• No results found

2 (2,5 Di­methyl­benz­yl) 3 phenyl­sulfan­yl 1 phenyl­sulfon­yl 1H indole

N/A
N/A
Protected

Academic year: 2020

Share "2 (2,5 Di­methyl­benz­yl) 3 phenyl­sulfan­yl 1 phenyl­sulfon­yl 1H indole"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2224

Ushaet al. C

29H25NO2S2 doi:10.1107/S1600536805018933 Acta Cryst.(2005). E61, o2224–o2226

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

2-(2,5-Dimethylbenzyl)-3-phenylsulfanyl-1-phenylsulfonyl-1

H

-indole

G. Usha,aS. Selvanayagam,a D. Velmurugan,a*

K. Ravikumar,bN. Sureshbabuc and P. C. Srinivasanc

aDepartment of Crystallography and Biophysics,

University of Madras, Guindy Campus, Chennai 600 025, India,bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University

of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.049

wRfactor = 0.143

Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

In the title compound, C29H25NO2S2, the benzene rings of the

phenylsulfonyl and the dimethylbenzyl substituents are almost perpendicular to the indole unit, whereas the dihedral angle between the phenyl rings of the phenylsulfanyl and phenyl-sulfonyl groups is 71.2 (1). The molecules in the crystal

structure are held together by van der Waals, C—H O and C—H S interactions.

Comment

Indoles and their derivatives have been of interest for many years, since a large number of natural products contain indole systems, and they are found in a number of pharmaceutical products, fragrances and dyes (Padwa et al., 1999). Spiro-indole derivatives exhibit antibacterial and antifungal prop-erties (Sehgalet al., 1994). The sulfonamide-containing drugs inhibit the growth of bacterial organisms and are also used for treating urinary and gastrointestinal infections. The wide range of biological activities of indole and its derivatives prompted us to undertake the crystal structure analysis of the title compound, (I).

The S—O, S—C and S—N bond distances are in good agreement with the related reported values of 1.435 (5), 1.767 (7) and 1.685 (5) A˚ , respectively (Govindasamy et al., 1998). The electron-withdrawing character of the phenyl-sulfonyl group affects the C—N distances in the indole ring system [C5—N1 = 1.417 (2) A˚ and C2—N1 = 1.416 (2) A˚] and this is observed in similar reported structures (Rodriguez et al., 1995; Govindasamy et al., 1999). The sum of the angles around atom N1 (358.4) indicates sp2

hybridization. In the dimethylphenyl ring, the endocyclic angles at C19 and C22 are 117.4 (2) and 117.6 (2), respectively, and this decrease can be

(2)

attributed to the steric hindrance caused by the methyl groups. The bond angle C2—C16—C17 [115.5 (2)] is widened.

The dihedral angles between the indole ring system and the mean planes of the phenylsulfonyl, dimethylphenyl and the phenylsulfanyl rings are 85.1 (1), 82.6 (1) and 71.2 (1),

respectively, and show that the substituent rings are almost perpendicular to the indole system.

The packing of the molecules in the unit cell is governed by van der Waals forces and the crystal structure is stabilized by C—H O and C—H S interactions.

Experimental

The title compound was prepared by the reaction of 2-hydroxy-methyl-3-phenylsulfanyl-1-phenylsulfonyl-1H-indole withp-xylene in

the presence of a catalytic amount of boron trifluoride etherate in boiling chloroform, following a published procedure (Rajeswaran & Srinivasan, 1992). The crude product was purified by silica-gel column chromatography, eluting with hexane–ethyl acetate (9:1). Diffraction quality crystals were obtained from a hexane/ethyl acetate (1:1) solution.

