• No results found

Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions

N/A
N/A
Protected

Academic year: 2020

Share "Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Some new judgement theorems of Schur

geometric and Schur harmonic convexities

for a class of symmetric functions

Huan-Nan Shi

1

and Jing Zhang

2*

*Correspondence:

ldtzhangjing1@buu.edu.cn 2Basic Courses Department, Beijing

Union University, Beijing, 100101, P.R. China

Full list of author information is available at the end of the article

Abstract

The judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions are given. As their application, some analytic inequalities are established.

MSC: Primary 26D15; 05E05; 26B25

Keywords: Schur geometric convexity; Schur harmonic convexity; inequality; symmetric function

1 Introduction

Throughout this paper,Rdenotes the set of real numbers,x= (x,x, . . . ,xn) denotesn

-tuple (n-dimensional real vectors), the set of vectors can be written as

Rn=x= (x

, . . . ,xn) :xi∈R,i= , . . . ,n

,

Rn

+=

x= (x, . . . ,xn) :xi> ,i= , . . . ,n

.

In particular, the notationsRandR+denoteRandR+, respectively.

Letπ= (π(), . . . ,π(n)) be a permutation of (, . . . ,n), all permutations are totallyn!. The following conclusion is proved in [, pp.-].

Theorem A Let A⊂Rkbe a symmetric convex set,and letϕbe a Schur-convex function defined on A with the property that for each fixed x, . . . ,xk,ϕ(z,x, . . . ,xk)is convex in z on {z: (z,x, . . . ,xk)∈A}.Then,for any n>k,

ψ(x, . . . ,xn) =

π

ϕ((), . . . ,(k)) ()

is Schur-convex on

B=(x, . . . ,xn) : ((), . . . ,(k))∈A for all permutationsπ

.

Furthermore,the symmetric function

ψ(x) =

≤i<···<ikn

ϕ(xi, . . . ,xik) ()

is also Schur-convex on B.

(2)

Theorem A is very effective for judgement of the Schur-convexity of the symmetric func-tions of the form (), see the references [] and [].

The Schur geometrically convex functions were proposed by Zhang [] in . Further, the Schur harmonically convex functions were proposed by Chu and Lü [] in . The theory of majorization was enriched and expanded by using these concepts [–]. Re-garding Schur geometrically convex functions and Schur harmonically convex functions, the aim of this paper is to establish the following judgement theorems which are similar to Theorem A.

Theorem  Let A⊂Rk be a symmetric geometrically convex set, and letϕ be a Schur geometrically convex(concave)function defined on A with the property that for each fixed x, . . . ,xk,ϕ(z,x, . . . ,xk)is GA convex(concave)in z on{z: (z,x, . . . ,xk)∈A}.Then,for any n>k,

ψ(x, . . . ,xn) =

π

ϕ((), . . . ,(k))

is Schur geometrically convex(concave)on

B=(x, . . . ,xn) : ((), . . . ,(k))∈A for all permutationsπ

.

Furthermore,the symmetric function

ψ(x) =

≤i<···<ikn

ϕ(xi, . . . ,xik)

is also Schur geometrically convex(concave)on B.

Theorem  Let A⊂Rk be a symmetric harmonically convex set,and letϕ be a Schur harmonically convex(concave)function defined on A with the property that for each fixed x, . . . ,xk,ϕ(z,x, . . . ,xk)is HA convex(concave)in z on{z: (z,x, . . . ,xk)∈A}.Then,for any n>k,

ψ(x, . . . ,xn) =

π

ϕ((), . . . ,(k))

is Schur harmonically convex(concave)on

B=(x, . . . ,xn) : ((), . . . ,(k))∈A for all permutationsπ

.

Furthermore,the symmetric function

ψ(x) =

≤i<···<ikn

ϕ(xi, . . . ,xik)

(3)

2 Definitions and lemmas

In order to prove some further results, in this section we recall useful definitions and lem-mas.

Definition [, ] Letx= (x, . . . ,xn) andy= (y, . . . ,yn)∈Rn.

(i) We sayymajorizesx(xis said to be majorized byy), denoted byxy, if

k i=x[i]≤

k

i=y[i]fork= , , . . . ,n– and

n i=xi=

n

i=yi, wherex[]≥ · · · ≥x[n]

andy[]≥ · · · ≥y[n]are rearrangements ofxandyin a descending order.

(ii) Let⊂Rn, a functionϕ:Ris said to be a Schur-convex function onif

xyonimpliesϕ(x)≤ϕ(y). A functionϕis said to be a Schur-concave function onif and only if–ϕis Schur-convex function on.

Definition [, ] Letx= (x, . . . ,xn) andy= (y, . . . ,yn)∈Rn, ≤α≤. A set⊂Rnis

said to be a convex set ifx,yimpliesαx+ ( –α)y= (αx+ ( –α)y, . . . ,αxn+ ( –α)yn)∈ .

Definition [, ]

(i) A set⊂Rnis called a symmetric set ifximpliesxPfor everyn×n

permutation matrixP.

(ii) A functionϕ:→Ris called symmetric if for every permutation matrixP,

ϕ(xP) =ϕ(x)for allx.

Definition  Let⊂Rn

+,x= (x, . . . ,xn)∈andy= (y, . . . ,yn)∈.

(i) [, p.] A setis called a geometrically convex set if(

y

β

, . . . ,xαny

β

n)∈for all

x,yandα,β∈[, ]such thatα+β= .

(ii) [, p.] A functionϕ:→R+is said to be a Schur geometrically convex function

onif(logx, . . . ,logxn)≺(logy, . . . ,logyn)onimpliesϕ(x)≤ϕ(y). A function ϕis said to be a Schur geometrically concave function onif and only if–ϕis a Schur geometrically convex function.

Definition [] Let⊂Rn

+.

(i) A setis said to be a harmonically convex set ifλx+(–xyλ)yfor everyx,yand

λ∈[, ], wherexy=ni=xiyiandx= (

x, . . . ,

xn).

(ii) A functionϕ:→R+is said to be a Schur harmonically convex function onif 

x

yimpliesϕ(x)≤ϕ(y). A functionϕis said to be a Schur harmonically concave

function onif and only if–ϕis a Schur harmonically convex function.

Definition [] LetI⊂R+,ϕ:I→R+be continuous.

(i) A functionϕis said to be a GA convex (concave) function onIif

ϕ(√xy)≤(≥)ϕ(x) +ϕ(y) 

for allx,yI.

(ii) A functionϕis said to be a HA convex (concave) function onIif

ϕ

xy x+y

≤(≥)ϕ(x) +ϕ(y) 

(4)

Lemma [, p.] Let⊂Rnbe a symmetric convex set with a nonempty interior.

ϕ:→Ris continuous onand differentiable on.Thenϕis a Schur-convex(

Schur-concave)function if and only ifϕis symmetric onand

(x–x)

∂ϕ ∂x

∂ϕ

∂x

≥ (≤) ()

holds for anyx= (x, . . . ,xn)∈.

Lemma [, p.] Let⊂Rn+be a symmetric geometrically convex set with a nonempty interior.Letϕ:→R+be continuous onand differentiable on.Thenϕis a Schur

geometrically convex(Schur geometrically concave)function if and only ifϕis symmetric

onand

(x–x)

x

∂ϕ ∂x

x

∂ϕ ∂x

≥ (≤) ()

holds for anyx= (x, . . . ,xn)∈.

Lemma [, ] Let⊂Rn

+be a symmetric harmonically convex set with a nonempty

interior.Letϕ:R

+be continuous onand differentiable on.Thenϕis a Schur

harmonically convex(Schur harmonically concave)function if and only ifϕis symmetric

onand

(x–x)

x∂ϕ ∂x

x∂ϕ ∂x

≥ (≤) ()

holds for anyx= (x, . . . ,xn)∈.

Lemma [] Let I⊂R+be an open subinterval,and letϕ:I→R+be differentiable.

(i) ϕis GA-convex(concave)if and only ifxϕ(x)is increasing(decreasing). (ii) ϕis HA-convex(concave)if and only ifxϕ(x)is increasing(decreasing).

3 Proofs of main results

Proof of Theorem To verify condition () of Lemma , denote byπ(i,j)the summation over all permutationsπsuch thatπ(i) = ,π(j) = . Becauseϕis symmetric,

ψ(x, . . . ,xn)

=

i,jk i=j

π(i,j)

ϕ(x,x,(), . . . ,(i–),(i+), . . . ,(j–),(j+), . . . ,(k))

+

ik<j

π(i,j)

ϕ(x,(), . . . ,(i–),(i+), . . . ,(k))

+

jk<i

π(i,j)

ϕ(x,(), . . . ,(j–),(j+), . . . ,(k))

+

k<i,j i=j

π(i,j)

(5)

Then

:=

x

∂ψ ∂x

x

∂ψ ∂x

(x–x)

=

i,jk i=j

π(i,j)

xϕ()(x,x,(), . . . ,(i–),(i+), . . . ,(j–),(j+), . . . ,(k))

xϕ()(x,x,(), . . . ,(i–),(i+), . . . ,(j–),(j+), . . . ,(k)) (x–x)

+

ik<j

π(i,j)

xϕ()(x,(), . . . ,(i–),(i+), . . . ,(k))

xϕ()(x,(), . . . ,(i–),(i+), . . . ,(k)) (x–x).

Here,

(xϕ()–xϕ())(x–x)≥ (≤)

becauseϕis Schur geometrically convex (concave), and

xϕ()(x,z) –xϕ()(x,z)(x–x)≥ (≤)

becauseϕ(z,x, . . . ,xk) is GA convex (concave) in its first argument on{z: (z,x, . . . ,xk)∈ A}. Accordingly,≥ (≤). This shows thatψis Schur geometrically convex (concave)

on

B=(x, . . . ,xn) : ((), . . . ,(k))∈A for all permutationsπ

.

Notice that

ψ(x) =ψ(x)/k!(nk)!.

Of course,ψ is Schur geometrically convex (concave) wheneverψis Schur geometrically convex (concave).

The proof of Theorem  is completed.

Proof of Theorem We only need to verify condition () of Lemma , the proof is similar to that of Theorem  and is omitted.

Remark  In most applications,Ahas the formIkfor some intervalIRand in this case

B=In. Notice that the convexity ofϕin its first argument also implies thatϕis convex in each argument, the other arguments being fixed, becauseϕis symmetric.

4 Applications Let

Ek

x  –x

=

≤i<···<ikn k

j=

xij

 –xij

. ()

(6)

Theorem  The symmetric function Ek(–xx),k= , . . . ,n,is Schur geometrically convex on (, )n.

Now, we give a new proof of Theorem  by using Theorem . Furthermore, we prove the following theorem through Theorem .

Theorem  The symmetric function Ek(–xx),k= , . . . ,n,is Schur harmonically convex on (, )n.

Proof of Theorem Letϕ(z) =ki=[zi/( –zi)]. Then

logϕ(z) =

k

i=

logzi–log( –zi)

and

∂ϕ(z)

∂z

=ϕ(z)

z

+   –z

, ∂ϕ(z)

∂z

=ϕ(z)

z

+   –z

, ()

:= (z–z)

z

∂ϕ(z)

∂z

z

∂ϕ(z)

∂z

= (z–z)ϕ(z)

z

 –z

z  –z

= (z–z)ϕ(z)

 ( –z)( –z)

.

This shows that≥ when  <zi< ,i= , . . . ,k. According to Lemma ,ϕis Schur

ge-ometrically convex onA={z:z∈(, )k}. Letg(t) = t

–t, thenh(t) :=tg(t) = t

(–t). From t∈(, ), it follows thath(t) = +t

(–t) ≥. According to Lemma (i),ϕis GA convex in its

single variable on (, ). SoEk(–xx) is Schur geometrically convex on (, )

nfrom

Theo-rem . The proof of TheoTheo-rem  is completed.

Proof of Theorem Letϕ(z) =ki=(zi/ –zi), then

logϕ(z) =

k

i=

logzi–log( –zi) .

