• No results found

5,6,7 Tri­meth­oxy 2,3 di­hydro 1H,8H benzo­[a]­pyrrolo­[3,4 c]­carbazole 1,3 dione di­methyl sulfoxide solvate

N/A
N/A
Protected

Academic year: 2020

Share "5,6,7 Tri­meth­oxy 2,3 di­hydro 1H,8H benzo­[a]­pyrrolo­[3,4 c]­carbazole 1,3 dione di­methyl sulfoxide solvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o724

Christian Peiferet al. C

21H16N2O5C2H6OS doi:10.1107/S160053680500485X Acta Cryst.(2005). E61, o724–o725

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

5,6,7-Trimethoxy-2,3-dihydro-1

H

,8

H

-benzo[

a

]-pyrrolo[3,4-

c

]carbazole-1,3-dione dimethyl

sulfoxide solvate

Christian Peifer,a* Dieter Schollmeyerb and Gerd Dannhardtc

aPharmazeutisches Institut, Auf der Morgenstelle

8, Universita¨t Tu¨bingen, 72076 Tu¨bingen, Germany,b

Institut fu¨r Organische Chemie der Universita¨t Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany, andc

Institut fu¨r Pharmazie, Staudingerweg 5, D-55099 Mainz, Germany

Correspondence e-mail: christian.peifer@uni-tuebingen.de

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.076

wRfactor = 0.187

Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The crystal structure of the title compound, C21H16N2O5

-C2H6OS, was determined to investigate the electrocyclic

reactivity of 3,4-diaryl-1H-pyrrole-2,5-diones (3,4-bisarylmal-eimides) to the yield corresponding carbazole derivatives.

Comment

The title compound, (III), bearing the carbazole moiety as a core structure, was accidentally isolated from an ethyl acetate solution of 3-(indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H -pyrrole-2,5-dione, (I) (Peiferet al., 2005) at room temperature. The reaction scheme below shows the disrotatory cyclization of (I) and subsequent oxidation to yield (II).

The analytically pure 1H-pyrrole-2,5-dione derivative was found to undergo a reaction (monitored by thin-layer chro-matography) producing (II). A comparable mechanism of reactions of the class of 1H-pyrrole-2,5-diones had been reported by Sanchez-Martinez et al.(2003) and Harris et al.

(1993). However, after 24 h in an ethyl acetate solution, approximately 10% of (II) could be determined by high-performance liquid chromatographic analysis. Compound (II) was subsequently isolated by column chromatography and found to be chemically stable. Crystals of (I) precipitated at 278 K from DMSO. We now report the X-ray crystal structure analysis of carbazole (III), which is the DMSO solvate of carbazole (II) and which confirms the structure and strongly supports the mechanism of oxidative cyclization of the 1H

(2)

pyrrole-2,5-dione derivative to generate compound (II). The solvent DMSO molecule is linkedviaa hydrogen bond to the carbazole molecule (see Table 1 and Fig. 1).

Experimental

The title compound was obtained by crystallization of a DMSO solution of (II).

Crystal data

C21H16N2O5C2H6OS

Mr= 454.50

Monoclinic,P21=c

a= 7.994 (2) A˚

b= 20.040 (4) A˚

c= 13.644 (4) A˚

= 106.586 (12)

V= 2094.8 (9) A˚3

Z= 4

Dx= 1.441 Mg m

3

CuKradiation Cell parameters from 25

reflections

= 30–44

= 1.76 mm1

T= 295 (2) K Needle, yellow 0.240.060.04 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (CORINC; Dra¨ger & Gattow, 1971)

Tmin= 0.783,Tmax= 0.932

4534 measured reflections 4228 independent reflections

2943 reflections withI> 2(I)

Rint= 0.062 max= 74.0

h=9!0

k= 0!24

l=16!17 3 standard reflections

frequency: 60 min intensity decay: 5%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.076

wR(F2) = 0.187

S= 1.11 4228 reflections 298 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0644P)2

+ 1.9378P] whereP= (Fo

2

+ 2Fc 2

)/3 (/)max< 0.001

max= 0.32 e A˚ 3

min=0.35 e A˚ 3

Table 1

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N6—H6 O21 0.79 2.20 2.741 (4) 126

N10—H10 O2L 0.87 2.00 2.849 (5) 164

H atoms attached to N atoms were located in a difference map. All H atoms were refined as riding with idealized geometry; C—H = 0.93 or 0.96 A˚ and the N—H distances (Table 1) were optimised to fit the electron density. Uiso(H) values were refined freely for H atoms bonded to N atoms, but was constrained to 1.5Ueq(C) for methyl groups and to 1.2Ueq(C) for H atoms bonded to other C atoms. The methyl groups were allowed to rotate but not to tip.

