• No results found

Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh

N/A
N/A
Protected

Academic year: 2021

Share "Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Environmental

Nanotechnology,

Monitoring

&

Management

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / e n m m

Preliminary

assessment

of

heavy

metals

in

water

and

sediment

of

Karnaphuli

River,

Bangladesh

Mir

Mohammad

Ali

a

,

Mohammad

Lokman

Ali

a,b

,

Md.

Saiful

Islam

c,∗

,

Md.

Zillur

Rahman

d

aDepartmentofAquaculture,PatuakhaliScienceandTechnologyUniversity,Patuakhali8602,Bangladesh

bDivisionofGeneticsandMicrobiology,InstituteofBiologicalSciencesUniversityofMalaya,50603KualaLumpur,Malaysia cDepartmentofSoilScience,PatuakhaliScienceandTechnologyUniversity,Patuakhali8602,Bangladesh

dFishInspectionandQualityControlChemistryLab,DepartmentofFisheries,Bangladesh

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3September2015

Receivedinrevisedform

12December2015 Accepted4January2016 Keywords: Heavymetals Water Sediments Coastalriver Bangladesh

a

b

s

t

r

a

c

t

Contaminationofheavymetalsinsedimentisregardedasaglobalcrisiswithalargeshareindeveloping countrieslikeBangladesh.Fourheavymetalssuchasarsenic(As),chromium(Cr),cadmium(Cd)andlead (Pb)insedimentsandwaterwereinvestigatedfromKarnaphuliRiverinBangladesh.Thedecreasingtrend ofmetalswereobservedinwaterasCr>As>Pb>CdandinsedimentCr>Pb>As>Cd.Therangesofheavy metalsinwaterwere13.31–53.87,46.09–112.43,2.54–18.34and5.29–27.45␮g/Landinsedimentswere 11.56–35.48,37.23–160.32,0.63–3.56and21.98–73.42mg/kgforAs,Cr,CdandPb.Thelevelofstudied metalsinwatersamplesexceededthesafelimitsofdrinkingwater,indicatedthatwaterfromthisriver isnotsafefordrinkingand/orcooking.Contaminationfactor(CF)confirmedthatthesedimentsamples weremoderatetohighcontaminationbyAs,CdandPb.Thepollutionloadindex(PLI)valueswereabove one(>1)indicatesadvanceddeclineofthesedimentquality.Thisstudyrecommendedthatcontinuous monitoringofAs,CdandPbinwater;sedimentandotheraquaticbiotaofKarnaphuliRivershouldbe directedtoassesstheriskofthesevitalmetalstosafetheecologyinthevicinityofthisriver.

©2016PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Contaminationofheavymetalsintheaquaticenvironmenthas attractedglobalattentionowingtoitsabundance,persistenceand environmentaltoxicity(Islametal.,2015a;Ahmedetal.,2015a,b). Bothnaturalandanthropogenicactivitiesareresponsibleforthe abundantofheavymetalsintheenvironment(WilsonandPyatt, 2007;Khanetal.,2008).However,anthropogenicactivitiescan effortlesslygenerateheavymetalsinsedimentandwaterthat pol-lutetheaquaticenvironment (Sanchez-Chardiet al.,2007).The increasingpollution byheavymetals havea significantadverse healtheffectsforinvertebrates,fish,andhumans(Yietal.,2011; Islametal.,2014;Martinetal.,2015;Islametal.,2015b,d;Ahmed etal.,2015c).Themetalpollutionofaquaticecosystemsis increas-ing due to the effects from urbanization and industrialization (Sekabiraetal.,2010;Zhangetal.,2011;Baietal.,2011;Grigoratos etal.,2014;Martinetal.,2015).

∗Correspondingauthor.

E-mailaddresses:islam-md.saiful-nj@ynu.jp,msaifulpstu@yahoo.com

(Md.S.Islam).

Intheaquaticenvironment,sedimentshavebeenwidelyusedas environmentalindicatorsfortheassessmentofmetalpollutionin thenaturalwater(Islametal.,2015c).Theprincipalcomportment of metalsis a functionof thesuspendedsediment composition andwaterchemistryinthenaturalwaterbody(Mohiuddinetal., 2012).Duringtransportationofheavymetalsintheriverinesystem, it may undergofrequent changes due todissolution, precipita-tionandsorptionphenomena(Abdel-GhaniandElchaghaby,2007), whichaffecttheirperformanceandbioavailability(Nicolauetal., 2006;Nourietal.,2011).Sedimentis anessential anddynamic partoftheriverbasin,withthevariationofhabitatsand environ-ments(Morilloetal.,2004).Theinvestigationofheavymetalsin waterandsedimentscouldbeusedtoassesstheanthropogenic andindustrialimpactsandrisksposedbywastedischargesonthe riverineecosystems(Zhengetal.,2008;Yietal.,2011;Saleemetal., 2015).Therefore,itisimportanttomeasuretheconcentrationsof heavymetalsinwaterandsedimentsofanycontaminatedriverine ecosystem.

Nowadaysheavymetalpollutionisa mainprobleminmany developing countrieslike Bangladesh (Islam et al., 2015c).The unplannedurbanizationandindustrializationofBangladeshhave detrimentaleffectsonthequalityofwaterandsedimentaswellas http://dx.doi.org/10.1016/j.enmm.2016.01.002

(2)

otheraquaticfauna.Thedisposalofurbanwastes,untreated efflu-entsfromvariousindustriesandagrochemicalsintheopenwater bodiesand rivershasreachedalarmingsituationin Bangladesh whicharecontinuallyincreasingthemetalsleveland deteriorat-ingwaterquality(Khadseetal.,2008;Venugopaletal.,2009;Islam etal.,2015a,c).InBangladesh,KarnaphuliRiveristhelargestand importantriverintheChittagongCityandseaportarea.Because oftheindustriallydevelopedareatheheavymetalpollutionofthe KarnaphuliRiverisincreasingdaybyday.Thestudiedriverreceives hugeamountofuntreatedeffluentsfromindustriessuchas spin-ningmills,dying,cotton,textile,steelmills,oilrefineriesandothers. Highconcentrationofheavymetalssuchasarsenic(As),chromium (Cr),cadmium(Cd)andlead(Pb)aredischargedintotheKarnaphuli Riverwhichpollutethewaterandsediments.Todate,noscientific researchregardingheavymetalpollutioninwaterandsedimentof thestudyriverhasbeenconductedsofar.Therefore,theobjectives ofthisstudyaretoevaluatethewaterqualityparametersofthe KarnaphuliRiver;todeterminethelevelsofheavymetalsinwater andsediment;andtoassesstheheavymetalpollutionstatusin sediments.

