid if there is a spanning set

of onne tions for F. A onne tion is a pair of atomi formulae with di erent

polarities.Asetof onne tionsspans aformulaF ifeverypath through amatrix

representation of F ontains at least one onne tion. This hara terization also

appliesto predi ate logi ifall theterms ontainedin onne tedformulae an be

(2)

di eren e between lassi al and intuitionisti reasoning is expressed by ertain

restri tions on the intuitionisti rules. If rules are inverted for the purpose of

proof sear hthen these restri tions auseformulaeto be deleted from asequent.

Applyingarule(i.e.redu ing asub-formula)tooearly maythus deleteaformula

whi h later will be ne essary to omplete the proof. Therefore the order of rule

appli ationsmustbearranged appropriately.InWallen's matrix hara terization

this requirement is expressed by an intuitionisti substitution whi h makes the

pre xes of onne ted sub-formulae identi al where a pre x essentially des ribes

thepositionofasub-formulainthetreerepresentationoftheformulatobeproved.

Boththe rst-orderandtheintuitionisti substitutionhavetobe omputedby

uni ation algorithms. Forthe latter a spe ialized string uni ation is required.

Togetherwith the orderingofthe formulatree these substitutionsdeterminethe

orderinginwhi hagivenformulaF hasto beredu edbytherulesofthesequent

al ulus.Thisorderingmustbea y li sin eotherwisenoproofforF anbegiven.

During theproofpro essit maybe ome ne essaryto reatemultipleinstan esof

the same sub-formula. The number of opies generated to omplete the proof is

alledmultipli ity. Again,a multipli ity may bedueto aquanti erorspe i to

intuitionisti reasoning.

Developingan automated pro edure whi h onstru ts intuitionisti proofs on

thebasisofWallen'smatrix hara terizationmeansextending Bibel's onne tion

method[4℄ a ordingly.The advantageof su ha methodisthat the emphasison

onne tionsdrasti allyredu esthesear hspa e omparedto al ulianalyzingthe

outer stru ture of formulaesu has thesequent al ulus [9,7℄ ortableaux al uli

[1,16℄.Furthermoreitavoidsthenotationalredundan y ontainedinthese al uli

by avery ompa t representation.

The onne tion method is eÆ ient for nding proofs a ording to the

ma-trix hara terizationof validity. Itsresult, however, isalmostimpossible to read.

Therefore attempts have been made to onvert matrix proofs ba k into sequent

proofswhi haremu h loser to'natural'mathemati alreasoning.Thisis

ompa-rably easy for lassi alpropositional logi but be omes rather diÆ ult for

pred-i ate logi [11℄ or intuitionisti logi [15℄. In these ases the redu tion ordering

indu ed by thesubstitutions has tobe taken into a ount.

Althoughoriginallywewereinterestedonlyin ndingamatrixproofforagiven

formulatheabove onsiderationsledtothedevelopmentofaproofsear hmethod

whi h onstru tsthematrixproofandasequentproofalmostsimultaneously.The

partialsequentproof,however,ismorethan abyprodu tsin eit analsobeused

tosupporttheproofsear h.Itallows,forinstan e,to onsiderlo al substitutions

insteadofglobalones,i.e.substitutionswhi h anbeappliedindependentlywithin

sub-proofsof a sequentproof.Su ha lo al viewredu es the number of opies of

sub-formulaewhi hhavetobegeneratedto nda(global)substitutionandkeeps

thesear hspa eandthesizeof theproofsmaller.Thereforewehavedeveloped a

hybridmethod whi h ombines the onne tion methodand thesequent al ulus.

Afterresumingthesequent al ulus,thematrix hara terization,andaversion

of the onne tion method operating on non-normal forms in se tion 2 we shall

des ribethe relationbetween thesequent al ulus andthe onne tion methodin

(3)

few remarks on implementationissues and future investigations.

2 Preliminaries

2.1 Formula Trees, Types and Polarities

We assume the reader to be familiar with the language for rst-order logi . A

formula tree is arepresentation of a formula as tree whose nodes are marked by

positions denoted bya

0 ;a

1

;:::. Ea hposition orrespondstoa label onsisting of

the major onne tive or quanti er of a sub-formula or of the sub-formula itself

if it is atomi . Atomi positions are nodes labeledwith atomi formulae and are

leafs of thetree. Aformula treefor 8xPx)Pa^Pb isshown in gure 1. The

tree-ordering < isthe (partial) orderinggiven by the formula tree:a

i < a j if the position a i is below a j

in the formulatree.

y : 6 k 3 ) a 0 8x a 1 ^ a 3 Px a2 Pa a4 Pb a5 y : 6 k 3 ) 0 a0 8 1 x a 1 ( 0 ) ^ 0 a 3 ( 0 ) P 1 x a2( 0) P 0 a a4( 0) P 0 b a5( 0)

Fig.1.Formulatree without/withlabelsfor prin ipal/se ondary types andpolarities

Ea h sub-formula of a given formula F uniquely orresponds to a position in

the formula tree. A position is asso iated with a polarity, a prin ipal type, and

a se ondary type. The polarity (0 or 1) of a position is determined by the label

and polarity ofits parent. Theroot positionhaspolarity 0. Theprin ipal type of

a position is determined by its polarity and its label. Atomi positions have no

prin ipal type. The se ondary type of a position is determined by the prin ipal

type of its parents. The root position has no se ondary type. Polarity, prin ipal

type, andse ondarytypeofapositionarede ned intable1whose rstentry,for

instan e, means that a positionlabeledwith ^ and polarity1 has prin ipal type

andits su essornodeshavepolarity 1andse ondarytype

0 .

