• No results found

VDL ETG Ultra Precision Technologies Manufacturing of ultra high precision mechanical and optical components

N/A
N/A
Protected

Academic year: 2021

Share "VDL ETG Ultra Precision Technologies Manufacturing of ultra high precision mechanical and optical components"

Copied!
36
0
0

Loading.... (view fulltext now)

Full text

(1)

VDL Enabling Technologies Group

VDL

 

ETG

 

Ultra

 

Precision Technologies

Manufacturing

 

of

 

ultra

 

high

 

precision

 

mechanical

 

and

 

optical

 

components

(2)

Contents

9

Company

 

introduction

ƒ VDL

ƒ VDL Enabling Technologies Group

• Core Technology Competences

• Core Technology Markets

9

ETG

 

Ultra

 

Precision

 

Technologies

ƒ Competences

ƒ Markets

ƒ Best practices

(3)
(4)

VDL Groep

Bus group Bus group

9touring cars

9public transport bus 9mini and midi busses 9Chassis modules 9second hand trade

Finished products Finished products 9medical equipment 9process installations 9consumer products 9production automation 9various products 9packaging equipment Sub contracting Sub contracting 9mechatronic systems 9module assembly 9part and sheet metal 9Surface treatments 9plastic processing 9other specialties Car assembly Car assembly 9NedCar

(5)

VDL Enabling Technologies Group

1900 Philips Machine Fabrieken

1980 Also Non‐Philips Customers

SYSTEMS

2000 New Name 

>

Philips Enabling Technologies Group

(6)

VDL Enabling Technologies Group EINDHOVEN ALMELO SINGAPORE SUZHOU Eindhoven Projects Research Turn‐key & built‐to‐print 

mechanization Low‐medium volume

Proto type manufacturing & 

assembly  Low volume

Series manufacturing & assembly        

(7)

VDL ETG Core Technology Competences Machining

9 Modern turning and milling centers 9 Multi‐axis complex geometry machining 9 Joining technologies

9 Advanced materials technology 9 Vacuum technology

9 Ultra precision technology

Sheet metal

9 Modern sheet metal centers 9 Complex frame production

9 Vacuum and specific welding methods 9 Production of covering including painting 9 Advanced materials technology

System integration and assembly 9 Clean room and non clean room assembly 9 Assembly of modules and complete systems 9 Final test of complete systems and modules 9 Process control and validation

Engineering

9 (Co‐) Development and engineering 9 Project management (Six Sigma, Prince 2) 9 Design and product optimization (DFX) 9 Sustaining of product documentation

9 Access to Philips resources and Technical Campus 9 Long‐standing relationships with knowledge institutes

Supply‐chain management 9 Supply chain control and optimization 9 Flexibility

9 Lead‐time road‐mapping and lead time reduction 9 Break‐even point reduction

Property right

9 Intellectual property right protection 9 Production under license

(8)

VDL ETG Core Technology Markets

Science & Technology  

9Is a technology driver for our main stream business

9Benefits from our expertise in manufacturing and assembly for series manufacturing 9Focus of employing core technologies to :

Free Electron lasers and CLIC 

Optical modules for instruments.

Semiconductor Capital  Equipment Analytical Equipment Medical Equipment Turn Key Projects Led Manufacturing  Equipment Solar Production  Equipment

(9)

VDL ETG Research

9 Core technology products

ƒ Parts for electron microscopes

ƒ Actuators

9 1st line hardware support for R&D

ƒ Manufacturing of prototypes

ƒ Mechatronic system integration

9 Precision parts manufacturing

ƒ Laser welding / cutting

ƒ Wire / sink erosion

ƒ Sub micron machining

ƒ Metrology

Located at Eindhoven High Tech Campus

ƒ Epicenter at HTC 7

ƒ Large machining with other ETG companies

ƒ Additional satellite workshops in HTC‐7 + in 

2 other buildings with direct connection to 

(10)

VDL ETG Ultra Precision Competences ‐ Manufacturing

Ultra High Precision parts

9

Single

 

Point

 

Diamond

 

Turning

• Form accuracies  < 0.1 µm • Surface finish better than 5 nm Ra • 2/3 axis and freeform capabilities