Crystal data

C29H25NO2S2

Mr= 483.62 Monoclinic,P21=n

a= 10.8372 (6) A˚

b= 17.2384 (10) A˚

c= 12.7220 (7) A˚

= 90.269 (1)

V= 2376.6 (2) A˚3

Z= 4

Dx= 1.352 Mg m 3

MoKradiation Cell parameters from 5656

reflections

= 2.2–27.5

= 0.25 mm1

T= 273 (2) K Block, colourless 0.230.220.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

!scans

Absorption correction: none 14279 measured reflections 5221 independent reflections

4227 reflections withI> 2(I)

Rint= 0.020

max= 28.0

h=14!14

k=22!21

l=14!16

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.049

wR(F2) = 0.143

S= 1.01 5221 reflections 309 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0882P)2

+ 0.5156P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.50 e A˚

3

min=0.19 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

S1—O1 1.414 (2) S1—O2 1.422 (2) S1—N1 1.682 (2) S1—C10 1.760 (2) S2—C3 1.759 (2) S2—C25 1.780 (2)

N1—C5 1.417 (2) N1—C2 1.416 (2) C2—C16 1.496 (3) C16—C17 1.522 (2) C19—C24 1.499 (3) C22—C23 1.501 (3)

O1—S1—O2 120.6 (1) O1—S1—N1 106.7 (1) O2—S1—N1 105.5 (1) O1—S1—C10 109.2 (1) O2—S1—C10 108.7 (1) N1—S1—C10 105.0 (1)

C3—S2—C25 103.0 (1) C5—N1—C2 108.5 (2) C5—N1—S1 122.1 (1) C2—N1—S1 127.8 (1) C2—C16—C17 115.5 (2)

O2—S1—C10—C15 149.7 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C6—H6 O2 0.93 2.31 2.900 (3) 121 C15—H15 O1 0.93 2.55 2.914 (3) 104 C16—H16A S2 0.97 2.83 3.294 (2) 110 C16—H16B O1 0.97 2.38 2.881 (3) 112

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H = 0.93 A˚ , methyl

organic papers

Acta Cryst.(2005). E61, o2224–o2226 Ushaet al. C

[image:2.610.46.296.68.340.2]

29H25NO2S2

o2225

Figure 1

[image:2.610.46.295.391.535.2]

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

(3)

C—H = 0.96 A˚ and methylene C—H = 0.97 A˚, and with N—H = 0.86 A˚ , and withUiso= 1.5Ueq(C) for methyl H and 1.2Ueq(N,C) for

the remaining H atoms.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3(Farrugia, 1997) andPLATON(Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

GU thanks the University Grants Commission (UGC) for the award of the Faculty Improvement Programme (FIP). SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV acknowledges the UGC and the Department of Bio-Tech-nology (DBT) for providing computing facilities under Major Research Projects and also acknowledges financial support to

the Department under UGC–SAP and DST–FIST programmes.

References

Bruker (2001).SAINT(Version 6.28a) andSMART(Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998).Acta Cryst.C54, 635–637.

Govindasamy, L., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H. K. (1999).Acta Cryst.C55, 1315–1317.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Padwa, A., Brodney, M. A.,Liu, B., Stake, K. & Wu, T. (1999).J. Org. Chem.64, 3595–3607.

Rajeswaran, W. G. & Srinivasan, P. C. (1992).Ind. J. Heterocyclic Chem.2, 89– 90.

Rodriguez, J. G., del Valle, C., Calderon, C. E. & Ripoll, M. M. (1995).J. Chem. Crystallogr.25, 249–257.

Sehgal, V., Singh, P., Dandia, A. & Bohra, R. (1994).Acta Cryst.C50, 1156– 1159.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

organic papers

o2226

Ushaet al. C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o2224–o2226

supporting information

Acta Cryst. (2005). E61, o2224–o2226 [https://doi.org/10.1107/S1600536805018933]

2-(2,5-Dimethylbenzyl)-3-phenylsulfanyl-1-phenylsulfonyl-1

H

-indole

G. Usha, S. Selvanayagam, D. Velmurugan, K. Ravikumar, N. Sureshbabu and P. C. Srinivasan

2-(2,5-Dimethylbenzyl)-3-phenylsulfanyl-1-phenylsulfonyl-1H-indole

Crystal data

C29H25NO2S2

Mr = 483.62 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 10.8372 (6) Å

b = 17.2384 (10) Å

c = 12.7220 (7) Å

β = 90.269 (1)°

V = 2376.6 (2) Å3

Z = 4

F(000) = 1016

Dx = 1.352 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5656 reflections

θ = 2.2–27.5°

µ = 0.25 mm−1

T = 273 K Block, colourless 0.23 × 0.22 × 0.20 mm

Data collection

CCD Area Detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

14279 measured reflections 5221 independent reflections

4227 reflections with I > 2σ(I)