prin ipaltype se ondarytype

0 (A^B) 1 A 1 B 1 (A_B) 0 A 0 B 0 (A)B) 0 A 1 B 0 (:A) 1 A 0 (:A) 0 A 1

prin ipaltype se ondarytype

0 (8xA) 1 A 1 (9xA) 0 A 0

prin ipaltype se ondarytype

0 (A^B) 0 A 0 B 0 (A_B) 1 A 1 B 1 (A)B) 1 A 0 B 1

prin ipaltypeÆ se ondarytypeÆ

0 (8xA) 0 A 0 (9xA) 1 A 1

Table 1. Polarity, prin ipaltype, andse ondarytypeofpositions

Aformulatree for8xPx)Pa^Pb where the nodes additionally are labeled

with theirtypesandpolarityisalsogivenin gure1.Foragivenformulaweshall

use ; 0 ; ; 0 ; ; 0 ;, and  0

to denote the sets of positions of type ;

0 ; ; 0 ; ; 0 ;Æ, andÆ 0 respe tively.

(4)

A sequent has the form ` where (the ante edent) and  (the su edent)

are sets of formulae. A proof of the sequent ` is a tree rooted with ` 

whosenodes aredetermined byrulesandwhose leafsare axioms.A formula F is

validi thereisaproofofthesequent`F.Table2shows theaxiomsand logi al

rulesof theintuitionisti sequent al ulus.

;A`A; axiom ;A` ;B` ;A_B` _left ;A;B` ;A^B` ^left ;:A`A; ;:A` :left ;A)B`A; ;B` ;A)B` )left ;8xA;A[xnt℄` ;8xA` 8left ;A[xna℄` ;9xA` 9left  `A;B; `A_B; _right `A; `B; `A^B; ^right ;A` `:A; :right ;A`B `A)B; )right `A[xna℄ `8xA; 8right  `A[xnt℄;9xA; `9xA; 9right

Table 2. A ut-freesequent al ulusfor intuitionisti logi

The parameter a of the rules 8right 

and 9left 

must not o ur free in the

on lusionof the rule(i.e. notin ;A, or). Similarly the term t in 9right and

8leftmustnot ontainvariableswhi ho urfree inthe on lusion. The al ulus

is omplete and orre t for intuitionisti logi [7℄. It di ers from the Gentzen's

al ulus LJ [9℄in thesensethat sets offormulaeare usedinsteadofsequen es {

whi h allows to omit stru tural rules like weakening and ontra tion { and that

more than one formula may o ur in the su edent of a sequent. It is, however,

possible to onvertproofsin the above al ulus into LJ-proofs(see e.g.[8℄).

The sequent al ulus forintuitionisti logi di ersfrom the lassi alone only

in the rules ) right,:right and 8right. Whereas in the intuitionisti ase the

su edent of the on lusion onsists of at most one formula, the orresponding

lassi alrulesmay ontainmultipleformulae.We alltheserulesspe ialrules.An

appli ationofan inverted rule(readfrom the on lusionto thepremise) is alled

aredu tion.Figure 2presents aproof ofthe formula8xPx)Pa^Pb.

Pa`Pa 8xPx`Pa 8l eft Pb`Pb 8xPx`Pb 8l eft `8xPx)Pa^Pb )right

Fig.2.Sequentproof for8xPx)Pa^Pb

2.3 A Matrix Chara terization for Intuitionisti Logi

The matrix hara terization for intuitionisti logi developed by Wallen [17,18℄

is based on the notion of paths and onne tions pioneered by Bibel for lassi al

(5)

{ a multipli ity  en oding the number of distin t instan es of sub-formulae to

be onsidered during the proof,

{ an admissible rst-order substitution

Q

assigning atermto everyvariable in

the formula,

{ a setof onne tions whi h are omplementary under 

Q

su h that every path

through the formula F ontains a onne tion from this set.

For te hni al reasons we repla e the variables in atomi formulae by their

quanti er positions. Thus positions of type and Æ appear in atomi formulae

insteadofvariables.Consequentlya rst-ordersubstitution

Q

isamappingfrom

the set of positions of type to terms where again variables are repla ed by

positions. The substitution 1  Q indu es a relation < Q on  in the following way:if Q (u)=tthenv < Q

uforallv2thataresub-termsoft.A onne tionis

apairofatomi positionslabeledwithatomi formulaehavingthesamepredi ate

symbol but di erent polarities. If they are identi al under 

Q

the onne tion is

said to be omplementary under 

Q

. A path through a formula F is a subset of

theatomi positionsofitsformulatree;itisahorizontalpath throughthematrix

representation ofF (see examplein gure 3and 4).

Sin ethequanti errules9leftand8rightare onstrainedbytheeigenvariable

onditionthe relationv <

Q

uexpressesthat the sub-formulalabeledbyv should

be redu ed before redu ing the one labeled by u. The transitive losure of the

union of<

Q

andthetree-ordering <is alledtheredu tion ordering , i.e.:=

(< [ < Q ) + . A rst-order substitution  Q

isadmissible if the redu tion ordering

 is irre exive. Inthis aseaproofin the sequent al ulus is onstru tible. This

te hnique was rst proposed by Bibel [4℄ as an alternative for skolemization in

lassi allogi .