9

Milling

• Form accuracies  < 1 µm • Surface finish better than 25 nm Ra • Up to 5‐axis capabilities • Pallet machining of micron accuracy parts

(11)

Own build equipment featuring :

9 Oil bearing guide systems

9 Rotating axes with air bearings

9 Dedicated machine control

9 Precision tool turret Esdo (*) Comatic (*) Promilla (**) Profil 2000 Micromatic Norton  PHM 1000

Turning Flycutting

(*) Equipped with precision tool turret

(**) Equipped with LRTS

Optomatic

VDL ETG Ultra Precision Competences – Manufacturing equipment

LT Ultra  MMC 900 LT Ultra  MMC 1000

(12)

VDL ETG Ultra Precision Competences ‐ Metrology Metrology

9 3D‐ metrology

ƒ 3D CMM 80.8 µm accuracy 8 low measuring force

ƒ Multi sensor CMM  8 camera / touch probe / laser

9 Profilometry

ƒ Surface finish measurements

ƒ Form measurements (2D and 3D)

9 Optical measurement techniques

ƒ Surface finish and step heights

(13)

Form TalySurf inductive Form TalySurf laser Talyround CyCoS(*) LMI (**) Zeiss UPMC  850 Carat Zeiss Contura Profilometry 3D metrology

(*) Own build polar profilometer (**) Own build small profilometer (***) Own build large profilometer

NanoProf((***)

VDL ETG Ultra Precision Competences – Metrology equipment

Zygo GPI Zygo Newview 5030 Optical techniques Mycrona Magnus (*) Mycrona Signum(*) Fisba interferometer (*) Multi sensor CMM

(14)

VDL ETG Ultra Precision Competences : Evolution of the micron‐precision market The market for micron precision parts has evolved over the last decades. 1980’s Optical  recording 2000’s Imaging Optics 1970’s Mirror  optics 1990’s Injection molding of  contact lenses 2010’s Freeform optics LED illumination Optical recording as driving force to achieve higher accuracies Form accuracy: 150 nm >50 nm Roughness Ra : 5 nm >2 nm Other components as drivers for efficiency (costs) 

(15)

VDL ETG Ultra Precision Competences : Evolution of equipment

Up to the 1980’s 1980’s ‐1990’s 2000’s ‐2010’s

Larger machines

Multiple axis ( X/Y/Z and C)

Future ?Intelligent machines ?Robotisation ?Pallet machining?Robotisation ? First machines at  research institutes and  universities Start of industrialization •Optical recordingcontact lenses

Single point diamond turning

Up to the 1990’s 1990’s ‐2000’s 2010’s Future ?

Ultra precision diamond milling (lagging more than a decade behind on turning)

Limited to fly cutting

mirror optics

Laser scanner mirrors

First proto type machines

Micro fluidics

Accelerator parts Milling as add‐on on lathes

Lens arrays

(16)

VDL ETG Ultra Precision Competences  ‐ Markets – Optical components 16

9

Mirror

 

optics

ƒ Flat ƒ (A) ‐Spherical ƒ Up‐to ø 600 mm

9

Lenses

ƒ Moulds & plastic prototypes ƒ Optical recording

ƒ Imaging optics ƒ Lens arrays

9

Illumination

 

optics

ƒ Moulds & plastic prototypes ƒ Turning & milling

(17)

VDL

 

ETG

 

Ultra

 

Precision

 

Competences

  ‐

Markets

 ‐

Freeform

 

optics

17

9

Turning

 

:

 

Long

 

Range

 

Tool

 

Servo

 

ƒ Stroke of 2.7 mm ƒ Resolution of 1 nm

ƒ Special developed CNC‐software

9

Turning

 

:

 

slow

 

tool

 

servo

 

ƒ Diameters up to 500 mm ƒ Sag up to 150 mm

ƒ Resolution of 10 nm

ƒ Using DIFFSYS for program generation

9

Milling:

ƒ Using diamond mills

ƒ Spindle RPM up to 60000 ƒ Surface finish below 10 nm

(18)

VDL

 

ETG

 

Ultra

 

Precision

 

Competences

  ‐

Markets

 

Mechanical

 

components

18

9

Air

 

bearings

9

Wafer

 

chucks

9

Guide

 

ways

9

Electron

 

microscopes

(19)