From (), we get

:= (z–z)

z∂ϕ(z) ∂z

z∂ϕ(z) ∂z

= (z–z)ϕ(z)

z–z+

z 

 –z

z

 

 –z

= (z–z)ϕ(z)

 + z+z–zz ( –z)( –z)

.

This shows that ≥ when  <zi< ,i= , . . . ,k. According to Lemma ,ϕ is Schur

harmonically convex onA={z:z∈(, )k}. Letg(t) = t

–t, thenp(t) :=tg(t) = t

(7)

t∈(, ), it follows thatp(t) = (–tt) ≥. According to Lemma (ii),ϕ is HA convex in

its single variable on (, ). SoEk(–xx) is Schur harmonically convex on (, )nfrom Theo-rem . The proof of TheoTheo-rem  is completed.

By using Theorem A, the following conclusion is proved in [, p.]. The symmetric function

ψ(x) =

≤i<···<ikn

xi+· · ·+xik xi· · ·xik

()

is Schur-convex onRn

+.

Now we use Theorem  and Theorem , respectively, to study Schur geometric convexity and Schur harmonic convexity ofψ(x).

Theorem  The symmetric functionψ(x)is Schur geometrically convex and Schur har-monically concave onRn

+.

Proof Letϕ(y) =ki=yi/

k

i=yi, thenlogϕ(y) =log(

k i=yi) –

k

i=logyi. Thus, ∂ϕ(y)

∂y

=ϕ(y)

k

i=yi

– 

y

, ∂ϕ(y)

∂y

=ϕ(y)

k

i=yi

– 

y

,

:= (y–y)

y

∂ϕ(y)

∂y

y

∂ϕ(y)

∂y

= (y–y)ϕ(y)

y–y

k i=yi

=(y–y)

k i=yi

≥.

According to Lemma ,ϕ(y) is Schur geometrically convex onRk

+. Letg(z) =ϕ(z,x, . . . ,

xk) =zbz+a=b+bza, wherea=

k i=xi,b=

k

i=xi, thenh(z) :=zg(z) = –bza. Fromz∈R+, it

follows thath(z) =bza ≥. According to Lemma (i),ϕis GA convex in its single variable

onR+. Soψ(x) is Schur geometrically convex onR+from Theorem .

It is easy to check that

:= (y–y)

y∂ϕ(y) ∂y

y∂ϕ(y) ∂y

=(y–y)

(y +y–

k i=yi)

k i=yi

≤.

According to Lemma ,ϕ(y) is Schur harmonically concave onRk

+. Leth(z) :=zg(z) = –ab. h(z) =  whenz∈R+. According to Lemma (ii),ϕis HA concave in its single variable on

R+. Soψ(x) is Schur harmonically concave onRn+from Theorem .

Remark  Let

H=nn

i=xi

(8)

wherexi> ,i= , . . . ,n. Then

(logG, . . . ,logG)≺(logx, . . . ,logxn), ()

H, . . . ,

H

x

, . . . , 

xn

. ()

From Theorem , it follows that

kCk n Hk–≥

≤i<···<ikn

xi+· · ·+xik xi· · ·xik

kCkn

Gk–. ()

By using Theorem A, the following conclusion is proved in [, p.]. The symmetric function

ψ(x) =

≤i<···<ikn

xi· · ·xik xi+· · ·+xik

is Schur-concave onRn

+.

By applying Theorem , we further obtain the following result.

Theorem  The symmetric functionψ(x)is Schur harmonically convex onRn+.

Proof Letλ(y) =ki=yi/

k

i=yi. According to the proof of Theorem ,ϕ(y) is Schur

har-monically concave onRk

+. Letλ(y) =ϕ(y). From the definition of Schur harmonically

con-vex, it follows thatλ(y) is Schur harmonically convex onRk

+. Letg(z) =λ(z,x, . . . ,xk) = zbz+a,

where a=ki=xi, b=

k

i=xi. Thenh(z) :=zg(z) = zab

(z+a). With the fact thath(z) =

zab

(z+a) ≥ forz∈R+, it follows thatϕis HA convex in its single variable onR+. So, from

Theorem ,ψ(x) is Schur harmonically convex onRn+. Remark  From Theorem  and (), it follows that

≤i<···<ikn

xi· · ·xik xi+· · ·+xik

Hk–Cnk

k , ()

wherexi> ,i= , . . . ,n.

Remark  It needs further discussion thatψ(x) is Schur geometrically convex onRn

+.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors co-authored this paper together. All authors read and approved the final manuscript.

Author details

1Department of Electronic Information, Teacher’s College, Beijing Union University, Beijing, 100011, P.R. China.2Basic

(9)

Acknowledgements

The work was supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR (IHLB)) (PHR201108407) and the National Natural Science Foundation of China (Grant No. 11101034).

Received: 22 July 2013 Accepted: 18 October 2013 Published:11 Nov 2013 References

1. Marshall, AW, Olkin, I, Arnold, BC: Inequalities: Theory of Majorization and Its Application, 2nd edn. Springer, New York (2011)

2. Shi, H-N: Schur convexity of three symmetric functions. J. Hexi Univ.27(2), 13-17 (2011) (in Chinese) 3. Zhang, XM: Geometrically Convex Functions. An’hui University Press, Hefei (2004) (in Chinese)

4. Chu, Y-M, Lü, Y-P: The Schur harmonic convexity of the Hamy symmetric function and its applications. J. Inequal. Appl.2009, Article ID 838529 (2009). doi:10.1155/2009/838529

5. Xia, W-F, Chu, Y-M: Schur-convexity for a class of symmetric functions and its applications. J. Inequal. Appl.2009, Article ID 493759 (2009). doi:10.1155/2009/493759

6. Roven¸ta, I: Schur convexity of a class of symmetric functions. An. Univ. Craiova, Ser. Mat. Inform.37(1), 12-18 (2010) 7. Xia, W-F, Chu, Y-M: On Schur convexity of some symmetric functions. J. Inequal. Appl.2010, Article ID 543250 (2010).

doi:10.1155/2010/543250

8. Meng, J, Chu, Y, Tang, X: The Schur-harmonic-convexity of dual form of the Hamy symmetric function. Mat. Vesn.

62(1), 37-46 (2010)

9. Chu, Y-M, Wang, G-D, Zhang, X-H: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr.284(5-6), 653-663 (2011)

10. Chu, Y-M, Xia, W-F, Zhao, T-H: Some properties for a class of symmetric functions and applications. J. Math. Inequal.

5(1), 1-11 (2011)

11. Qian, W-M: Schur convexity for the ratios of the Hamy and generalized Hamy symmetric functions. J. Inequal. Appl.

2011, Article ID 131 (2011). doi:10.1186/1029-242X-2011-131

12. Chu, Y-M, Xia, W-F, Zhang, X-H: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal.105(1), 412-421 (2012)

13. Roven¸ta, I: A note on Schur-concave functions. J. Inequal. Appl.2012, Article ID 159 (2012). doi:10.1186/1029-242X-2012-159

14. Xia, W-F, Zhan, X-H, Wang, G-D, Chu, Y-M: Some properties for a class of symmetric functions with applications. Indian J. Pure Appl. Math.43(3), 227-249 (2012)

15. Shi, H-N, Zhang, J: Schur-convexity of dual form of some symmetric functions. J. Inequal. Appl.2013, Article ID 295 (2013). doi:10.1186/1029-242X-2013-295

16. Wang, BY: Foundations of Majorization Inequalities. Beijing Normal University Press, Beijing (1990) (in Chinese) 17. Shi, H-N: Theory of Majorization and Analytic Inequalities. Harbin Institute of Technology Press, Harbin (2012) (in

Chinese)

18. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Generalized convexity and inequalities. J. Math. Anal. Appl.335(2), 1294-1308 (2007)

19. Chu, Y-M, Sun, T-C: The Schur harmonic convexity for a class of symmetric functions. Acta Math. Sci.30B(5), 1501-1506 (2010)

20. Guan, K, Guan, R: Some properties of a generalized Hamy symmetric function and its applications. J. Math. Anal. Appl.

376(2), 494-505 (2011)

10.1186/1029-242X-2013-527

References

Related documents