The intuitionisti sequent al ulus ontains spe ial rules whi h, if used

ana-lyti ally, ause formulae to be deleted from a sequent. To ensure that formulae

ontainingtwo atomi formulae of a onne tion as sub-formulaeare not deleted

by spe ialrulesthe orrespondingatomi positions ofthis onne tion haveto be

made omplementaryunder an additionalintuitionisti substitution.

Toexplain thene essarymodi ationsofthe lassi almatrix hara terization

we extend the de nitions of types and positions. A spe ial position in a formula

treeisapositionlabeledwithanatomi formula,negation(:),impli ation()),or

auniversalquanti er(8x). Ifaspe ialpositionhaspolarity1it hasintuitionisti

type  and otherwisetype .To denotethe set ofpositions of intuitionisti type

 and weuse and respe tively.Withea hatomi positionuweasso iatea

sequen epre(u)ofpositions alledthepre xofuasfollows:ifu

1 <u 2 <:::<u n u

(1  n) are the elements of  [ that dominate u in the formula tree then

pre(u)= u 1 u 2 u n

. Intuitionisti omplementarity of atomi positions requires

that theirpre xes an beuni ed 2 by an intuitionisti substitution. An intuitionisti substitution  J is a mapping from  to ([ )  . It indu es a relation< J on Pos([ ) 3

in the following way:if 

J

(u)=p then v <

J u

1

Forte hni al reasons we onsiderasubstitution tobe idempotent (i.e. =).

2

Tounifytwopre xeswe needanalgorithmfor spe ial stringuni ation[14℄.

3

(6)

J

is the prede essor of u in the formula tree. As in the rst-order ase v <

J u

means that v should be `redu ed' before u. A ombined substitution onsist of a

rst-order substitution 

Q

and an intuitionisti substitution 

J

. It is admissible

if theredu tion ordering:=(<[ <

Q [ < J ) + isirre exive.

Theorem 2. A formula F is intuitionisti ally valid i there is

{ a multipli ity ,

{ an admissible ombined substitution :=(

Q ;

J ),

{ a set of onne tions whi h are omplementary under  and su h that every

path through the formula F ontains a onne tion from this set.

Consider the formula8xPx) Pa^Pb. Its formula tree isshown in gure 3;

its matrix representation in gure 4 where we pla e omponents of -type

sub-formulae horizontallyand omponents of -type sub-formulaeverti ally.

y i 1 : 6 6 3 k ) 0 a 0 8 1 x a 1 1 P 1 a 1 1 a 1 2 8 1 x a 2 1 P 1 a 2 1 a 2 2 ^ 0 a 3 P 0 a a4 P 0 ba5

Fig.3. Formula treefor F

P 1 a 1 1 :a 0  a 1 1  a 1 2 |{z } pr efix P 1 a 2 1 :a 0  a 2 1  a 2 2 P 0 a:a 0 a 4 P 0 b:a 0 a 5

Fig. 4.Matrixrepresentationfor F

The two instan es of the formula 8xPx are to be onsidered omponents of

an impli it -typeposition(in the matrixthey stayside by side).In thepre xes

the positions of type  are emphasized with an over-bar. There are two paths

throughthematrix,namelyfPa 1 1 ;Pa 2 1 ;PagandfPa 1 1 ;Pa 2 1

;Pbg.They ontainthe

onne tionsfPa 1 1 ;PagandfPa 2 1

;Pbgrespe tivelywhi hareboth omplementary

under the substitutions 

Q = fa 1 1 na;a 2 1 nbg and  J = f a 1 1 n;a 2 1 n;a 1 2 na 4 ;a 2 2 na 5 g.

Therefore theformulais intuitionisti ally valid.

2.4 The Conne tion Method

Aproofmethodfor lassi al rst-orderlogi basedontheorem1isthe onne tion

methoddevelopedby Bibel[4℄.Theproofsear hisdrivenby onne tions instead

of onne tives as in the sequent al ulus. On e a onne tion has been identi ed

all paths ontainingthis onne tion are eliminated. If every paths is deleted the

formulaisvalid.Inthefollowingwepresentaproofmethodsimilartotheoriginal

onne tion methodwhi hdeals with formulaein non-normal formbe auseofthe

absen eof su ha formin the intuitionisti logi .

De nition 1. Twoatomi formulaeP andQare -/ -related ifthe rst ommon

node in the formula tree - going from the nodes labeled with P and Q down to

theroot-isapositionoftype / .Noatomi formulaP is -/ -relatedto itself.

If two atoms (atomi formulae) are -related they appear side by side in a

(7)

Q are -/ -related for all formulae Q2 S. Every atom P is -/ -relatedto the

empty set ;.

Let A be the set of all atoms 4

in a given rst-order formula F. Then the

following pro edure returnstrue i F isintuitionisti ally valid.

Main-pro edure

repeat

 :=(;;;); valid:=Proof(;;;);

ifvalid= false thenin reasethe multipli ityof thegiven formulaF

until valid= true

Sub-pro edureProof(P;C) (P Aisthea tive path.C Aareproven subgoals.)

ifnoatomA2Ais -relatedtoP and -relatedto C then returntrue

E :=;;  0

:=

repeat

sele tanatom A2Awhi his -relatedto P[E and -relatedtoC

ifthere isnosu h atomAthen return false

E :=E [fAg; D:=;; valid:= false; no onne t:= false

repeat sele t an atom  A 2 A where  A 62 D and either  A 2 P or  A is -related

to P [fAg and (A; 

A) is a onne tion whi h is omplementary under an

admissible ombined substitution omputedusing  0

ifthere isnosu hatom 

A

thenno onne t :=true

elseD:=D[f 

Ag; valid :=Proof (P[fAg;f 

Ag)

ifvalid =true thenvalid :=Proof (P;C[fAg)

untilvalid = trueorno onne t= true

until valid= true

returntrue

Note that in Proofall variablesex ept forthe set Aandthe substitution are

lo al.Anexampleproofusingthe onne tionmethodisgiveninthenextse tion.