Rint = 0.020

θmax = 28.0°, θmin = 2.0°

h = −14→14

k = −22→21

l = −14→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.049

wR(F2) = 0.143

S = 1.01 5221 reflections 309 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0882P)2 + 0.5156P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.50 e Å−3

Δρmin = −0.19 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o2224–o2226

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.19553 (4) 0.14502 (3) 0.40570 (4) 0.04367 (15) S2 −0.12103 (5) −0.09334 (3) 0.29680 (5) 0.05571 (18) O1 0.26970 (14) 0.09530 (9) 0.46788 (12) 0.0569 (4) O2 0.15292 (15) 0.21698 (9) 0.44644 (12) 0.0605 (4) N1 0.06757 (13) 0.09474 (9) 0.37415 (13) 0.0415 (4) C2 0.05464 (16) 0.01335 (10) 0.36412 (14) 0.0397 (4) C3 −0.05516 (17) −0.00109 (11) 0.31560 (15) 0.0426 (4) C4 −0.11465 (16) 0.07161 (11) 0.29197 (16) 0.0446 (4) C5 −0.03739 (17) 0.13065 (11) 0.32845 (15) 0.0428 (4) C6 −0.06920 (19) 0.20819 (12) 0.31902 (18) 0.0535 (5)

H6 −0.0180 0.2472 0.3447 0.064*

C7 −0.1799 (2) 0.22535 (15) 0.2700 (2) 0.0678 (7)

H7 −0.2032 0.2769 0.2620 0.081*

C8 −0.2566 (2) 0.16760 (16) 0.2327 (2) 0.0714 (7)

H8 −0.3303 0.1811 0.1997 0.086*

C9 −0.22640 (19) 0.09054 (14) 0.2434 (2) 0.0591 (6)

H9 −0.2792 0.0520 0.2189 0.071*

C10 0.26982 (16) 0.16222 (10) 0.28523 (16) 0.0418 (4) C11 0.2348 (2) 0.22401 (12) 0.22219 (18) 0.0536 (5)

H11 0.1725 0.2575 0.2434 0.064*

C12 0.2936 (2) 0.23505 (14) 0.12778 (19) 0.0625 (6)

H12 0.2692 0.2754 0.0838 0.075*

C13 0.3879 (2) 0.18695 (14) 0.0982 (2) 0.0636 (6)

H13 0.4282 0.1955 0.0349 0.076*

C14 0.4234 (2) 0.12618 (13) 0.16139 (19) 0.0563 (5)

H14 0.4869 0.0935 0.1403 0.068*

C15 0.36531 (17) 0.11354 (12) 0.25560 (17) 0.0482 (5)

H15 0.3898 0.0728 0.2989 0.058*

C16 0.14267 (17) −0.04500 (11) 0.40864 (16) 0.0448 (4)

H16A 0.0988 −0.0935 0.4183 0.054*

H16B 0.1691 −0.0273 0.4775 0.054*

C17 0.25687 (16) −0.06079 (10) 0.34289 (15) 0.0400 (4) C18 0.24802 (17) −0.06038 (10) 0.23419 (15) 0.0427 (4)

H18 0.1719 −0.0499 0.2032 0.051*

C19 0.34839 (19) −0.07504 (11) 0.16967 (17) 0.0486 (5) C20 0.46121 (19) −0.08935 (12) 0.2180 (2) 0.0541 (5)

H20 0.5308 −0.0976 0.1770 0.065*

C21 0.47140 (19) −0.09154 (12) 0.3258 (2) 0.0544 (5)

H21 0.5478 −0.1022 0.3560 0.065*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o2224–o2226

C23 0.3854 (2) −0.08273 (15) 0.50820 (19) 0.0632 (6)

H23A 0.3635 −0.0338 0.5390 0.095*

H23B 0.4698 −0.0946 0.5251 0.095*

H23C 0.3328 −0.1227 0.5354 0.095*

C24 0.3344 (3) −0.07449 (16) 0.05237 (19) 0.0696 (7)