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dra¨ger & Gattow, 1971); program(s) used to solve structure:SIR92(Altomare et al., 1994); program(s) used to refine structure:SHELXL97 (Shel-drick, 1997); molecular graphics:PLATON(Spek, 2003); software used to prepare material for publication:SHELXL97.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Dra¨ger, M. & Gattow, G. (1971).Acta Chem. Scand.25, 761–762.

Enraf–Nonius (1989).CAD-4 Software. Version 5. Enraf–Nonius, Delft, The Netherlands.

Harris, W., Hill, C. H., Keech, E. & Malsher, P. (1993).Tetrahedron Lett.34, 8361–8364.

Johnson, C. K. (1976).ORTEPII. ORNL-5138, revised. Oak Ridge National Laboratory, Tennessee, USA.

Peifer, C., Schollmeyer, D. & Dannhardt, G. (2005).Acta Cryst.E61, o720– o722.

Sanchez-Martinez, C., Faul, M. M., Shih, C., Sullivan, K. A., Grutsch, J. L., Cooper, J. T. & Kolis, S. P. (2003).J. Org. Chem.68, 8008–8014.

[image:2.610.312.564.66.348.2]

Sheldrick, G. M. (1997).SHELXS97. University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o724–o725

supporting information

Acta Cryst. (2005). E61, o724–o725 [https://doi.org/10.1107/S160053680500485X]

5,6,7-Trimethoxy-2,3-dihydro-1

H

,8

H

-benzo[

a

]pyrrolo[3,4-

c

]carbazole-1,3-dione dimethyl sulfoxide solvate

Christian Peifer, Dieter Schollmeyer and Gerd Dannhardt

5,6,7-Trimethoxy-2,3-dihydro-1H,8H-benzo[a]pyrrolo[3,4-c]carbazole-1,3-dione dimethyl sulfoxide solvate

Crystal data

C21H16N2O5·C2H6OS

Mr = 454.50

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 7.994 (2) Å b = 20.040 (4) Å c = 13.644 (4) Å β = 106.586 (12)° V = 2094.8 (9) Å3

Z = 4

F(000) = 952 Dx = 1.441 Mg m−3

Melting point: 272 K

Cu radiation, λ = 1.54178 Å Cell parameters from 25 reflections θ = 30–44°

µ = 1.76 mm−1

T = 295 K Needle, yellow 0.24 × 0.06 × 0.04 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: rotating anode Graphite monochromator θ/2ω scans

Absorption correction: psi-scan (CORINC; Dräger & Gattow, 1971) Tmin = 0.783, Tmax = 0.932

4534 measured reflections

4228 independent reflections 2943 reflections with I > 2σ(I) Rint = 0.062

θmax = 74.0°, θmin = 4.0°

h = −9→0 k = 0→24 l = −16→17

3 standard reflections every 60 min intensity decay: 5%

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.076

wR(F2) = 0.187

S = 1.11 4228 reflections 298 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0644P)2 + 1.9378P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.32 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.7962 (4) 0.51606 (18) 0.3833 (3) 0.0311 (8) C1A 0.8386 (4) 0.52185 (18) 0.2874 (3) 0.0330 (8) C2 0.8208 (5) 0.4797 (2) 0.2033 (3) 0.0417 (9)

H2 0.7697 0.4378 0.2011 0.050*

C3 0.8809 (6) 0.5018 (2) 0.1238 (3) 0.0498 (10)

H3 0.8715 0.4741 0.0678 0.060*

C4 0.9549 (6) 0.5645 (2) 0.1252 (3) 0.0500 (11)

H4 0.9930 0.5780 0.0699 0.060*

C5 0.9731 (5) 0.6068 (2) 0.2065 (3) 0.0458 (10)

H5 1.0241 0.6486 0.2078 0.055*

C5A 0.9127 (5) 0.58497 (19) 0.2869 (3) 0.0375 (8) N6 0.9150 (4) 0.61706 (17) 0.3766 (2) 0.0368 (7) H6 0.954 (2) 0.6524 (19) 0.3967 (11) 0.039 (12)* C7 0.8459 (4) 0.57645 (17) 0.4360 (3) 0.0318 (8) C8 0.7298 (4) 0.46665 (18) 0.4343 (3) 0.0311 (8) C9 0.6783 (5) 0.39624 (19) 0.4048 (3) 0.0361 (8) N10 0.6322 (4) 0.36876 (17) 0.4856 (3) 0.0419 (8) H10 0.6202 (8) 0.326 (3) 0.4940 (6) 0.072 (16)* C11 0.6463 (5) 0.41469 (19) 0.5643 (3) 0.0361 (8) C12 0.7110 (4) 0.47758 (18) 0.5301 (3) 0.0331 (8) C13 0.7554 (4) 0.53893 (18) 0.5834 (3) 0.0308 (8) C14 0.8275 (4) 0.58967 (17) 0.5343 (3) 0.0304 (7) C15 0.8802 (4) 0.65043 (18) 0.5883 (3) 0.0340 (8) C16 0.8666 (5) 0.65931 (18) 0.6853 (3) 0.0367 (8) C17 0.7865 (5) 0.6089 (2) 0.7305 (3) 0.0372 (8) C18 0.7331 (4) 0.55044 (19) 0.6801 (3) 0.0348 (8)

H18 0.6813 0.5179 0.7104 0.042*

O19 0.6745 (4) 0.36796 (14) 0.3257 (2) 0.0470 (7) O20 0.6124 (4) 0.40231 (15) 0.6433 (2) 0.0497 (7) O21 0.9541 (3) 0.69891 (13) 0.5426 (2) 0.0440 (7) C22 0.8477 (7) 0.7568 (2) 0.5112 (4) 0.0611 (13)

H22A 0.7408 0.7443 0.4616 0.092*

H22B 0.9088 0.7885 0.4815 0.092*

H22C 0.8221 0.7764 0.5695 0.092*

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o724–o725

C24 1.0928 (5) 0.7125 (2) 0.8090 (3) 0.0554 (12)

H24A 1.0922 0.6782 0.8580 0.083*

H24B 1.1240 0.7543 0.8437 0.083*

H24C 1.1763 0.7014 0.7730 0.083*

O25 0.7720 (4) 0.62545 (15) 0.8243 (2) 0.0495 (7) C26 0.6739 (6) 0.5813 (3) 0.8681 (3) 0.0555 (12)

H26A 0.5638 0.5719 0.8190 0.083*

H26B 0.6542 0.6016 0.9275 0.083*

H26C 0.7375 0.5404 0.8874 0.083*

S1 0.62426 (15) 0.19399 (6) 0.38603 (10) 0.0582 (4) O2L 0.5746 (5) 0.22835 (17) 0.4712 (3) 0.0696 (10) C3L 0.5485 (8) 0.1110 (3) 0.3870 (4) 0.0769 (16)

H3L1 0.6110 0.0897 0.4497 0.115*

H3L2 0.5672 0.0870 0.3302 0.115*

H3L3 0.4261 0.1115 0.3815 0.115*

C4L 0.4746 (7) 0.2194 (3) 0.2697 (4) 0.0652 (14)

H4L1 0.3576 0.2120 0.2728 0.098*

H4L2 0.4942 0.1940 0.2143 0.098*

H4L3 0.4908 0.2660 0.2587 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C24 0.043 (2) 0.056 (3) 0.060 (3) 0.000 (2) 0.004 (2) −0.018 (2) O25 0.0596 (18) 0.0523 (18) 0.0409 (16) −0.0060 (14) 0.0211 (14) −0.0066 (13) C26 0.059 (3) 0.075 (3) 0.036 (2) −0.010 (2) 0.020 (2) −0.003 (2) S1 0.0432 (6) 0.0558 (7) 0.0736 (8) −0.0053 (5) 0.0133 (5) −0.0108 (6) O2L 0.088 (3) 0.057 (2) 0.064 (2) −0.0114 (19) 0.0214 (19) −0.0147 (17) C3L 0.092 (4) 0.050 (3) 0.083 (4) 0.006 (3) 0.016 (3) −0.007 (3) C4L 0.075 (3) 0.057 (3) 0.063 (3) 0.008 (3) 0.018 (3) −0.006 (2)

Geometric parameters (Å, º)

C1—C8 1.399 (5) C15—C16 1.371 (5)

C1—C7 1.406 (5) C15—O21 1.375 (4)

C1—C1A 1.447 (5) C16—O23 1.378 (4)

C1A—C5A 1.398 (5) C16—C17 1.427 (5)

C1A—C2 1.400 (5) C17—O25 1.358 (4)

C2—C3 1.380 (6) C17—C18 1.364 (5)

C2—H2 0.9300 C18—H18 0.9300

C3—C4 1.385 (6) O21—C22 1.429 (5)

C3—H3 0.9300 C22—H22A 0.9600

C4—C5 1.372 (6) C22—H22B 0.9600

C4—H4 0.9300 C22—H22C 0.9600

C5—C5A 1.390 (5) O23—C24 1.434 (5)

C5—H5 0.9300 C24—H24A 0.9600

C5A—N6 1.378 (5) C24—H24B 0.9600

N6—C7 1.371 (4) C24—H24C 0.9600

N6—H6 0.7902 O25—C26 1.423 (5)

C7—C14 1.416 (5) C26—H26A 0.9600

C8—C12 1.375 (5) C26—H26B 0.9600

C8—C9 1.493 (5) C26—H26C 0.9600

C9—O19 1.211 (4) S1—O2L 1.499 (3)

C9—N10 1.374 (5) S1—C4L 1.768 (5)

N10—C11 1.394 (5) S1—C3L 1.770 (5)

N10—H10 0.8698 C3L—H3L1 0.9600

C11—O20 1.209 (4) C3L—H3L2 0.9600

C11—C12 1.487 (5) C3L—H3L3 0.9600

C12—C13 1.421 (5) C4L—H4L1 0.9600

C13—C18 1.400 (5) C4L—H4L2 0.9600

C13—C14 1.427 (5) C4L—H4L3 0.9600

C14—C15 1.423 (5)

C8—C1—C7 116.5 (3) C16—C15—O21 120.6 (3)

C8—C1—C1A 136.6 (3) C16—C15—C14 121.1 (3)

C7—C1—C1A 106.8 (3) O21—C15—C14 118.2 (3)

C5A—C1A—C2 119.1 (3) C15—C16—O23 120.4 (3) C5A—C1A—C1 106.6 (3) C15—C16—C17 119.6 (3)

C2—C1A—C1 134.3 (4) O23—C16—C17 119.8 (3)

C3—C2—C1A 118.3 (4) O25—C17—C18 125.9 (4)

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o724–o725

C1A—C2—H2 120.9 C18—C17—C16 120.3 (3)

C2—C3—C4 121.6 (4) C17—C18—C13 120.7 (3)

C2—C3—H3 119.2 C17—C18—H18 119.6

C4—C3—H3 119.2 C13—C18—H18 119.6

C5—C4—C3 121.2 (4) C15—O21—C22 114.4 (3)

C5—C4—H4 119.4 O21—C22—H22A 109.5

C3—C4—H4 119.4 O21—C22—H22B 109.5

C4—C5—C5A 117.6 (4) H22A—C22—H22B 109.5

C4—C5—H5 121.2 O21—C22—H22C 109.5

C5A—C5—H5 121.2 H22A—C22—H22C 109.5

N6—C5A—C5 129.4 (4) H22B—C22—H22C 109.5

N6—C5A—C1A 108.4 (3) C16—O23—C24 113.2 (3)

C5—C5A—C1A 122.1 (4) O23—C24—H24A 109.5

C7—N6—C5A 110.0 (3) O23—C24—H24B 109.5

C7—N6—H6 120.7 H24A—C24—H24B 109.5

C5A—N6—H6 129.1 O23—C24—H24C 109.5

N6—C7—C1 108.2 (3) H24A—C24—H24C 109.5

N6—C7—C14 128.1 (3) H24B—C24—H24C 109.5

C1—C7—C14 123.7 (3) C17—O25—C26 116.7 (3)

C12—C8—C1 121.3 (3) O25—C26—H26A 109.5

C12—C8—C9 108.1 (3) O25—C26—H26B 109.5

C1—C8—C9 130.5 (3) H26A—C26—H26B 109.5

O19—C9—N10 125.7 (4) O25—C26—H26C 109.5

O19—C9—C8 128.1 (4) H26A—C26—H26C 109.5

N10—C9—C8 106.2 (3) H26B—C26—H26C 109.5

C9—N10—C11 111.9 (3) O2L—S1—C4L 107.6 (2)

C9—N10—H10 124.3 O2L—S1—C3L 105.0 (2)

C11—N10—H10 122.3 C4L—S1—C3L 97.6 (3)

O20—C11—N10 124.1 (4) S1—C3L—H3L1 109.5

O20—C11—C12 129.8 (4) S1—C3L—H3L2 109.5

N10—C11—C12 106.1 (3) H3L1—C3L—H3L2 109.5

C8—C12—C13 123.0 (3) S1—C3L—H3L3 109.5

C8—C12—C11 107.8 (3) H3L1—C3L—H3L3 109.5

C13—C12—C11 129.2 (3) H3L2—C3L—H3L3 109.5

C18—C13—C12 123.0 (3) S1—C4L—H4L1 109.5

C18—C13—C14 120.1 (3) S1—C4L—H4L2 109.5

C12—C13—C14 116.9 (3) H4L1—C4L—H4L2 109.5

C7—C14—C15 123.7 (3) S1—C4L—H4L3 109.5

C7—C14—C13 118.5 (3) H4L1—C4L—H4L3 109.5

C15—C14—C13 117.9 (3) H4L2—C4L—H4L3 109.5

(8)

C2—C3—C4—C5 0.7 (7) C11—C12—C13—C14 175.2 (3) C3—C4—C5—C5A −0.8 (6) N6—C7—C14—C15 0.3 (6) C4—C5—C5A—N6 179.9 (4) C1—C7—C14—C15 179.0 (3) C4—C5—C5A—C1A 1.2 (6) N6—C7—C14—C13 −178.4 (3) C2—C1A—C5A—N6 179.5 (3) C1—C7—C14—C13 0.4 (5) C1—C1A—C5A—N6 −0.5 (4) C18—C13—C14—C7 −179.2 (3) C2—C1A—C5A—C5 −1.5 (5) C12—C13—C14—C7 1.5 (5) C1—C1A—C5A—C5 178.4 (3) C18—C13—C14—C15 2.0 (5) C5—C5A—N6—C7 −178.3 (4) C12—C13—C14—C15 −177.2 (3) C1A—C5A—N6—C7 0.5 (4) C7—C14—C15—C16 −176.9 (3) C5A—N6—C7—C1 −0.3 (4) C13—C14—C15—C16 1.7 (5) C5A—N6—C7—C14 178.6 (3) C7—C14—C15—O21 −0.4 (5) C8—C1—C7—N6 177.1 (3) C13—C14—C15—O21 178.3 (3) C1A—C1—C7—N6 −0.1 (4) O21—C15—C16—O23 1.7 (5) C8—C1—C7—C14 −1.9 (5) C14—C15—C16—O23 178.3 (3) C1A—C1—C7—C14 −179.0 (3) O21—C15—C16—C17 178.8 (3) C7—C1—C8—C12 1.4 (5) C14—C15—C16—C17 −4.7 (5) C1A—C1—C8—C12 177.5 (4) C15—C16—C17—O25 −176.3 (3) C7—C1—C8—C9 −174.8 (3) O23—C16—C17—O25 0.8 (5) C1A—C1—C8—C9 1.3 (7) C15—C16—C17—C18 3.9 (5) C12—C8—C9—O19 178.8 (4) O23—C16—C17—C18 −179.0 (3) C1—C8—C9—O19 −4.6 (6) O25—C17—C18—C13 −179.9 (3) C12—C8—C9—N10 −0.4 (4) C16—C17—C18—C13 −0.2 (5) C1—C8—C9—N10 176.2 (3) C12—C13—C18—C17 176.4 (3) O19—C9—N10—C11 −178.3 (4) C14—C13—C18—C17 −2.8 (5) C8—C9—N10—C11 0.9 (4) C16—C15—O21—C22 −72.9 (5) C9—N10—C11—O20 179.7 (4) C14—C15—O21—C22 110.5 (4) C9—N10—C11—C12 −1.0 (4) C15—C16—O23—C24 −99.1 (4) C1—C8—C12—C13 0.5 (5) C17—C16—O23—C24 83.8 (4) C9—C8—C12—C13 177.5 (3) C18—C17—O25—C26 −8.0 (6) C1—C8—C12—C11 −177.2 (3) C16—C17—O25—C26 172.3 (3) C9—C8—C12—C11 −0.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N6—H6···O21 0.79 2.20 2.741 (4) 126

Figure

Figure 1

References

Related documents

External Economic Relations on the proposal from the Commission of the European Communities to the Council (COM(86) 466 final - doc. C 2-98/86) for a Regulation amending

number of cardiac fibroblasts contributed to blood vessels after injury (9), there should be a reasonable number of unlabeled new coronary vessels derived from these

Regarding the three research questions proposed for the macro study presented here, it is possible to say that the emerging identities of these pre-service teachers (of

personal income has a significant effect on economic growth while taxes on corporate have a..

Lorsque nous portons sur un graphique le revenu par habitant et l’indice de la démocratie, nous confirmons que les économies du deuxième groupe (Régime

However, the Bank of Israel has faced tradeoff between easing monetary policy stance to arrest the exchange rate appreciation due to capital inflows or maintaining

• We study the knowledge distillation in search-based structured prediction and pro- pose to distill the knowledge of an en- semble into a single model by learning to match

Keywords: Police Militarization, Excessive Force, Law Enforcement Management and Administrative Statistics (LEMAS), 1033 Program, Treatment