3 Relating Sequent Cal ulus and Conne tion Method

In this se tion we point out the relationship between a proof with the

onne -tion method and the orresponding sequent proof.Firstly we deal with lassi al

propositional logi . After that we onsider the intuitionisti propositional ase.

3.1 Classi al (Propositional) Logi

ConsiderF  (S^(:(T )R ))P)) )(:((P )Q)^(T )R )))(S^::P)).

The formula tree (skeleton) of this formula is shown in gure 5, its matrix

rep-resentation in gure 6. In the skeleton only the positions of prin ipal type ,

i.e. 1 ; 2 ; 3 and 4 , are marked. 5

Additionally ea h bran h rooted at su h a

-positionis marked with a letter, namely a,b,...,h. Sin e wedeal with formulae

4

Di erentatomshavingthesamepredi atesymbolare onsidered distin t.

5

Positionsoftype playtheessentialroleduringtheproofpro ess.Inourpresentation

(8)

amatrix anitselfbeamatrix.Components ofsub-formulaeoftype are pla ed

one upon the other. Atoms are marked with their polarities, whereas polarity 0

indi ates that the atom o urspositivelywithin thenegationalnormal form and

polarity 1 means that it o urs negatively. A redu tion of a position means the

sub-formula rooted at thisposition hasto be redu ed in thesequent al ulus.

}> }> y : Y * o7 I Y 1 * i y : P 1 Q 0 R 0 T 1 P 0 S 0 R 1 S 1 T 0 P 1 1 2 3 4 a b d g h e f

Fig.5. Skeletonofthe formulatree forF

P 1 R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1

Fig. 6.Matrixof theformulaF

We begin by proving the lassi al validity of the formula F. After ea h

on-ne tion step we show the stru ture of the orresponding sequent proof. In the

rststep {shown in gure 7{we onne t atom P 1

whi his in bran h'a' ofthe

formula tree with P 0

in bran h ' '. If these atoms shall form an axiom in the

sequentproofwehaveto redu epositions

1 and

2

.Wheneverweredu ea

posi-tionofprin ipaltype thesequentproof willsplit intotwobran hes.Thusafter

redu ing

1

there is a split into two bran hes 'a' and 'b'. Now we redu e

2 in

the'a'-bran hof thesequentproofwhi hresults in the bran hes ' ' and'd'. The

' '-bran hnow ontains an axiom of the form ;P 1

`P 0

;. Thisbran his said

to be losed. 6

Note that we do not perform redu tionsof positions whi hdo not

havetype (i.e.areoftype , ,orÆ)expli itly.Sin eredu ingpositionsoftype

, , orÆ do notsplit thesequentproofthey anbe redu ed straightforwardly.

P 1 R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1 a d b P 1 `P 0 ? ? 2 1

Fig.7.The rststep inthe onne tion/sequentproofofF

In the sequent proof there are twobran hes 'b' and 'd' whi h do not ontain

an axiom. They are said to be open. We rst want to lose bran h 'd'. In the

formula tree this bran h only ontains the atom S 0

. Conne ting it with atom

S 1

(obtained without redu ing any -position) leads to an axiom of the form

;S 1

`S 0

; whi h loses thisbran hasshown in gure 8.

P 1 R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1 a d b P 1 `P 0 ? S 1 `S 0 2 1

Fig.8.The se ondstep inthe onne tion/sequentproofofF

6

Open bran hes ( orresponding to open subgoals) are marked with a '?' whereas ''

(9)

stepwe onne tR 0

withR 1

(see gure9).Sin eR 1

o ursinthe'e'/'g'-bran hof

theformulatreewe rsthavetoredu eposition

3 and

4

su essively.Therefore

the 'b'-bran h in the sequent proof is split twi e. Whereas

3

is responsible for

splitting into the bran hes'e' and'f',

4

splits the 'e'-bran hinto 'g' and'h'. As

the'g'-bran his losedbyan axiomtheonlyopenbran hesare 'h'and'f'.Inthe

nextstepwe onne tfromT 0

to T 1

losingthe'h'-bran hin thesequent al ulus

asshown in gure 9. Sin e the 'b'-bran halready ontains T 1 wedo nothaveto redu e a -position. P 1 : R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1 a d b g e h f P 1 `P 0 S 1 `S 0 R 1 `R 0 T 1 `T 0 ? 2 1 4 3

Fig.9. Thethird/fourth step inthe onne tion/sequentproofofF

Thereisonlyoneopenbran hleft,namelythe'f'-bran h.Conne tingfromP 1

toP 0

splitsitintothebran hes' 'and'd',astheatomP 0

o ursinthe' '-bran h

of the formula tree (see gure 10). Closing this ' '-bran h with an axiom in the

sequentproof,we nallyhaveto losethe'd'-bran h. Inthislast stepwe onne t

from S 0

to S 1

,whi hdoes notleadto anyopen bran hes,sin e theatom S 1

an

be rea hedwithout aredu tion of -positions.