H24A 0.3912 −0.0379 0.0227 0.104*

H24B 0.2515 −0.0599 0.0341 0.104*

H24C 0.3514 −0.1253 0.0252 0.104*

C25 −0.07346 (18) −0.11824 (11) 0.16738 (17) 0.0468 (4) C26 −0.1042 (4) −0.07425 (17) 0.0819 (2) 0.0968 (11)

H26 −0.1487 −0.0286 0.0906 0.116*

C27 −0.0695 (4) −0.0974 (2) −0.0170 (2) 0.1101 (14)

H27 −0.0910 −0.0670 −0.0746 0.132*

C28 −0.0057 (3) −0.16242 (17) −0.0322 (2) 0.0750 (7)

H28 0.0185 −0.1766 −0.0996 0.090*

C29 0.0238 (3) −0.20780 (18) 0.0513 (2) 0.0786 (8)

H29 0.0669 −0.2538 0.0410 0.094*

C30 −0.0100 (2) −0.18578 (14) 0.1515 (2) 0.0658 (6)

H30 0.0105 −0.2171 0.2085 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o2224–o2226

C22 0.0486 (10) 0.0396 (9) 0.0505 (12) 0.0040 (7) −0.0051 (8) 0.0009 (8) C23 0.0659 (14) 0.0673 (14) 0.0564 (15) 0.0086 (11) −0.0128 (11) 0.0051 (11) C24 0.0789 (16) 0.0806 (16) 0.0496 (15) 0.0104 (13) 0.0172 (12) −0.0021 (12) C25 0.0476 (10) 0.0428 (9) 0.0500 (12) −0.0083 (8) −0.0033 (8) −0.0022 (8) C26 0.163 (3) 0.0678 (16) 0.0596 (19) 0.0482 (19) −0.0158 (19) −0.0032 (13) C27 0.199 (4) 0.085 (2) 0.0463 (18) 0.034 (2) −0.015 (2) −0.0003 (14) C28 0.0899 (19) 0.0799 (17) 0.0551 (17) −0.0071 (14) −0.0005 (13) −0.0159 (13) C29 0.0768 (17) 0.0828 (18) 0.076 (2) 0.0215 (14) −0.0012 (14) −0.0179 (15) C30 0.0710 (15) 0.0653 (14) 0.0610 (15) 0.0153 (11) −0.0029 (11) 0.0055 (11)

Geometric parameters (Å, º)

S1—O1 1.414 (2) C16—C17 1.522 (2)

S1—O2 1.422 (2) C16—H16A 0.9700

S1—N1 1.682 (2) C16—H16B 0.9700

S1—C10 1.760 (2) C17—C18 1.386 (3)

S2—C3 1.759 (2) C17—C22 1.403 (3)

S2—C25 1.780 (2) C18—C19 1.389 (3)

N1—C5 1.417 (2) C18—H18 0.9300

N1—C2 1.416 (2) C19—C20 1.388 (3)

C2—C3 1.361 (3) C19—C24 1.499 (3)

C2—C16 1.496 (3) C20—C21 1.375 (3)

C3—C4 1.440 (3) C20—H20 0.9300

C4—C9 1.395 (3) C21—C22 1.397 (3)

C4—C5 1.396 (3) C21—H21 0.9300

C5—C6 1.385 (3) C22—C23 1.501 (3)

C6—C7 1.381 (3) C23—H23A 0.9600

C6—H6 0.9300 C23—H23B 0.9600

C7—C8 1.380 (4) C23—H23C 0.9600

C7—H7 0.9300 C24—H24A 0.9600

C8—C9 1.375 (3) C24—H24B 0.9600

C8—H8 0.9300 C24—H24C 0.9600

C9—H9 0.9300 C25—C26 1.366 (4)

C10—C11 1.385 (3) C25—C30 1.368 (3)

C10—C15 1.386 (3) C26—C27 1.374 (4)

C11—C12 1.376 (3) C26—H26 0.9300

C11—H11 0.9300 C27—C28 1.331 (4)