2. Materialsandmethods

2.1. Studyareaandsampling

ThisstudywasconductedontheKarnaphuliRiver,whichpasses throughChittagongCity,closetotheBayofBengal, Bangladesh (Fig.1).ThenameofthesamplingsiteswiththeirGIScoordinates ispresentedinTableS1.KarnaphuliRiverisoneofthemajorand mostimportantriversinChittagongandtheChittagonghilltracts, originatingintheLushaihillsinMizoramStateofIndia.Ittravels through180kmofmountainouswildernessformationofaslight circleatRangamatiandthenfollowsazigzagcoursebeforeitforms twootherprominentloops,theDhuliachhariandtheKaptai.Itruns overthedistrictinazigzagpathandafteracourseofabout170km fallsintotheBayofBengaland about16kmsouthwestof Chit-tagongtown.About40 compositesediment and watersamples werecollectedfrom10samplinglocationsofKarnaphuliRiverin September,2014(summer)andinMarch,2015(winter).During winter,thereisnorainfall,andriverwaterlevelsdecrease;during summer,riverwaterlevelsincreaseduetoheavyrainfall. Consid-eringthewaterflowinthestudiedriver,summerseasonexhibited higherthanwinterseasonwhichcancausethevariationofmetals concentrationinwaterandsediment.Watersampleswerefiltered (0.45␮mfilters, cellulose nitrate,Millipore) into polypropylene tubesusingaplastic syringe(BDPlastipak,50mL)fordissolved metalconcentrations.Sampleswereacidifiedto0.24MwithHNO3

(65%suprapure,Merck)andkeptat4◦Cinthedarkuntilanalysis. SedimentsampleswerecollectedbyEkmandredgefromdifferent stationsoftheKarnaphuliRiveratsamesitesofwatersamples.The collectedsampleswereputintothepolythenebag(sediment)and PVCbottle(water).Aftercollectionsampleswerebroughttothe FishInspectionandQualityControl(FIQC)ChemistryLaboratory, Khulna,Bangladesh.Thecollectedsedimentsamplesweredriedat roomtemperaturegroundandsievedwith2mmsieve.

2.2. Waterqualityparameters

Physico-chemical parameters like temperature, pH and dis-solved oxygen (DO) of the river water were measured. Water sampleswerecollectedonspotusingwatersamplerforthe detec-tionof physicochemical parameters.Temperature and pHwere determinedusingamicroprocessorpHmeter(ModelNo.HI98139, HANNA Instruments Ltd., Germany). Salinity was measured by potableRefractometer(Model:EXTECHRF20).Otherparameters

likehardness(mg/L),dissolvedoxygen(mg/L),alkalinity(mg/L), ammonia(mg/L),wereanalyzedonusingkits(HANNATestkits, HannaInstrumentsLtd.,Germany).

2.3. Chemicalsandsampledigestion

AllstandardsolutionfortargetelementwassuppliedbyMerck Germanywithhighestpuritylevel(99.98%).Ultra-pureHNO3was

usedforsampledigestion.Allotheracidsandchemicalswereeither suprapureorultra-purereceivedformMerckGermanyor Schar-lauSpain.Aftercollection,watersampleswerefilteredthrough MilliporeFiltrationAssembly,using0.45mmmembranefilter.The filtratewasthenacidifiedwithconcentratedHNO3tomakeapHof

<2.Measuredvolume(50mL)ofwellmixed,acidifiedsamplewas takeninabeaker.About5mLofconcentratedHNO3wasaddedand

boiledat130◦Conhotplatetillthevolumecametoabout25–30mL andlightcolor.AdditionofHNO3 andboilingwererepeatedtill

solutionbecomeslightcoloredorclear.Aftercooling,volumewas madetodesiredlevelwithDIWpassingthroughtheWhatmanno. 41filterpaper.About2.0gportionofdriedsedimentwastakenin 100mLbeakerand15mLofconcentratedHNO3 wasadded.The

contentwasheatedat130◦Cfor5huntil2–3mLremaininginthe beaker.AfterdigestionmaterialswerepassedthroughWhatman no.41filterpaper,washedwith0.1MHNO3solutionandmadeup

to100mLvolumewithdeionizedwater. 2.4. Analyticaltechniqueandaccuracycheck

AllthematrixeswereanalyzedforPb,Cd,CrandAsbyatomic absorptionspectrophotometer(ModelZEEnit700P#150Z7P0110, AnalytikJena,Germany)usingGF-AASandHydrideGenerator sys-tem.Allthemethodsarein-housevalidatedfollowingEC567/2002. Analyticalconditions for themeasurement oftheheavy metals in sample using AAS were tabulated in Table S2. The instru-ment calibration standards were made by diluting standard (1000ppm)suppliedbySigma–Aldrich,Switzerland. Theresults wereexpressedasmg/kgforfishandsedimentwhile␮g/Lforwater sample.De-ionizedultrapurewaterwasusedforthe experimen-talprocedure.Allglasswareandcontainerswerecleanedby20% nitricacid,finallyrinsedwithDe-ionizedultrapurewaterfor sev-eraltimesandoven-driedpriortouse.Theanalyticalprocedurewas checkedusingcertifiedreferencematerialDORM-4Fishproteinfor heavymetals.Thisfishsampleswerepreparedandprovidedbythe NationalResearchCouncil,Canada.Thestandarddeviationsofthe meansobservedforthecertifiedmaterialswerebetween0.65–8% andthepercentagerecoverywasbetween89and99%asshown inTableS3.Theresultsindicatedagoodagreementbetweenthe certifiedandobservedvalues.

2.5. Assessmentofheavymetalsinsediment

Intheinterpretationofgeochemicaldata,choiceofbackground valuesplaysa significantcontribution.Severalresearchershave usedtheaverageshalevalues ortheaveragecrustalabundance dataasreferencebaselines(LoskaandDanuta,2003;Singhetal., 2005;Islametal.,2015a).Thedegreeofcontaminationfromheavy metalscouldbeevaluatedbydeterminingthecontaminationfactor (CF),pollutionloadindex(PLI)andgeoaccumulationindex(Igeo). 2.5.1. Pollutionloadindex(PLI)andcontaminationfactor(CF)

Toevaluatethesedimentquality,combinedapproachesof pol-lutionloadindexofthefourmetalswerecalculatedaccordingto Islametal.(2015c).ThePLIisdefinedasthenthrootofthe multi-plicationsofthecontaminationfactorofmetals(CF).

(3)

Fig.1.MapofthestudyareaofKarnaphuliRiver,Bangladesh.

whereCFmetalsistheratiobetweenthecontentofeachmetalto

thebackgroundvalues(backgroundvaluefromtheaverageshale value)insediment,CFmetals=Cmetal/Cbackground.Therefore,PLIvalue

ofzeroindicatesexcellence,avalueofoneindicatesthepresenceof onlybaselinelevelofpollutantsandvaluesaboveoneindicate pro-gressivedeteriorationofthesiteandestuarinequality(Tomilson etal.,1980).ThePLIgaveanevaluationoftheoveralltoxicity sta-tusofthesampleandalsoitisaconsequenceofthecontribution ofthestudiedfourmetals.Theratioofthemeasuredconcentration tonaturalabundanceofagivenmetalhadbeenproposedasthe contaminationfactor(CF)beingclassifiedintofourgradesfor mon-itoringthepollutionofonesinglemetaloveraperiodoftime(Islam etal.,2015c):lowdegree(CF<1),moderatedegree(1≤CF<3), con-siderabledegree(3≤CF<6),andveryhighdegree(CF≥6).Thus, theCFvaluescanmonitortheenrichmentofonegivenmetalin sedimentsoveraperiodoftime.

2.5.2. Geoaccumulationindex(Igeo)

Thedegreeofcontaminationfromtheheavymetalscouldbe assessedbymeasuringthegeoaccumulationindex(Igeo).Theindex

ofgeoaccumulationhasbeenwidelyusedtotheassessmentof sed-imentcontamination(SantosBermejoetal.,2003;Saleemetal., 2015).Inordertocharacterizethelevelofpollutioninthe sedi-ment,geoaccumulationindex(Igeo)valueswerecalculatedusing

theequation,

Igeo=Log2[ Cn

1.5Bn] (2)

whereCn isthemeasuredconcentrationofmetalnin the sedi-mentandBn isthegeochemicalbackgroundvalueofelementn in thebackgroundsample(Yuet al.,2011; Rahmanand Ishiga, 2012; Islamet al.,2015a).The factor 1.5is introducedto min-imize the possible variations in the background values which may be qualified to lithogenic effects. Geoaccumulation index

(4)

(Igeo)valueswereinterpretedas:Igeo≤0—practically

uncontami-nated;0≤Igeo≤1—uncontaminatedtomoderatelycontaminated;

1≤Igeo≤2—moderately contaminated; 2≤Igeo≤3—moderately

to heavily contaminated; 3≤Igeo≤4—heavily

contami-nated; 4≤Igeo≤5—heavily to extremely contaminated; and

5<Igeo—extremelycontaminated. 2.5.3. Statisticalanalysis

Thedatawerestatisticallyanalyzedbythestatisticalpackage, SPSS16.0(SPSS,USA).Themeansandstandarddeviationsofthe heavymetalconcentrationsinwaterandsedimentswere calcu-lated.

3. Resultsanddiscussion

3.1. Waterqualityparameters

Thephysico-chemicalparameters of the water columnsuch as dissolved oxygen (DO), pH, temperature etc. are presented inTable1. Thephysicochemical parametersarevery important becausetheyhaveasignificanteffectonthewaterquality. Further-more,aquaticlifealsosuffersduetodegradationofwaterquality. Amongtheexternalfactorstemperatureisoneofthemost impor-tantfactorswhichinfluencetheaquaticecology(Huet,1986).The values oftemperature wereranged from28.8◦C to33.9◦C and 20.1◦C to23.9◦C during summerand winter, respectively. The meanvalueofwatertemperaturewasfoundwithinthe permissi-blelimitssetby(WHO,2004),whichwasbetween25and30◦C. TheaveragepHwas7.89and 8.17duringsummerand winter, respectively(Table1).Salinityisameasureofthesaltcontentofthe water.Thesalinityoffreshwaterisalwayslessthan0.5%.Thisrange ofsalinity isgenerally termedbrackishas distinctfrommarine orfreshwaters.Meanvaluesofsalinitywereobserved8.61pptin summerand9.06pptinwinter.Inthepresentstudy,thehighest hardness780mg/LwasobservedinsiteS10duringwinterdueto higherlevelofsalinitywherelowerhardness325mg/Lduring sum-merwasobservedin siteS3(Table1)duetothelowersalinity concentration(Lawson,2011).Dissolvedoxygenreferstothe oxy-gengasthatisdissolvedinthewaterandmadeavailabletoaquatic life.Thesolubilityofoxygenincreaseswithdecreasethe tempera-ture(Singhetal.,1990).AswasexpectedthehighestvalueofDO wasrecordedduringwinterseasonmightbeduetotemperaturein thisseasonwaslow(Macan,1980).Thedissolvedoxygen(DO)was found4.58–11.75mg/Lduringsummerand5.12–14.1mg/Lin win-ter.ThelowestvalueofDOwasobservedduringsummerthatcould beduetothelessornorainfallandincreaseintemperaturethatlead todecreaseindissolvedoxygenresultsduetotherateofoxygen consumptionfromaquaticorganismsandhighrateof decomposi-tionoforganicmatter.Josephetal.(1993)reportedthatasuitable rangeofalkalinityis20–300mg/Lforfish.Inthepresentstudythe highestalkalinityrangewas(114.4±3.782–189±16.355mg/L),it indicatesthatthelevelofalkalineisasuitablecondition.

3.2. Metalconcentrationinwater

Theresultsofheavymetalconcentrationsinsurfacewatersare showninTable2.Theaverageconcentrationofstudiedmetalsin waterfollowedthedecreasingorderof:Cr>As>Pb>Cd.Themean concentrationofCrinwaterwasobserved69.56and86.93␮g/L duringsummerandwinterseason,respectivelywhichwasmuch higherthantheWHOstandardlevelfordrinkingwater(Table2). TheaverageconcentrationofCdwasobserved6.46and10.64␮g/L duringsummerandwinterseason,respectively.Interestingly,the highestvalueofCdwasobservedatS6site(18.34␮g/Lduring

win-ter)whichmightbeattributedtothedomesticsewageandeffluents Table

1 Water quality parameters of Karnaphuli River of Chittagong district, Bangladesh. Sites Temperature ( ◦C) pH Salinity (ppt) Hardness (mg/L) DO (mg/L) Alkalinity (mg/L) Ammonia (mg/L) Su Wi Su Wi Su Wi Su Wi Su Wi Su Wi Su Wi S1 33.7 23.9 7.8 8.1 8.5 9.1 330 570 11.23 13.1 120 160 0.23 0.35 S2 32.4 21.4 7.8 7.9 8.7 9.1 350 595 7.11 8.31 115 145 0.31 0.51 S3 30.1 20.1 7.9 7.5 8.4 8.9 325 660 10.05 11.1 110 160 0.1 0.15 S4 31.6 21.2 8.1 7.8 8.7 9.3 360 725 5.1 7.24 115 150 0.13 0.27 S5 28.6 20.5 7.5 7.7 8.7 8.9 375 665 4.58 5.12 112 155 0.1 0.18 S6 32.1 22.7 7.3 8.5 8.5 9.1 335 585 10.11 12.21 130 170 0.33 0.43 S7 33.9 20.4 7.9 8.3 8.9 9.4 465 745 11.75 14.1 92 130 0.12 0.19 S8 29.8 20.3 8.2 8.1 8.8 8.9 430 690 7.1 9.2 125 165 0.13 0.28 S9 29.7 21.1 8.1 8.7 8.8 9.4 420 755 5.3 8.56 118 135 0.21 0.29 S10 28.8 20.6 8.3 9.1 8.9 9.5 450 780 8.45 10.29 110 140 0.27 0.35 Average ± SD 31.07 ± 1.94 21.22 ± 1.21 7.89 ± 0.31 8.17 ± 0.49 8.69 ± 0.17 9.16 ± 0.23 384 ± 52.64 677 ± 75.17 8.07 ± 2.63 9.92 ± 2.78 114.7 ± 10.25 151 ± 13.29 0.193 ± 0.09 0.3 ± 0.11 Note : Su—Summer, Wi—Winter season, respectively.

(5)

Table2

Heavymetalconcentration(␮g/L)inwatersampleofKarnaphuliRiverandmaximumpermittedconcentrationinwater(␮g/L).

Sites As Cr Cd Pb

Summer Winter Summer Winter Summer Winter Summer Winter

S1 15.83 21.41 51.76 65.32 5.28 7.32 18.17 27.45 S2 32.43 41.53 63.91 78.54 6.87 13.49 7.32 12.67 S3 20.07 27.89 96.09 112.43 2.54 3.18 11.64 17.89 S4 27.13 33.48 46.09 55.43 3.12 6.59 9.89 13.45 S5 19.84 31.54 75.99 90.79 10.94 15.56 11.45 22.78 S6 17.29 29.83 69.27 87.45 11.71 18.34 5.73 11.56 S7 13.31 23.76 79.81 92.13 5.91 11.79 17.12 25.32 S8 30.44 53.87 93.14 107.57 4.38 8.93 5.29 10.69 S9 31.79 43.32 66.39 95.21 7.19 11.71 6.56 13.98 S10 25.49 37.98 53.18 84.38 6.62 9.53 5.34 12.49 Average±SD 23.36±6.99 34.46±9.87 69.56±16.95 86.93±17.39 6.46±3.00 10.64±4.49 9.85±4.75 16.83±6.17 DWSBa 50 50 5 50 TRVb 150 11 2 3 WHO(2004) 10 5 3 10

Note:SD,standarddeviation.

aDrinkingwaterstandardforBangladeshproposedthroughECR(DepartmentofEnvironment,GovernmentofthePeople’sRepublicofBangladesh,1997).

bTRV(toxicityreferencevalue)forfreshwaterproposedbyUSEPA(1999).

fromtheportarea(Islametal.,2015a).Theaverage concentra-tionofAswashigherinwinter(34.46␮g/L)thanthatinsummer (23.36␮g/L)whichexceededtheWHOstandard(10␮g/L)(Table2). ArsenicoriginatesmostlyfromtheuplandHimalayancatchments or Chittagonghill tracts which are linkedwith thestudy river (Mitamuraetal.,2008).TheaverageconcentrationofPbinwater was9.85and16.83␮g/Lduringsummerandwinterseason, respec-tively,whichwerehigherthanthedrinkingwaterqualitystandard. Consideringthetoxicityreferencevalues(TRV)proposedbyUSEPA (1999)almostalltheheavymetals especiallyCrandCdgreatly exceededthelimitforsafewater,indicatedthatwaterfromthis riverisnotsafefordrinkingand/orcooking.Themetalsinwater wereseasonallyvaried,wherewinterseasonexhibitedhigherthan summer(Table2).Thelowerconcentrationofheavymetalsduring summermightbeduetothedilutioneffectofwater(Mohiuddin etal.,2012;Islametal.,2015a;Adamuetal.,2015).

3.3. Metalconcentrationinsediment

Heavy metal concentrations of sediments are presented in Table3.ConcentrationsofheavymetalsatsitesS4–S6weremuch higherthanothers sitesbecauseofthefact thatthesesitesare locatedattheseaportareaoftheriverandextensive discharg-ingofuntreatedeffluentsfromtheport.Metalsconcentrationsin sedimentwerehigherinwinter thansummerdue tothelower waterflow duringwinter whichcouldassistancetoaccumulate theheavymetalsinsediment(Islametal.,2015a,c).Theaverage concentrationofheavymetalsinsedimentswereinthe decreas-ingorderof:Cr>Pb>As>Cd.Chromiumconcentrationinsediment washigherthanothermetalsasaconsequenceofdirectdischarging untreatedwastesfrompetroleum,fertilizersandtextileindustries (Facettietal.,1998;Islametal.,2015a).However,highlevelofCr forsiteS5(131.09and160.32mg/kginsummerandwinter, respec-tively)indicatesitshigherinput,whichmightbeoriginatedfrom theurbanandindustrialwastes(Mohiuddinetal.,2012).Themean concentrationofAsinsedimentwasobserved13.57mg/kgin sum-merand19.87mg/kginwinterwhichwashigherthantheaverage shalevalue(ASV)(13mg/kg)(Table4).HighAsconcentrationin sedimentsmightbeattributedtotheanthropogenicactivitiessuch astreatmentfromthefertilizersandarsenicalpesticidesindustries (Fuetal.,2014;Ahmedetal.,2016),treatingofwoodby exhaust-ingcopperarsenate(Pravinetal.,2012;Baeyensetal.,2007)and tanningin relationtosomechemicalsespecially arsenicsulfide (Bhuiyanetal.,2011).

Theaverageconcentration ofCd was1.51mg/kg in summer and 2.50mg/kg inwinter(Table3).Highlevel ofCdwasfound during winter which might be due tothe differences in water capacityoftheriverwherelowwaterflowinwinterresultedthe precipitationofCdinsediment;therebyrisingitsconcentration (Islametal.,2015c).AverageconcentrationofPb wasobserved 38.33and49.04mg/kgduringsummerandwinterseason,about 2 times higherthan ASV value (20mg/kg)which could bedue totheeffect frompointand non-pointsources;suchasleaded gasoline,petroleum,municipalrunoffsandatmospheric deposi-tion(Mohiuddinet al.,2012;Shikazonoet al.,2012),chemicals andelectronicsmanufacturing,cables,oils,tireandcementfactory, andsteelworksnearbythestudyriverofChittagongdistrict.Asa whole,concentrationsofmostofthemetalsexceededsomewell documentedstandardvaluesandinagreementwithsomeprevious studiesinBangladeshandothercountries(Table4).

Pearson’scorrelation(PC)matrixforanalyzedsediment param-eterswascalculatedtoseeifsomeoftheparametersinterrelated witheachotherandtheresultsarepresentedinTable5.The ele-mentsinsedimentsdidnotshowanycorrelationwitheachother whereAsandCdshowedsignificantpositivecorrelation suggest-ingsimilarsourcesofinput(humanornatural)forthesetwometals intheriverwater(Bastamietal.,2012).Highcorrelationsbetween specificheavymetalsinwatermayreflectsimilarlevelsof contam-inationand/orreleasefromthesamesourcesofpollution,mutual dependenceandidenticalbehaviorduringtheirtransportinthe riversystem(Lietal.,2009;Chenetal.,2012;Sureshetal.,2012; Jiangetal.,2014).

3.4. Assessmentofmetalpollution

Thecalculated pollutionloadindex (PLI)values ofmetals in sedimentsaresummarizedinFig.2.ThePLIvalueswereranged from1.36to2.07duringsummerand1.83to2.91duringwinter confirmingthatthesedimentofthestudiedriverwas contami-nated(PLI>1).HigherPLIvalueswereobservedinsamplingsites S4,whichmightbeduetotheeffectsofseaportactivities.The PLIcanprovidesomeunderstandingtothepopulationsaboutthe qualityofthesediment.Inaddition,italsodeliversessential infor-mationtothedecisionmakersonthepollutionstatusofthestudy area(Sureshetal.,2012).Thevaluesofcontaminationfactor(CF)for allmetalsshowedmoderatedegreeofcontamination(1≤CF<3), whereas,Cdshowedvery highdegreeofcontamination(CF>6) (Fig.3).Overall,theCFforallmetalswerethedescendingorder of:Cd>Pb>As>Cr.ThemeanCFvaluesofAs,Cd,CrandPbwere

(6)

Table3

Heavymetalconcentrations(mg/kgdw)insedimentofKarnaphuliRiver,Bangladesh(n=3).

Sites As Cr Cd Pb

Summer Winter Summer Winter Summer Winter Summer Winter

S1 13.17 19.67 57.31 78.48 1.1 1.87 35.25 42.56 S2 25.39 31.53 37.23 53.27 1.53 3.21 27.76 31.73 S3 12.57 17.82 81.18 102.57 0.95 2.16 39.13 50.59 S4 13.38 19.67 111.48 135.93 1.4 2.55 61.86 73.42 S5 11.56 15.56 131.09 160.32 0.63 0.91 25.69 35.27 S6 18.39 26.79 65.89 80.53 1.12 1.61 56.03 67.38 S7 22.67 35.48 41.31 66.93 2.45 3.56 21.98 27.69 S8 19.38 26.32 68.11 91.47 1.34 2.91 35.73 48.59 S9 17.86 25.34 67.77 86.34 2.49 3.37 35.89 54.82 S10 13.57 19.87 39.18 65.27 2.11 2.89 43.97 58.39 Average±SD 16.79±4.70 23.81±6.39 70.06±30.93 92.11±33.16 1.51±0.64 2.50±0.85 38.33±12.74 49.04±15.06 Note:SD:standarddeviation.

Table4

Comparisonofmetalsinsediment(mg/kgdw)withdifferentinternationalguidelinesandotherstudiesintheworld.

River,Location Cr As Cd Pb References

KarnaphuliRiver(Bangladesh) 20.3(11.56–35.48) 81.09(37.23–160.32) 2.01(0.63–3.56) 43.69(21.98–73.42) Thisstudy

BangshiRiver(Bangladesh) 98 1.93 0.61 60 Rahmanetal.(2014)

BurigangaRiver(Bangladesh) 178 NA 3.3 70 Ahmadetal.(2010)

PairaRiver,Bangladesh 45 12 0.72 25 Islametal.(2015a)

Korotoa(Bangladesh) 109 25 1.2 58 Islametal.(2015c)

PadmaRiver,Bangladesh 97 NA NA 17 DattaandSubramanian(1998)

Jamuna(Bangladesh) 110 NA NA 19 DattaandSubramanian(1998)

GomtiRiver(India) 8.15 NA 2.42 40.33 Singhetal.(2005)

RiverGanges(India) 1.8–6.4 NA 0.14–1.4 4.3–8.4 Guptaetal.(2009)

YellowRiver(China) 41–128 14–48 NA 26–78 Liuetal.(2009)

OkumeshiRiver(Nigeria) 0.87 NA 1.32 0.45 Raphaeletal.(2011)

ASV 90 13 0.3 20 TurekianandWedepohl(1961)

TRV 26 6 0.6 31 USEPA(1999)

LEL 26 6 0.6 31 Persuadetal.(1993)

SEL 110 33 10 250 Persuadetal.(1993)

Note:ASV,averageshalevalue;TRV,toxicityreferencevalue;LEL,lowesteffectlevel;SEL,severeeffectlevel;NA,notavailable.

Table5

CorrelationbetweentheelementsinwaterandsedimentsofKarnaphuliRiver,Bangladesh.

As Cr Cd Pb Water(n=20) As 1 Cr 0.368 1 Cd 0.269 0.204 1 Pb −0.196 0.192 0.162 1 Sediment(n=20) As 1 Cr −0.324 1 Cd 0.731a 0.280 1 Pb −0.079 0.320 0.102 1

aCorrelationissignificantatthe0.01level(2-tailed).

0

0.5

1

1.5

2

2.5

3

3.5

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

PL

I

val

u

e

Sampling location

Summ

er

Winter

Polluted Unpolluted

(7)

0 2 4 6 8 10 As Cr Cd Pb CF v a lu e Metals Summer Winter

Very high degree

Considerable degree

Moderate degree Low degree

Fig.3.Contaminationfactor(CF)ofheavymetalsinsedimentofKarnaphuliRiver,Bangladesh.

Fig.4. Geoaccumulationindex(Igeo)ofheavymetalsinsedimentofKarnaphuliRiver,Bangladesh(su=summerseason,wi=winterseason).

1.29,0.78,5.04and1.92duringsummerand1.83,1.02,8.35and 2.45duringwinterseason.Thevaluesofgeoaccumulationindex (Igeo)ofthestudiedheavymetalsarepresentedinFig.4.Among

thestudiedmetals,theIgeo values showedthedecreasingorder

of:Cr>Pb>As>Cd.TheIgeovaluesforthestudiedmetalsindicated

unpollutedtoextremelypolluted.

4. Conclusions

HeavymetalpollutionisamajorproblemfortheKarnaphuli Riverbasin, Bangladesh. In thepresent studyconcentrations of As,Cr,Cdand Pbwerehigher thanthesafevalues which indi-catedthattheriverKarnaphuliispollutedbystudiedheavymetals andmightcreateanadverseeffectonthisriverineecosystem.The overallpollutionloadwasremarkablyhigherinwinterthanin sum-merseason.Thecontaminationfactor(CF),pollution loadindex (PLI) and geoaccumulation index (Igeo) exposed that sediments

wereunpollutedtoextremelypollutedbyheavymetals.Thisstudy suggestedthatpointsourcesofheavymetalsinthewaterand sed-imentsshouldbecloselymonitored;improvementofconditions andindustrialeffluentanddomesticsewagedischargeshouldbe reduced.

Conflictofinterest

Theauthorsdeclarethattherearenoconflictsofinterest.This studymainlyfocusesontheheavymetalscontentinsurfacewater andsedimentsandecologicalriskassessmentinacoastalriverof Bangladesh.Weextensivelymonitorthepresentpollutionstatusof tracemetalsinthesamples.Ourresearchmainlytheidentification ofenvironmentalproblemsrelatedmetalspollutionandnotreceive anyfinancialsupportsoranyotherrelationshipwithotherpeople ororganizations.

Acknowledgments

TheauthorswouldliketothanktheauthorityoftheFish Inspec-tionandQualityControl(FIQC)Laboratory,Khulna,Bangladeshfor providinglaboratoryfacilitiestocompletethisstudy.Theauthors alsodelightedtoexpresstheirgratefulnessandsincerestthanksto thestuffmembersofFIQCLaboratoryfortheirco-operationduring thesampleanalysis.Theauthorsaregratefulforfinancialsupport bytheNationalScienceandTechnologyFellowshipfromthe Min-istryofScienceandTechnology,TheGovernmentPeople’sRepublic ofBangladesh.Furthermore,wearethankfulforthekindhelpfrom themembersofPatuakhaliScienceandTechnologyUniversityand

(8)

ChittagongVeterinaryandAnimalSciencesUniversity,Bangladesh, duringthefieldsampling.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.enmm.2016.01. 002.

References

Abdel-Ghani,N.T.,Elchaghaby,G.A.,2007.Influenceofoperatingconditionsonthe

removalofCu,Zn,CdandPbionsfromwastewaterbyadsorption.Int.J. Environ.Sci.Technol.4,451–456.

Adamu,C.I.,Nganje,T.N.,Edet,A.,2015.Heavymetalcontaminationandhealth

riskassessmentassociatedwithabandonedbariteminesinCrossRiverState: southeasternNigeria.Environ.Nanotechnol.Monit.Manag.3,10–21.

Ahmad,M.K.,Islam,S.,Rahman,S.,Haque,M.R.,Islam,M.M.,2010.Heavymetalsin

water,sedimentandsomefishesofBurigangaRiver,Bangladesh.Int.J. Environ.Res.4,321–332.

Ahmed,M.K.,Baki,M.A.,Islam,M.S.,Kundu,G.K.,Sarkar,S.K.,Hossain,M.M.,2015a.

Humanhealthriskassessmentofheavymetalsintropicalfishandshellfish

collectedfromtheriverBuriganga,Bangladesh.Environ.Sci.Pollut.Res.,http://

dx.doi.org/10.1007/s11356-015-4813-z.

Ahmed,M.K.,Shaheen,N.,Islam,M.S.,Al-Mamun,M.H.,Islam,S.,Banu,C.P.,2015b.

Traceelementsintwostaplecereals(riceandwheat)andassociatedhealth riskimplicationsinBangladesh.Environ.Monit.Assess.187,326–336.

Ahmed,M.K.,Shaheen,N.,Islam,M.S.,Al-Mamun,M.H.,Islam,S.,Mohiduzzaman,

M.,Bhattacharjee,L.,2015c.Dietaryintakeoftraceelementsfromhighly

consumedculturedfish(Labeorohita,PangasiuspangasiusandOreochromis

mossambicus)andhumanhealthriskimplicationsinBangladesh.

Chemosphere128,284–292.

Ahmed,M.K.,Shaheen,N.,Islam,M.S.,Al-Mamun,M.H.,Islam,S.,Islam,M.M.,

Kundu,G.K.,Bhattacharjee,L.,2016.Acomprehensiveassessmentofarsenicin

commonlyconsumedfoodstuffstoevaluatethepotentialhealthriskin Bangladesh.Sci.TotalEnviron.544,125–133.

Baeyens,W.,DeBrauwere,A.,Brion,N.,DeGieter,M.,Leermakers,M.,2007.

ArsenicspeciationintheRiverZenneBelgium.Sci.TotalEnviron.384,409–419.

Bai,J.,Xiao,R.,Cui,B.,Zhang,K.,Wang,Q.,Liu,X.,Gao,H.,Huang,L.,2011.

Assessmentofheavymetalpollutioninwetlandsoilsfromtheyoungandold reclaimedregionsinthePearlRiverEstuary,SouthChina.Environ.Pollut.159, 817–824.

Bastami,K.D.,Bagheri,H.,Haghparast,S.,Soltani,F.,Hamzehpoor,A.,Bastami,M.D.,

2012.Geochemicalandgeo-statisticalassessmentofselectedheavymetalsin

thesurfacesedimentsoftheGorganBay,Iran.Mar.Pollut.Bull.64,2877–2884.

Bhuiyan,M.A.H.,Suruvi,N.I.,Dampare,S.B.,Islam,M.A.,Quraishi,S.B.,Ganyaglo,S.,

Suzuki,S.,2011.Investigationofthepossiblesourcesofheavymetal

contaminationinlagoonandcanalwaterinthetanneryindustrialareain Dhaka,Bangladesh.Environ.Monit.Assess.175,633–649.

Chen,B.,Liang,X.,Xu,W.,Huang,X.,Li,X.,2012.Thechangesintracemetal

contaminationoverthelastdecadeinsurfacesedimentsofthePearlRiver EstuarySouthChina.Sci.TotalEnviron.439,141–149.

Datta,D.K.,Subramanian,V.,1998.Distributionandfractionationofheavymetals

inthesurfacesedimentsoftheGanges–Brahmaputra–Meghnariversystemin theBengalbasin.Environ.Geol.36,93–101.

DepartmentofEnvironment,GovernmentofthePeople’sRepublicofBangladesh,

1997.ECR(TheEnvironmentConservationRules).PoribeshBhabanE-16,

Agargaon,ShereBanglaNagarDhaka1207,Bangladeshpp.179–226.

Facetti,J.,Dekov,V.,VanGrieken,R.,1998.Heavymetalsinsedimentsfromthe

Paraguayriver:apreliminarystudy.Sci.TotalEnviron.209,79–86.

Fu,J.,Zhao,C.,Luo,Y.,Liu,C.,Kyzas,G.Z.,Luo,Y.,Zhao,D.,An,S.,Zhu,H.,2014.

HeavymetalsinsurfacesedimentsoftheJialuriver,China:theirrelationsto environmentalfactors.J.Hazard.Mater.270,102–109.

Grigoratos,T.,Samara,C.,Voutsa,D.,Manoli,E.,Kouras,A.,2014.Chemical

compositionandmassclosureofambientcoarseparticlesattrafficandurban backgroundsitesinThessaloniki,Greece.Environ.Sci.Pollut.Res.21, 7708–7722.

Gupta,A.,Rai,D.K.,Pandey,R.S.,Sharma,B.,2009.Analysisofsomeheavymetalsin

theriverinewater:sedimentsandfishfromriverGangesatAllahabad. Environ.Monit.Assess.157,449–458.

Huet,M.,1986.TextbookofFishCulture,2nded.FishNewsBook.Ltd.,England.

Islam,M.S.,Ahmed,M.K.,Habibullah-Al-Mamun,M.,Islam,K.N.,Ibrahim,M.,

Masunaga,S.,2014.Arsenicandleadinfoods:apotentialthreattohuman

healthinBangladesh.FoodAddit.Contam.PartA31(12),1982–1992.

Islam,M.S.,Ahmed,M.K.,Habibullah-Al-Mamun,M.,Hoque,M.F.,2015a.

Preliminaryassessmentofheavymetalcontaminationinsurfacesediments fromariverinBangladesh.Environ.EarthSci.73,1837–1848.

Islam,M.S.,Ahmed,M.K.,Raknuzzaman,M.,Habibullah-Al-Mamun,M.,Masunaga,

S.,2015b.Metalspeciationinsedimentandtheirbioaccumulationinfish

speciesofthreeurbanriversinBangladesh.Arch.Environ.Contam.Toxicol.68, 92–106.

Islam,M.S.,Ahmed,M.K.,Raknuzzaman,M.,Habibullah-Al-Mamun,M.,Islam,M.K.,

2015c.Heavymetalpollutioninsurfacewaterandsediment:apreliminary

assessmentofanurbanriverinadevelopingcountry.Ecol.Indic.48,282–291.

Islam,M.S.,Ahmed,M.K.,Raknuzzaman,M.,Habibullah-Al-Mamun,M.,Masunaga,

S.,2015d.Assessmentoftracemetalsinfishspeciesofurbanriversin

Bangladeshandhealthimplications.Environ.Toxicol.Pharmacol.39,347–357.

Jiang,X.,Teng,A.,Xu,W.,Liu,X.,2014.Distributionandpollutionassessmentof

heavymetalsinsurfacesedimentsintheYellowSea.Mar.Pollut.Bull.,http://

dx.doi.org/10.1016/j.marpolbul.2014.03.020.

Joseph,K.B.,Richard,W.S.,Daniel,E.T.,1993.Anintroductiontowaterchemistryin

freshwateraquaculture,Northeasternregionalaquaculturecenter,Factsheet

no.170,UniversityofMassachusetts.

Khadse,G.K.,Patni,P.M.,Kelkar,P.S.,Devotta,S.,2008.Qualitativeevaluationof

KanhanriveranditstributariesflowingovercentralIndianplateau.Environ. Monit.Assess.147,83–92.

Khan,S.,Cao,Q.,Zheng,Y.M.,Huang,Y.Z.,Zhu,Y.G.,2008.Healthrisksofheavy

metalsincontaminatedsoilsandfoodcropsirrigatedwithwastewaterin Beijing,China.Environ.Pollut.152,686–692.

Lawson,E.O.,2011.Physico-chemicalparametersandheavymetalcontentsof

waterfromthemangroveswampsofLagosLagoon,Lagos,Nigeria.Advan.Biol. Res.5(1),8–21.

Li,F.Y.,Fan,Z.P.,Xiao,P.F.,Oh,K.,Ma,X.P.,Hou,W.,2009.Contamination,chemical

speciationandverticaldistributionofheavymetalsinsoilsofanoldandlarge industrialzoneinNortheastChina.Environ.Geol.54,1815–1823.

Liu,C.,Xu,J.,Zhang,P.,Dai,M.,2009.Heavymetalsinthesurfacesedimentsin

LanzhouReachofYellowRiver,China.Bull.Environ.Contam.Toxicol.82, 26–30.

Loska,K.,Danuta,W.,2003.Applicationofprincipalcomponentanalysisforthe

estimationofsourceofheavymetalcontaminationinsurfacesedimentsfrom theRybnikReservoir.Chemosphere51,723–733.

Macan,T.T.,1980.FreshwaterEcology,2nded.Longman,pp.343.

Martin,J.A.R.,Arana,C.D.,Ramos-Miras,J.J.,Gil,C.,Boluda,R.,2015.Impactof70

yearsurbangrowthassociatedwithheavymetalpollution.Environ.Pollut. 196,156–163.

Mitamura,M.,Masuda,H.,Itai,T.,Minowa,T.,Maruoka,T.,Ahmed,K.M.,Seddique,

A.A.,Biswas,D.K.,Nakaya,S.,Uesugi,K.,Kusakabe,M.,2008.Geological

structureofanarsenic-contaminatedaquiferatSonargaon,Bangladesh.J.Geol. 116,288–302.

Mohiuddin,K.M.,Otomo,K.,Ogawa,Y.,Shikazono,N.,2012.Seasonalandspatial

distributionoftraceelementsinthewaterandsedimentsoftheTsurumiriver inJapan.Environ.Monit.Assess.184,265–279.

Morillo,J.,Usero,J.,Gracia,I.,2004.Heavymetaldistributioninmarinesediments

fromthesouthwestcoastofSpain.Chemosphere55,431–442.

Nicolau,R.,Galera,C.A.,Lucas,Y.,2006.Transferofnutrientsandlabilemetalsfrom

thecontinenttotheseabyasmallMediterraneanriver.Chemosphere63, 469–476.

Nouri,J.,Lorestani,B.,Yousefi,N.,Khorasani,N.,Hasani,A.H.,Seif,S.,Cheraghi,M.,

2011.Phytoremediationpotentialofnativeplantsgrowninthevicinityof

Ahangaranlead–zincmine(Hamedan,Iran).Environ.EarthSci.62, 639–644.

Persuad,D.,Jaagumagi,R.,Hayton,A.,1993.GuidelinesfortheProtectionand

ManagementofAquaticSedimentQualityinOntario.OntarioMinistryofthe Environment,Canada.

Pravin,U.S.,Trivedi,P.,Ravindra,M.M.,2012.Sedimentheavymetalcontaminants

inVasaicreekofMumbai:pollutionimpacts.Am.J.Chem.2,171–180.

Rahman,M.A.,Ishiga,H.,2012.Tracemetalconcentrationsintidalflatcoastal

sedimentsYamaguchiPrefecture,southwestJapan.Environ.Monit.Assess. 184,5755–5771.

Rahman,M.S.,Saha,N.,Molla,A.H.,2014.Potentialecologicalriskassessmentof

heavymetalcontaminationinsedimentandwaterbodyaroundDhakaexport processingzoneBangladesh.Environ.EarthSci.71,2293–2308.