P 1 : R 0 P 0 S 0 Q 0 T 1 R 1 : T 0 : P 1 S 1 a d b g e h f d P 1 `P 0 S 1 `S 0 R 1 `R 0 T 1 `T 0 P 1 `P 0 S 1 `S 0 2 1 4 3 2

Fig.10. The fth/sixthstep in the onne tion/sequent proofofF

Wesu essfully ompleted the onne tion proof and every leaf in the sequent

proofisan axiom. Therefore theformulaF is lassi allyvalid.

3.2 Intuitionisti (Propositional) Logi

In intuitionisti logi we additionally have to unify the pre xes of the atomi

formulaeinevery onne tion.Thisleadstoanintuitionisti substitution

J whi h

indu esarelation<

J

onthepositionsoftheformulatreeasde nedinse tion2.3.

Togetherwith the treeordering< it determines the redu tionordering where

vumeans that position v should beredu ed before positionu. Performing all

these stepsw.r.t. theformulaF aboveeventually leadsto thefollowing redu tion

orderingon the positions ofprin ipal type (i.e.

1 ; 2 ; 3 and 4 ): 2  3  1  4 :

(10)

2

redu e

3

andsoon.Thereforetheintuitionisti sequentproofshownin gure11

di ersfrom the lassi alone in orderofrule appli ation. 7 (P 1 `P 0 ) (R 1 `R 0 ) (T 1 `T 0 ) (P 1 `P 0 ) (S 1 `S 0 ) 1 4 3 2 a b e f d g h

Fig.11.The stru tureofan intuitionisti sequentproofofF

Thesequentproofin intuitionisti logi annot bederived aseasilyasin

las-si al propositional logi . In the latter ase ea h onne tion in a matrix proof

orrespondsto exa tlyone axiom in thesequent al ulus. Forintuitionisti logi

(even in the propositional part) this property does not hold anymore. The

sit-uation is similar for lassi al predi ate logi be ause the eigenvariable ondition

restri ts the order in whi h positions an be redu ed (en oded in the relation

<

Q

de ned in se tion 2.3). To avoid these problems our approa h will take the

redu tionordering into a ount duringthe onstru tion ofthe proof.

4 A Conne tion Based Proof Method

Before we present our proof pro edure we shall investigate the intuitionisti

va-lidity ofthe previousse tion's example alittle more detailed.

4.1 An Introdu tory Example

We have seenthat it ismore eÆ ient to onsider the redu tion ordering

(par-ti ularly <

J

) during the pro ess of onstru ting a matrix proof and a sequent

proof simultaneously.Due to the importan eof -positions within the redu tion

orderingweslightlymodifythede nitionofa tivepathsandde neopensubgoals.

De nition 3. The -pre xof an atomi position u, denoted by -pre(u), isthe

set of all elements v

1 ;:::;v n 2 0 (positions of type 0

) that dominate u in the

formula tree,i.e. -pre(u) := fv2

0

jv <ug.

In the previous se tion as well as in the example below we have marked

bran hes in the sequent proof with letters (e.g. a, b,...) to keep the notation

simple. For the following de nitions we have to point out that ea h letter

or-responds to exa tly one position of type

0

. If, for instan e, the redu tion of a

-position

1

leads to the bran hes'a' and'b' in the sequent proof, they will be

identi ed bythe twosu essorpositions of

1

in theformulatreewhi hareboth

oftype

0 .

7

(11)

0

0

allthelabels(positionsoftype

0

)obtainedbygoingfromtherootofthesequent

proof to the node marked with u while olle ting the label of every bran h. An

a tive -path P

indu es an a tive path P for the position u where P = fv j v

atomi position and -pre(v)P

g.

Thea tive path P for uis thus theset of all the atomswhi h anbe rea hed

from the u-bran hin the sequent proof (i.e. the bran h leadingfrom the root to

thepositionu)without passingthrough a -position.Inotherwords,itistheset

of atoms whi h an be obtained by redu ing the orrespondingsequent without

redu ing positionsof type .

De nition 5. ThesetofopensubgoalsC



0

isthesetofthepositionsoftype

0

labeling theopenbran hesin thesequentproof.Ea hopenbran hisassigned

its a tive( -)path.

ConsideragainF  (S^(:(T)R ))P)))(:((P)Q)^(T)R )))(S^::P))

and its formula treegiven below

}> }> y : Y * o7 I Y 1 * i y : P 1 Q 0 R 0 T 1 P 0 S 0 R 1 S 1 T 0 P 1 1 2 3 4 a b d g h e f

ToproveF we rstsele t anatom 8

,say P 1

,in bran h'a'of theformulatree

and onne t it with the atom P 0

in the ' '-bran h. For that we have to redu e

two -positions, namely

1

and

2

. Unifying the pre xes ofthe twoatoms leads

to an intuitionisti substitution. Together with the tree ordering it indu es the

redu tion ordering

2 

1

. Thus we have to split into the bran hes ' ' and 'd'

( orrespondingto

2

)beforewesplitthe' '-bran hinto'a'and'b'( orresponding

to

1

). This loses the 'a'-bran h in the sequent proof as shown in gure 12. In

the next step we hoose the 'd'-bran h from the set of open subgoals C

= fb,

dg.Thea tive -pathP

=fdgfor'd' indu esan a tivepathP = fS 1 ;S 0 g. The only atom S 0

in the'd'-bran hofthe formulatree an thereforebe onne tedto

S 1

in the a tivepath whi h loses thisbran h.

P 1 R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1 (P 1 `P 0 ) a b 1 2 d ? (S 1 `S 0 )

Fig.12. The rstandse ondproofstep

The only open bran h is now the 'b'-bran h (C

= fbg). In the formula tree

this bran h ontains twoatoms R 0

andT 1

from whi hwesele t R 0

and onne t

it with R 1

whi h is not in luded in the a tive path P = fS 1 ;P 0 ;R 0 ;T 1 g for 'b' (P = f ,bg). To make R 0

form an axiom with R 1

we have to redu e

3

8

(12)

4

bran hinto 'g' and 'h'. The uni ation of the pre xes of these two atoms yields

an intuitionisti substitution whi h { together with the tree ordering { indu es

theredu tionordering( on erningthe -positions)

2  3  1  4 .Thatmeans

we have to insert the split into 'e' and 'f' between the redu tion of

2

and

1

(leaving the rest of the partial sequent proof remains un hanged) and split into

thebran hes 'g' and'h' after redu ing

1 ,asshownin gure 13. P 1 R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1   (R 1 `R 0 ) ? ? 1 4 3 2 a b e f d g h

Fig.13.The thirdproofstep

After losingbran h'g' weget twoadditionalopen bran hes'f'and'h' (C

=

ff, hg). The a tive -paths for 'f' (P

= f ;fg) and for 'h' (P = f ;e;b;hg) indu e P = fS 1 ;P 0 ;P 1 g and P = fS 1 ;P 0 ;R 0 ;T 1 ;T 0 g respe tively. To lose

these bran hes we onne t P 1

in the 'f'-bran h of the formula tree to P 1

in the

a tivepath for'f'andT 0

in the'h'-bran htoT 1

inthe a tivepathfor'h'.These

steps on lude the intuitionisti proof for F, sin e C

= ; and therefore ea h

bran hin thesequent proofis losed.

P 1 R 0 P 0 S 0 Q 0 T 1 R 1 T 0 P 1 S 1    (T 1 `T 0 ) (P 1 `P 0 ) 1 4 3 2 a b e f d g h

Fig.14.The fourthand fthproofstep

4.2 The Proof Pro edure

The explanations given in the aboveexample should be suÆ ient to understand

the pro edure arrying out our proof method. In prin iple it is similar to the

version ofthe onne tion methodintrodu ed in se tion 2.4.There is, however, a

di eren e in the handling of subgoals and a tive paths. The original onne tion

method fo uses on onne ting new atoms whi h are sele ted a ording to the

urrent a tive path P and the set C of already proven subgoals. P and C are

parametersof thepro edure.Themethod whi hweshall des ribebelow aimsat

losingopensubgoalsoftype

0

(asetwhi hmaygroworde reaseinthepro ess)

and uses onne tions related to their a tive -paths forthis purpose. Thea tive

path dependson the sele ted subgoaland willbe omputed withinthe pro ess.

Let A be the set of all atoms in a given rst-order formula F. The following

pro edure returnstrue i F isintuitionisti ally valid.

Main-pro edure

repeat

 :=(;;;); initialize

; valid :=Proof(f;g)

ifvalid = false then in reasethemultipli ityofthe givenformula F

(13)

Sub-pro edure Proof(C ) (C B 0

aresubgoals whi h still haveto beproven)

ifC =;then returntrue

E :=;;  0 :=;  0 := ; sele tanelementa 2C repeat

sele tanatom A2Awherea

 -pre(A)whi his -relatedto E

ifthere isnosu h atomA then returnfalse

E :=E [fAg; D:=; ; valid :=false; no onne t:=false

omputethe a tive -pathP fora and itsa tive pathP

using the -redu tionordering  0 repeat sele t an atom  A 2 A where  A 62 D and either  A 2 P or  A is -related

to P [fAg and (A; 

A) is a onne tion whi h is omplementary under an

admissible ombinedsubstitution  andanadmissible -redu tionordering

 omputedusing  0

and 0

ompute theset C

expanded bythe new opensubgoals

ifthere isnosu hatom 

A

thenno onne t :=true

elseD:=D[f 

Ag; valid :=Proof (C

nfa

g)

untilvalid = trueorno onne t= true

until valid= true

returntrue

Note that all variablesin Proof {ex ept forA, ,and 

{ arelo al.

Theabovealgorithmusesafewnew on eptswhi hdeserveexplanation.Sin e

itispossibletoredu ethesameformulaindi erentbran hesofthesequentproof

wehaveto distinguish thesebran hes(identi edwith positionsoftype

0

)byan

index. B i

0

isa setof indexed positionsoftype

0

in luded in the sequent proof.

Previouslywehadrequiredthat theredu tionorderingde nesade nite

rela-tion between all -positions. Thisis notstri tly ne essary.If a substitutiondoes

not lead to an ordering between two bran hes in the sequent proof we have to

en ode the permutability between these bran hes. This is done by an extended

de nitionofpathstogetherwith aso- alled -redu tionordering 

.

onsists

oftworelations,namely

0  0 and6 0  0

.Therelationuv (u;v 2

0 )

means that there isa sequentproof wherethe bran hes u andv are in the same

-path (that is a way from the root to a leaf), whereas u 6 v (u;v 2

0

) means

that there is no su h a sequentproof.These tworelations indu e an a tivepath

P :=(P n ;P p ). Then-pathP n fora 0

-positionu ontainsall

0

-positionswhi h

are ne essarily in the a tive -path for u in all sequent proofs under

onsidera-tion. The p-path P p

for u denotes the set of

0

-positions whi h are possibly in

the a tive -path ofu. 9

Our method always attempts to sele t a redu tion ordering whi h allows to

onne t to the a tivepath. Thisshortensproofssubstantially sin e a onne tion

to the a tive path does not lead to any new open subgoal. If we ignore the

re-du tion ordering during the sear h for onne tions we will get a version of the

onne tion method. Therefore ourmethod isageneralizationof theoriginal

on-ne tion method.

9

(14)

Thesequentproofmakes it possibleto use so- alledlo al substitutionsinsteadof

global ones. We present an approa h to treat rst-order as well as intuitionisti

substitutionslo ally.

The onne tionmethodandour proofmethodpresentedaboveuseglobal

sub-stitutions. If we substitute a term t for a variable x then every o uren e of x

in the orrespondingsequent proof has to berepla ed by t. Thisis not very

rea-sonable, sin ein asequentproofweareallowedto repla edi erenttermsforthe

same variableif it o urs in di erentbran hes ofthe proof.

Let us onsider the formula 8xPx)Pa^Pb fromse tion 2. In the matrix

proofinse tion2.3weneededa opyofthesubformula8xPx(eveninthe lassi al

ase) sin e wehad to assign twoterms a andb tothe variable x. Howeverin the

sequent proof (see gure 15) a dupli ation does not (expli tly) o ur. We ould

avoid this dupli ation if we treat the substitutions of the two bran hes of the

sequent proof independently. Therefore we take two substitutions into a ount,

namely 

1

= fxnag and 

2

= fxnbg, whi h are related to the two di erent

bran hesin the sequentproof shownin gure 15.

Pa`Pa 8xPx`Pa Pb`Pb 8xPx`Pb `8xPx)Pa^Pb 1 =fxnag 2=fxnbg =fg Pa`Pa Pb`Pb

Fig.15. Asequentprooffor8xPx)Pa^Pbanditsstru ture

Toperformsu hastepitisne essarythatthe -positiona

(a

3

inourexample)

responsibleforthesplit isredu ed beforethe -positiona

(a 1 labeledwith 8xin our example). 10

That is, either the redu tion-orderingyields a

a

or wehave

to introdu e this ordering and look if it is admissible. This te hnique is similar

to Bibel's splitting te hnique [4℄. Our approa h, however, is simpler and an be

applied more rigorously sin e we are able to exploit the sequent proof. When

omputing the substitution whi h has to make a onne tion omplementary we

onlyhaveto onsidersubstitutionsrelatedtobran hesofthea tive -path.After

thatwehaveto dividethe omputedsubstitutionsu hthatitspartsrelatetothe

orrespondingbran hes.

Inthefollowing examplewedealwith theintuitionisti substitution.Consider

theformula F  ::P )::P ^::P .Itsmatrix representationtogether with

thepre xes of theatoms isgiven in gure 16.

P 0 :a 0 a 1  a 2 a 3 P 1 :a0a4a6a7 P 1 :a 0  a 4 a 8  a 9

Fig.16.MatrixforF

 1 =f a 2 na 6 ;a 7 na 3 g  2 =f a 2 na 8 ;a 9 na 3 g 0=f a4na1g P 1 `P 0 P 1 `P 0

Fig. 17. Stru tureofthesequent proofforF

There are two paths through the matrix ea h of them ontaining a

onne -tion. To make the rst onne tion omplementary we have to unify the

pre-10

Otherwise we have to repla e the variable in the ommon bran h before the split

(15)

xes a 0 a 1  a 2 a 3 and a 0  a 4 a 6  a 7

whi h results in the intuitionisti substitution

 J = f a 4 na 1  b; a 2 n  ba 6  ; a 7 n a 3 g 12 where 

b and  are new variables.

Apply-ingthis substitutiontothepre xes ofthese ond onne tionleads tothe pre xes

a 0 a 1  ba 6  a 3 anda 0 a 1  ba 8 a 9

respe tivelywhi hdonotunify.Itwouldbene essary

to dupli ate thesubformula:P 0

althoughthis opy does notappear(expli itly)

in the sequentproof. To avoidthis dupli ation weagain onsider lo al

substitu-tions. Sin e the position labeled with ^ is redu ed before :P 0

(indu ed by the

substitution) thesubformula:P 0

withthepre xa

2 a

3

o ursinbothbran hesof

thesequentproof.Thereforealsothe variablea

2

ansubstituted bytwodi erent

stringswhi hmakethese ond onne tion omplementary.Thelo alsubstitutions



1

and 

2

and the substitution 

0

whi h is ommon to both bran hes together

withthestru tureofthesequentproofareshownin gure17. 13

Both onne tions

are now omplementary under thesubstitution 

0 [ 1 and 0 [ 2 respe tively.

Employing lo al substitutionsredu es the number of opies of formulae to be

onsideredinaproofandthus themultipli ity.A opywillberequiredifandonly

ifthis opyalsoappearsexpli itlyin thesequentproof.Sin edupli ated formulae

an beverylargethis redu esthesear hspa e for aproofaswell asits size.

We on ludethisse tionbypresentingamatrix hara terisationfor

intuition-isti logi using lo al substitutions.

De nition 6. Alo al onne tion((A;a); (  A;a)),wherea;a2B i 0 ,a= ` -pre(A) 14 and a = ` -pre( 

A), is lo ally omplementary under 

and   if the onne -tion (A; 

A) is omplementary under the admissible ombined substitution  :=

L (  (u)j u 2 P for a or u 2 P for a) where L is the ombination of

substitutions (for detailssee [14℄).

Theorem 3. A formula F is intuitionisti ally valid i there is

{ a multipli ity ,

{ an admissible -redu tion ordering

(en oding the sequentproof stru ture),

{ a lo al substitution  

whi h assigns ea h indexed

0 -position u2 B i 0 a om-bined substitution :=( Q ; J ),

{ a set of lo al onne tions whi h are lo ally omplementary under 

and  

su h that every path through F ontains a onne tion from this set.

6 Con lusion

In this paper he havepresented a proof methodfor intuitionisti logi whi h

de-velops a matrix proof and a sequent proof simultaneously. Our method extends

Bibel's onne tionmethod[4℄ a ordingWallen's matrix hara terizationof

intu-itionisti validity[18℄ butit does notrequire anormal form.Due to an emphasis

on onne tions instead of the outer stru ture of formulae the sear h spa e an

be kept omparably small. Developing the sequent proof during the proof

pro- ess leadsto anaturalrepresentationof aformal proofwhi h an beusedwithin

11

Weemphasizethe positionsoftypewhi h play thepartofvariablesbyanoverbar.

12

This (andonlythis!)is infa tthe mostgeneral uni er.

13

Wehaveomitted theextra variables 

band .

14

`

-pre(A)isthe lastpositionof type

0

(16)

instead of global ones whi h redu es the sear h spa e even more than a purely

matrix-orientedproofmethod would do.

TheeÆ ien yofourproofpro edurealsodependsontheuni ationalgorithm

omputing the so- alled intuitionisti substitutions. In [14℄ we have developed

a spe ialized string uni ation algorithm whi h is more eÆ ient than the one

presented in [13℄ sin e it omputes only the most general substitutions whi h

makethepre xes equal.

The sequentproofgeneratedbyour pro edure an easilybe transformedinto

a Gentzen-stylesequent proof (see [15℄for details). Thus we an realize our

pro- edureas ata ti of the NuPRLsystem [6℄ in orderto support the development

ofproofsand veri ed routineprograms withinari h onstru tivetheory.

Referen es

1. E. W. Beth. The foundations ofmathemati s. North{Holland,1959.

2. W. Bibel, S. Br 

uning, U. Egly, T. Rath. Komet. In Pro eedings of the 12 th

CADE,LNAI814, p.783{787. SpringerVerlag,1994.

3. W. Bibel. On matri eswith onne tions. Jour. ofthe ACM,28,p. 633{645, 1981.

4. W. Bibel. Automated Theorem Proving. ViewegVerlag,1987.

5. K. Bl

asius, N.Eisinger, J. Siekmann, G. Smolka, A.Herold, C. Walther.

The MarkgrafKarlrefutation pro edure. InIJCAI-81,p. 511{518, 1981.

6. R. L.Constableet. al. Implementing Mathemati swiththe NuPRLproof

devel-opmentsystem. Prenti eHall, 1986.

7. M. C. Fitting. Intuitionisti logi , model theory and for ing. Studiesinlogi and

thefoundationsofmathemati s. North{Holland,1969.

8. J. Gallier. Constru tive logi s. Part I: A tutorial on proof systems and typed

- al uli. Te hni al Report8, Digital EquipmentCorporation,1991.

9. G. Gentzen. Untersu hungen uber das logis he S hlieen. Mathematis he

Zeits hrift,39:176{210, 405{431, 1935.

10. K. G

odel.Aninterpretationoftheintuitionisti sententiallogi .InThePhilosophy

ofMathemati s, p. 128{129. OxfordUniversity Press,1969.

11. D. S. Korn. KonSequenz { Ein Konnektionsmethoden-gesteuertes

Sequen-zenbeweis-Verfahren. Master'sthesis, TH Darmstadt,FG Intellektik,1993.

12. R. Letz, J. S humann, S. Bayerl, W. Bibel. Setheo: A high-performan e

theoremprover. Journalof Automated Reasoning, 8:183{212,1992.

13. H.J.Ohlba h. Aresolution al ulusformodallogi s. Ph.D.Thesis(SEKIReport

SR-88-08), FBInformatik,Universitat Kaiserslautern, 1988.

14. J.Otten. EinkonnektionenorientiertesBeweisverfahrenfurintuitionistis heLogik.

Master'sthesis, TH Darmstadt,FG Intellektik,1995.

15. S. S hmitt, C. Kreitz. On transforming intuitionisti matrix proofs into

stan-dard-sequentproofs. InPro eedings Tableaux Workshop1995, thisvolume.

16. R. M. Smullyan. First-Order Logi , Ergebnisse der Mathematik 43. 1968.

17. L.Wallen. Matrixproof methods formodallogi s. IJCAI-87, p.917{923. 1987.

18. L.Wallen. Automated dedu tion in non lassi al logi . MITPress,1990.

19. L. Wos et. al. Automated reasoning ontributes to mathemati s and logi . In

Pro eedings ofthe 10 th

References

Related documents

Therefore the current language curriculum refers to the existence of bidialectism in Greek Cypriot social and educational context, highlighting the need for recognizing

• Project instructors will discuss and answer questions concerning rules, procedures, commands, safety, techniques, equipment, etc.. with participants

LJMU is committed to providing research students with relevant and appropriate opportunities to develop both specialist and generic research skills in line with its Researcher

The assessment of patients suspected of drug and/or alcohol dependency and the assessment of victims of abuse and neglect are shaped by the culture of the patient population.

The main motivation for this research is to explore the potential of soft comput- ing (SC) approaches to design models of faulty behaviors and to generate residuals for

A gra- dient-based optimization strategy, Successive Quadratic Pro- gramming (Cuthrell and Biegler, 1985), was used to solve the problem. The gradient of the

Of particular significance was the difference in the value of relationships to social workers, with those working in mental health services having a much stronger awareness of the