C12—C13 1.370 (3) C27—H27 0.9300

C12—H12 0.9300 C28—C29 1.356 (4)

C13—C14 1.374 (3) C28—H28 0.9300

C13—H13 0.9300 C29—C30 1.382 (4)

C14—C15 1.374 (3) C29—H29 0.9300

C14—H14 0.9300 C30—H30 0.9300

C15—H15 0.9300

O1—S1—O2 120.6 (1) C2—C16—H16A 108.4

O1—S1—N1 106.7 (1) C17—C16—H16A 108.4

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o2224–o2226

O1—S1—C10 109.2 (1) C17—C16—H16B 108.4

O2—S1—C10 108.7 (1) H16A—C16—H16B 107.5

N1—S1—C10 105.0 (1) C18—C17—C22 119.56 (17) C3—S2—C25 103.0 (1) C18—C17—C16 119.67 (17)

C5—N1—C2 108.5 (2) C22—C17—C16 120.74 (17)

C5—N1—S1 122.1 (1) C19—C18—C17 122.55 (19)

C2—N1—S1 127.8 (1) C19—C18—H18 118.7

C3—C2—N1 107.94 (16) C17—C18—H18 118.7

C3—C2—C16 127.12 (17) C20—C19—C18 117.4 (2) N1—C2—C16 124.72 (17) C20—C19—C24 121.8 (2) C2—C3—C4 108.97 (16) C18—C19—C24 120.7 (2) C2—C3—S2 125.48 (15) C21—C20—C19 120.88 (19)

C4—C3—S2 125.25 (15) C21—C20—H20 119.6

C9—C4—C5 119.64 (19) C19—C20—H20 119.6

C9—C4—C3 133.04 (19) C20—C21—C22 121.9 (2)

C5—C4—C3 107.32 (17) C20—C21—H21 119.1

C6—C5—C4 121.74 (19) C22—C21—H21 119.1

C6—C5—N1 130.98 (18) C21—C22—C17 117.60 (19) C4—C5—N1 107.27 (16) C21—C22—C23 119.95 (19)

C7—C6—C5 117.4 (2) C17—C22—C23 122.45 (19)

C7—C6—H6 121.3 C22—C23—H23A 109.5

C5—C6—H6 121.3 C22—C23—H23B 109.5

C6—C7—C8 121.4 (2) H23A—C23—H23B 109.5

C6—C7—H7 119.3 C22—C23—H23C 109.5

C8—C7—H7 119.3 H23A—C23—H23C 109.5

C9—C8—C7 121.3 (2) H23B—C23—H23C 109.5

C9—C8—H8 119.3 C19—C24—H24A 109.5

C7—C8—H8 119.3 C19—C24—H24B 109.5

C8—C9—C4 118.4 (2) H24A—C24—H24B 109.5

C8—C9—H9 120.8 C19—C24—H24C 109.5

C4—C9—H9 120.8 H24A—C24—H24C 109.5

C11—C10—C15 120.73 (19) H24B—C24—H24C 109.5 C11—C10—S1 120.57 (15) C26—C25—C30 118.4 (2) C15—C10—S1 118.69 (16) C26—C25—S2 122.12 (18) C12—C11—C10 119.01 (19) C30—C25—S2 119.33 (17)

C12—C11—H11 120.5 C25—C26—C27 120.0 (3)

C10—C11—H11 120.5 C25—C26—H26 120.0

C13—C12—C11 120.4 (2) C27—C26—H26 120.0

C13—C12—H12 119.8 C28—C27—C26 121.6 (3)

C11—C12—H12 119.8 C28—C27—H27 119.2

C12—C13—C14 120.5 (2) C26—C27—H27 119.2

C12—C13—H13 119.7 C27—C28—C29 119.4 (3)

C14—C13—H13 119.7 C27—C28—H28 120.3

C15—C14—C13 120.2 (2) C29—C28—H28 120.3

C15—C14—H14 119.9 C28—C29—C30 120.1 (3)