VDL ETG Ultra Precision Competences  ‐ Markets – Science & Technology 9 Space ƒ Optical instruments ƒ Housings 9 Astronomy ƒ Optical instruments ƒ Manipulators 9 Accelerators

ƒ Prototype structures for CLIC ƒ Parts for Free Electron Lasers

(20)

Best Practice : Breadboard for TMA nano satellite Miniaturised satellites (CubeSats) as a cost effective platform Telescope with complex aspherical mirrors VDL’s responsibility : 9 Mechanical design 9 Manufacturing  9 Mechanical qualification

9 Assembly Results M1 SpecifiedM2 M3 M1 AchievedM2 M3

Form RMS [nm] 25 15 25 18 6 17 PV [nm] 125 65 125 95 36 84 Surface finish [nm] 5  5 5 3.1 3 4.7 Offset X  [µm] 21  22  20  0.7  0.1  0.1  Y  [µm] 31  22  16  1.0  2.3  2.3  Z  [µm] 34  16  27  0.8  1.1  1.1  Tilt X  [°] 0.028  0.200  0.025  0.004  0.006  0.004  Y  [°] 0.016  0.300  0.020  0.009  0.016  0.011  Z  [°] 0.068  0.500  0.090  0.001  0.022  0.001 

(21)

9 Mid‐IR spectro‐interferometer combining the light of up to the  four VLT telescopes (Atacama – Chili) 9 Beam shaper box (3 types) as high accurate 5 axis milled part  9 ø 100 mm freeform mirrors ƒ Form accuracy < 100 nm ƒ Surface finish < 10 nm

ƒ 5 sets of 2 mirrors manufactured

(22)

Best Practice : X‐band structures for CLIC

9 Manufacturing strategies

9 Part handling and cleaning

9 Part qualification

9 Next step : sub‐module assembly

Results Specified Achieved

Form  5 µm 2 µm

Ra Iris 25 nm 5 nm

(23)

Best Practice : Pulse Compressor 9 Manufactured in OFE‐Cu ø 500 mm & stainless steel 316 LN 9 Product optimalization for brazing 9 Manufacturing engineering 9 Leak testing < 2 x 10‐10, tuning support 9 Inner surface roughness < 25 nm

9 320 MW Pulsed power tested @ PSI

(24)

9 Reference structure manufactured

9 Series of 108 cups

9 X‐band accuracy for C‐band structure

Ö No tuning needed

24

(25)

Plans

 

for

 

the

 

future

 ‐

Strengthening

 

our

 

capabilities

9

Parts

 

manufacturing

ƒ Industrializing machining process

ƒ Integrating quality control

(26)

Plans

 

for

 

the

 

future

 ‐

Strengthening

 

our

 

capabilities

9

Parts

 

manufacturing

ƒ Industrializing machining process

ƒ Integrating quality control

9

Assembly

 

&

 

test

(27)

Plans

 

for

 

the

 

future

 ‐

Strengthening

 

our

 

capabilities

9

Parts

 

manufacturing

ƒ Industrializing machining process

ƒ Integrating quality control

9

Assembly

 

&

 

test

ƒ Strengthening our capabilities on 

• Brazing

• E‐beam welding

• Etching 

• Out baking

(28)

Plans

 

for

 

the

 

future

 ‐

Strengthening

 

our

 

capabilities

9

Parts

 

manufacturing

ƒ Industrializing machining process

ƒ Integrating quality control

9

Assembly

 

&

 

test

ƒ Strengthening our capabilities on 

• Brazing • E‐beam welding • Etching  • Out baking ƒ Building up experience on  • H2 bonding • RF testing

Capability

 

reinforcement

 

needs

 

to

 

be

 

done

 

with

 

(international)

 

partners

 

in

 

academia

 

and

 

industry.

(29)

Plans

 

for

 

the

 

future

 ‐

Targeting

 

new

 

markets

 

for

 

X

band

9

Using

 

X

band

 

normal

 

conducting

 

accelerators

 

opens

 

new

 

perspective

 

on

 

market

 

drivers

ƒ Increased field strengths / gradients

ƒ Ability to scale down

ƒ Cost of ownership

• Reliability (using C&S‐band frequencies and parts with X‐band specifications)

• Life Time (using C&S band frequencies and parts with X‐band specifications)

• Infrastructure (less energy & no cryogenic infrastructure required)

9

Plan

 

to

 

address

 

the

 

potential

 

markets

ƒ Intensifying the relationship with our technology partners and capitalizing 

our common knowledge and (future) experiences in X‐band

ƒ Identifying  accelerator applications

ƒ Building up expertise teams on commercial applications for X‐band

(30)

Confidential

Accelerators

Electron Low energy  application   (large market) Material treatment (existing / growing  market) E‐beam Welding (growing market) SEM/ TEM (existing market)  Fundamental  research (niche market) Generating radiation X‐Ray  by collision (existing and large  market) X‐ray imaging (large market) Tumor treatment (large market) Sterilization (existing / growing  market) Security  (proof of concept)

Free  electron laser 

(growing market) Materials and  biological research (growing market) Light source  lithography (ideas) Defense (USA) (ideas) Fundamental  research (niche market) Inverse Compton  scattering (ideas) “Water window”  imaging (ideas) EUV metrology  (ideas) Proton Tumor treatment (small but growing  market) Materials Research  (small market) Proton beam  lithography (ideas) Fundamental  research  (niche market) Other elements Tumor treatment (proof‐of‐concept) Material treatment (growing market) Fundamental  research (niche market)

(31)

Example

 

of

 

an

 

expertise

 

team

Confidential

Proton acceleration – cancer treatment

9 Existing Market Yes

9 Market Size >500M

9 Key Players ADAM, Varian, IBA, Mevion, Maastro, ..

9 Drivers Cost of ownership, Flexibility

9 Technology Partners CERN, TERA

9 Supply Chain Partners ‐

(32)

Classical

 

Rontgen

32

(33)

Classical

 

Rontgen

9 Beam with low intensity

ÖAbsorption in body

V

~ 30 cm

33

9 Beam with high intensity

Ö Dose decreases with distance

• Highest dose at skin Æ collateral damage

• Tumor does not receive the maximal dose

~ 5 m

9Beam with lower intensity

Ö Multiple directions (limited) 

• Less collateral damage

• Tumor recieves maximum dose

• Relativly slow

(34)

9 Dose very local

9 Penetration depth determined by beam energy

9 Tumor receives the maximum dose

9 Fast Ö no artifacts of movement of patient

9 Possible to scan larger tumors with varying dose

(35)

9 Scientific world has benefits from our industrialization competences ƒ Time to market

• Co‐development & rapid proto typing

• Increased complexity requires higher level outsourcing

ƒ Industrialization

• Early customer involvement ‐cost control & risk reduction

• Co / Redesign for manufacturability

9 Industry benefits from the demands in science

9 Current scientific projects can result in challenging spin‐offs in (near) future

Conclusion

CLIC (future): from cell over bonding to (ultimately) 

complete module EUV source: from idea to product in 1 year

(36)

Enabling your success in business...

Mathieu Breukers: UPT machining & Metrology

mathieu.breukers@vdletg.com

+31 620421406

VDL ETG Research High Tech Campus 07 

5656 AE Eindhoven The Netherlands

References

Related documents

and subsequent scale development This research study was conducted in three stages, starting with a qualitative, basic interpretive inquiry into learning experiences and the

STRATEGIC PLANNING • STRATEGIC MARKETING PLAN • CLINICAL, BUSINESS, AND MARKETING RESEARCH BUSINESS MODEL AND SERVICE LINE DESIGN • CORPORATE SOCIAL RESPONSIBILITY

The final portion of the programme will be dedicated to constructing an international solid tumor transplant consortium to pursue multi-center studies investigating novel

Living alone, higher levels of thwarted belongingness, and lower levels of perceived social support were all found to be positively associated with suicide attempts, although

Based on the aforementioned findings regarding disability status and suicide and IPTS as well as the research supporting IPTS, I hypothesized that individuals with

Fewer public housing starts were authorized in the first seven months of 1952 than a year earlier, reflecting chiefly the fact that an unusually large number was acted on in June

Creatine kinase-MB was measured according to the SCE method for measuring creatine kinase-B subunit activity (5, 10) using reagents from Hoffman La-Roche (CK-MB MA-KIT — No.

We also established the rate at which each export market was developing relative to the worlds growth in demand for milk and cream, this enabled us to