Raphael,E.C.,Augustina,O.C.,Frank,E.O.,2011.Tracemetalsdistributioninfish

tissues,bottomsedimentsandwaterfromOkumeshiriverindeltastate, Nigeria.Environ.Res.J.5,6–10.

Saleem,M.,Iqbal,J.,Shah,M.H.,2015.Geochemicalspeciation,anthropogenic

contamination,riskassessmentandsourceidentificationofselectedmetalsin freshwatersediments—acasestudyfromManglalake,Pakistan.Environ. Nanotechnol.Monit.Manag.4,27–36.

Sanchez-Chardi,A.,Lopez-Fuster,M.J.,Nadal,J.,2007.Bioaccumulationoflead,

mercury,andcadmiuminthegreaterwhite-toothedshrew,Crocidurarussula, fromtheEbroDelta(NESpain):Sex-andage-dependentvariation.Environ. Pollut.145,7–14.

SantosBermejo,J.C.,Beltrán,R.,GómezAriza,J.L.,2003.Spatialvariationsofheavy

metalscontaminationinsedimentsfromOdielriver(southwestSpain). Environ.Int.29,69–77.

Sekabira,K.,OryemOriga,H.,Basamba,T.A.,Mutumba,G.,Kakudidi,E.,2010.

Assessmentofheavymetalpollutionintheurbanstreamsedimentsandits tributaries.Int.J.Environ.Sci.Technol.7(4),435–446.

Shikazono,N.,Tatewaki,K.,Mohiuddin,K.M.,Nakano,T.,Zakir,H.M.,2012.

Sources,spatialvariationandspeciationofheavymetalsinsedimentsofthe TamagawariverincentralJapan.Environ.Geochem.Health34,13–26.

Singh,C.S.,Sharma,A.P.,Deorani,B.P.,1990.Limnologicalstudiesforbioenergetics

transformationinaTaraireservoir,NanakSagar(UP).In:Singh,H.R.(Ed.), AdvancesinLimnology.SchweizerbartSciencePublishers,pp.356–362.

(9)

Singh,K.P.,Malik,A.,Sinha,S.,Singh,V.K.,Murthy,R.C.,2005.Estimationofsource ofheavymetalcontaminationinsedimentsofGomtiriver(India)using principalcomponentanalysis.WaterAirSoilPollut.166,321–341.

Suresh,G.,Sutharsan,P.,Ramasamy,V.,Venkatachalapathy,R.,2012.Assessment

ofspatialdistributionandpotentialecologicalriskoftheheavymetalsin relationtogranulometriccontentsofVeeranamlakesediments,India. Ecotoxicol.Environ.Saf.84,117–124.

Tomilson,D.L.,Wilson,J.,Harris,C.R.,Jeffrey,D.W.,1980.Probleminassessmentof

heavymetalsinestuariesandtheformationofpollutionindex.Helgol.Wiss. Meeresunlter33,566–575.

Turekian,K.K.,Wedepohl,K.H.,1961.Distributionoftheelementsinsomemajor

unitsoftheearth’scrust.Geol.Soc.Am.Bull.72,175–192.

USEPA,1999.ScreeningLevelEcologicalRisksAssessmentProtocolforHazardous

WasteCombustionFacilities.AppendixE:ToxicityReferenceValues.EPA

530-D99-001C,vol.3.

http://www.epa.gov/epaoswer/hazwaste/combust/eco-risk/voume3/appx-e.pdf.

Venugopal,T.,Giridharan,L.,Jayaprakash,M.,Velmurugan,P.M.,2009.A

compre-hensivegeochemicalevaluationofthewaterqualityofRiverAdyar India.Bull.Environ.Contam.Toxicol.82,211–217.

WHO(WorldHealthOrganization),2004.GuidelinesforDrinkingWaterQuality,

3rded.WHO(WorldHealthOrganization),Geneva.

Wilson,B.,Pyatt,F.B.,2007.Heavymetaldispersionpersistence,and

bioaccumulationaroundanancientcopperminesituatedinAnglesey,UK. Ecotoxicol.Environ.Saf.66,224–231.

Yi,Y.,Yang,Z.,Zhang,S.,2011.Ecologicalriskassessmentofheavymetalsin

sedimentandhumanhealthriskassessmentofheavymetalsinfishesinthe middleandlowerreachesoftheYangtzeriverbasin.Environ.Pollut.159, 2575–2585.

Yu,G.B.,Liu,Y.,Yu,S.,Wu,S.C.,Leung,A.O.W.,Luo,X.S.,Xu,B.,Li,H.B.,Wong,M.H.,

2011.Inconsistencyandcomprehensivenessofriskassessmentsforheavy

metalsinurbansurfacesediments.Chemosphere85,1080–1087.

Zhang,C.,Qiao,Q.,Piper,J.D.A.,Huang,B.,2011.Assessmentofheavymetal

pollutionfromaFe-smeltingplantinurbanriversedimentsusing environmentalmagneticandgeochemicalmethods.Environ.Pollut.159, 3057–3070.

Zheng,N.,Wang,Q.C.,Liang,Z.Z.,Zheng,D.M.,2008.Characterizationofheavy

metalconcentrationsinthesedimentsofthreefreshwaterriversinHuludao City,NortheastChina.Environ.Pollut.154,135–142.

Figure

Fig. 1. Map of the study area of Karnaphuli River, Bangladesh.
Fig. 2. Pollution load index (PLI) value of heavy metals in sediment of Karnaphuli River, Bangladesh
Fig. 3. Contamination factor (CF) of heavy metals in sediment of Karnaphuli River, Bangladesh.

References

Related documents

CoV: Center of ventilation; CT: Computed tomography; ECMO: Extracorporeal membrane oxygenation; EELI: End-expiratory lung impedance; EIT: Electrical impedance tomography; GI:

According to the table 2 and table 3, twenty seven percent of variance shows that buyers’ perception has a positive relationship with reviews’ characteristics such

In TS2006, the authors considered the atmospheric deposition of Saharan dust as probably the main source of trace metals for the surface tropical Atlantic, together with the

iteration, iterative root, topological conjugacy, stability, piecewise monotonic function, set-valued function, formal power series, homeomorphism of the circle..

This review gives a bird’s eye view mainly on the some of the biological activity of the neem includes antifungal, contraceptive and anti-cancer and mosquito

The parameters used for the developed method and chromatograms were obtained for the drug sample were shown in Table-I.. Table 1:

It was detected a fall in the % of inhibition of carrageenan- induced rat paw edema observed after 6 h of marketed FC capsules post administration, while formulation H3 showed

At first, it uses continuous wavelet (Morlet) transform, coherency, and phase angle analysis to study the effect of mean volatility in OPEC Crude Oil prices, WTI crude