C13—C14—H14 119.9 C28—C29—H29 119.9

C14—C15—C10 119.1 (2) C30—C29—H29 119.9

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, o2224–o2226

C10—C15—H15 120.4 C25—C30—H30 119.8

C2—C16—C17 115.5 (2) C29—C30—H30 119.8

O1—S1—N1—C5 168.30 (14) O1—S1—C10—C15 16.28 (18) O2—S1—N1—C5 38.89 (17) O2—S1—C10—C15 149.7 (2) C10—S1—N1—C5 −75.92 (16) N1—S1—C10—C15 −97.77 (16) O1—S1—N1—C2 −27.64 (18) C15—C10—C11—C12 2.1 (3) O2—S1—N1—C2 −157.06 (16) S1—C10—C11—C12 −179.03 (17) C10—S1—N1—C2 88.13 (17) C10—C11—C12—C13 −2.0 (4) C5—N1—C2—C3 −1.0 (2) C11—C12—C13—C14 1.3 (4) S1—N1—C2—C3 −166.77 (14) C12—C13—C14—C15 −0.7 (4) C5—N1—C2—C16 −175.99 (16) C13—C14—C15—C10 0.8 (3) S1—N1—C2—C16 18.2 (3) C11—C10—C15—C14 −1.5 (3) N1—C2—C3—C4 0.8 (2) S1—C10—C15—C14 179.59 (16) C16—C2—C3—C4 175.67 (17) C3—C2—C16—C17 103.6 (2) N1—C2—C3—S2 −173.25 (13) N1—C2—C16—C17 −82.3 (2) C16—C2—C3—S2 1.6 (3) C2—C16—C17—C18 −35.8 (2) C25—S2—C3—C2 −95.56 (18) C2—C16—C17—C22 146.17 (18) C25—S2—C3—C4 91.33 (18) C22—C17—C18—C19 −1.3 (3) C2—C3—C4—C9 179.8 (2) C16—C17—C18—C19 −179.39 (17) S2—C3—C4—C9 −6.1 (3) C17—C18—C19—C20 −1.0 (3) C2—C3—C4—C5 −0.3 (2) C17—C18—C19—C24 179.6 (2) S2—C3—C4—C5 173.73 (14) C18—C19—C20—C21 2.3 (3) C9—C4—C5—C6 0.8 (3) C24—C19—C20—C21 −178.3 (2) C3—C4—C5—C6 −179.04 (18) C19—C20—C21—C22 −1.2 (3) C9—C4—C5—N1 179.59 (18) C20—C21—C22—C17 −1.1 (3) C3—C4—C5—N1 −0.3 (2) C20—C21—C22—C23 178.8 (2) C2—N1—C5—C6 179.4 (2) C18—C17—C22—C21 2.4 (3) S1—N1—C5—C6 −13.8 (3) C16—C17—C22—C21 −179.62 (17) C2—N1—C5—C4 0.7 (2) C18—C17—C22—C23 −177.53 (19) S1—N1—C5—C4 167.52 (13) C16—C17—C22—C23 0.5 (3) C4—C5—C6—C7 −1.2 (3) C3—S2—C25—C26 −59.7 (3) N1—C5—C6—C7 −179.7 (2) C3—S2—C25—C30 124.04 (19) C5—C6—C7—C8 0.6 (4) C30—C25—C26—C27 −1.2 (5) C6—C7—C8—C9 0.4 (4) S2—C25—C26—C27 −177.4 (3) C7—C8—C9—C4 −0.9 (4) C25—C26—C27—C28 −0.1 (6) C5—C4—C9—C8 0.3 (3) C26—C27—C28—C29 1.3 (6) C3—C4—C9—C8 −179.9 (2) C27—C28—C29—C30 −1.3 (5) O1—S1—C10—C11 −162.65 (16) C26—C25—C30—C29 1.2 (4) O2—S1—C10—C11 −29.25 (19) S2—C25—C30—C29 177.5 (2) N1—S1—C10—C11 83.30 (17) C28—C29—C30—C25 0.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C6—H6···O2 0.93 2.31 2.900 (3) 121

C15—H15···O1 0.93 2.55 2.914 (3) 104

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, o2224–o2226

Figure

Figure 1The molecular structure of the title compound, showing 30% probabilitydisplacement ellipsoids.

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical