• No results found

Racemic 2,10 dibenz­yl­­oxy 12 chloro 3,9 dimeth­­oxy 5,8,13,13a tetra­hydro 6H dibenzo[a,g]quinolizine

N/A
N/A
Protected

Academic year: 2020

Share "Racemic 2,10 dibenz­yl­­oxy 12 chloro 3,9 dimeth­­oxy 5,8,13,13a tetra­hydro 6H dibenzo[a,g]quinolizine"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2020

Dinget al. C

33H32ClNO4 doi:10.1107/S1600536805017307 Acta Cryst.(2005). E61, o2020–o2021

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Racemic

2,10-dibenzyloxy-12-chloro-

3,9-dimethoxy-5,8,13,13a-tetrahydro-6

H

-dibenzo[

a,g

]quinolizine

Yu Ding, Guang-Min Yao, Yi-Lang Chen and Yu-She Yang*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China

Correspondence e-mail: ysyang508@yahoo.com.cn

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.063 wRfactor = 0.177

Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C33H32ClNO4, prepared by methylation

of 12-chloro-2,10-dibenzyloxy-9-hydroxy-3-methoxytetra-hydroprotoberberine with diazomethane, contains a fused four-ring system in which thetrans-fused rings both have half-chair conformations. No significant intermolecular inter-actions are observed in the structure.

Comment

Protoberberine compounds, obtained either from plants or synthesis, possess a variety of biological and pharmacological properties, such as insecticidal (Miyazawaet al., 1998), antalgic (Jinet al., 1964), antimalarial, antibacterial and antitumor (Lin

et al., 2002, and references therein). Stepholidine and its analogs have been reported to have a unique pharmacological characteristic as potential novel antipsychotic agents (Jinet al., 2002). As part of our ongoing studies of stepholidine deriva-tives, the crystal structure analysis of the title compound, (I), has been carried out and the results are presented here.

The asymmetric unit of (I) consists of one independent molecule (Fig.1). The molecular skeleton contains a fused four-ring system. Rings B and C, both having half-chair conformations, exist in a B/C-transform, which is consistent with the presence of the Bohlmann bands (2733–2920 cm1) in the IR spectrum of (I) (Takao & Iwasa, 1976). Ring B is puckered in such a manner that the four atoms C5, C14, C15 and C16 are coplanar to within 0.008 (2) A˚ , while atoms C6 and N7 are unequally displaced from this plane on opposite sides, with out-of-plane displacements of 0.496 (5) and 0.267 (4) A˚ , respectively. The plane defined by C5/C14/C15/ C16 in ring Bis nearly parallel to benzene ring A, and the dihedral angle formed by these planes is 1.1 (2). Benzene

ringsA andDare twisted by 30.81 (9) with respect to one

another, which is very similar to the situation found in an analog of (I) (Dinget al., 2005). The methoxy group at atom C3 is nearly coplanar with ring A, as indicated by the C26— O4—C3—C4 torsion angle [3.1 (4)]; while C34 of the

methoxy group at atom C9 is rotated out of the planeD, the C34—O2—C9—C10 torsion angle being60.5 (3)compared with 88.8 (3) in the case of stepholidine monohydrate (II)

(2)

(Wuet al., 1987). No significant intermolecular interactions are observed in the crystal structure.

Experimental

The title compound, (I), was prepared by the reaction of 2,10- dibenzyloxy-12-chloro-9-hydroxy-3-methoxytetrahydroprotoberber-ine (80 mg) and diazomethane [prepared from nitrosomethylurea (1 g)] in tetrahydrofuran (1 ml) at room temperature for 72 h (yield 65%, m.p. 422–424 K). Crystals of (I) suitable for single-crystal X-ray diffraction were grown from a methanol solution at room tempera-ture by slow evaporation.1H NMR (400 MHz, CDCl3):7.48–7.28

(m, 10H), 6.92 (s, 1H), 6.65 (s, 1H), 6.79 (s, 1H), 5.17 (d, 2H,J= 2.4 Hz), 5.08 (d, 2H,J= 5.6 Hz), 4.21 (d, 1H,J= 15.9 Hz), 3.89 (s, 3H), 3.87 (s, 3H), 3.50–3.44 (m, 2H), 3.19–3.09 (m, 3H), 2.70–2.59 (m, 2H), 2.51 (dd, 1H,J= 11.3, 16.6 Hz). Analysis calculated for C33H32ClNO4:

C 73.12, H 5.95, N 2.58%; found: C 73.15, H 6.07, N 2.47%.

Crystal data

C33H32ClNO4 Mr= 542.05 Monoclinic,C2=c a= 20.4833 (18) A˚ b= 21.6089 (18) A˚ c= 16.0523 (14) A˚

= 126.549 (2)

V= 5707.9 (9) A˚3 Z= 8

Dx= 1.262 Mg m

3

MoKradiation Cell parameters from 3475

reflections

= 5.0–44.9

= 0.17 mm1 T= 293 (2) K Block, yellow 0.510.420.40 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.705,Tmax= 0.930

16679 measured reflections

6226 independent reflections 3798 reflections withI> 2(I) Rint= 0.069

max= 27.0

h=26!22 k=27!25 l=13!20

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.063 wR(F2) = 0.177 S= 0.96 6226 reflections 366 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.0924P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.087

max= 0.25 e A˚ 3

min=0.33 e A˚ 3

All H atoms were located in a difference Fourier map, but they were introduced in calculated positions and treated as riding on their parent atoms [C—H = 0.93–0.97 A˚ , andUiso(H) = 1.2Ueq(C) for CH

and 1.5Ueq(C) for CH3groups].

Data collection:SMART(Bruker,2000); cell refinement:SAINT

(Bruker,2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication:SHELXTL.

The authors thank Dr Jie Sun of the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, for tech-nical assistance and valuable advice.

References

Bruker (2000).SMART(Version 5.6),SAINT(Version 6.0) andSHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, Y., Yao, G. M., Chen, Y. L. & Yang, Y. S. (2005).Acta Cryst. E61. Submitted.

Jin, G. Z., Zheng, X. F. & Xu, B. (1964).Sheng Li Xue Bao,27, 47–56. (In Chinese.)

Jin, G. Z., Zhu, Z. T. & Fu, Y. (2002).Trends Pharmacol. Sci.23, 4–7. Lin, Y., Zhang, C. & Hua, W. Y. (2002).Yao Xue Jin Zhan,26, 76-80. (In

Chinese.)

Miyazawa, M., Yoshio, K., Ishikawa, Y. & Kameoka, H. (1998).J. Agric. Food. Chem.46, 1914–1919.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Takao, N. & Iwasa, K. (1976).Chem. Pharm. Bull.24, 3185–3194.

[image:2.610.359.523.73.374.2]

Wu, S., Tinant, B., Declercq, J. P. & Van Meerssche, M. (1987).Acta Cryst.C43, 2126–2128.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o2020–o2021

supporting information

Acta Cryst. (2005). E61, o2020–o2021 [https://doi.org/10.1107/S1600536805017307]

Racemic 2,10-dibenzyloxy-12-chloro-3,9-dimethoxy-5,8,13,13a-tetrahydro-6

H

-dibenzo[

a,g

]quinolizine

Yu Ding, Guang-Min Yao, Yi-Lang Chen and Yu-She Yang

2,10-dibenzyloxy-12-chloro-3,9-dimethoxy-5,8,13,13a- tetrahydro-6H-dibenzo[a,g]quinolizine

Crystal data

C33H32ClNO4

Mr = 542.05

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 20.4833 (18) Å

b = 21.6089 (18) Å

c = 16.0523 (14) Å

β = 126.549 (2)°

V = 5707.9 (9) Å3

Z = 8

F(000) = 2288

Dx = 1.262 Mg m−3

Melting point: 422 K

Mo radiation, λ = 0.71073 Å Cell parameters from 3475 reflections

θ = 5.0–44.9°

µ = 0.17 mm−1

T = 293 K Block, yellow

0.51 × 0.42 × 0.40 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.705, Tmax = 0.930

16679 measured reflections 6226 independent reflections 3798 reflections with I > 2σ(I)

Rint = 0.069

θmax = 27.0°, θmin = 1.6°

h = −26→22

k = −27→25

l = −13→20

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.063

wR(F2) = 0.177

S = 0.96 6226 reflections 366 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0924P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.087

Δρmax = 0.25 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 15.1676 (0.0195)x + 13.7611(0.0228) y - 4.3087 (0.0216) z=27.2131(0.0169)

* -0.0087 (0.0020) C28 * 0.0045 (0.0024) C29 * 0.0051 (0.0028) C30 * -0.0107 (0.0028) C31 * 0.0063 (0.0024) C32 * 0.0035 (0.0020) C33

Rms deviation of fitted atoms = 0.0069

-7.6364 (0.0472)x + 13.2850(0.0326) y + 12.5264 (0.0202)z =15.1988 (0.0544) Angle to previous plane (with approximate e.s.d.) = 74.65 (0.14)

* 0.0105 (0.0032) C20 * -0.0074 (0.0047) C21 * -0.0078 (0.0050) C22 * 0.0202 (0.0040) C23 * -0.0169 (0.0032) C24 * 0.0016 (0.0029) C25

Rms deviation of fitted atoms = 0.0124

16.9152 (0.0113)x - 1.8882(0.0201)y - 15.0788 (0.0054)z =1.7426(0.0258) Angle to previous plane (with approximate e.s.d.) = 41.51 (0.17)

* 0.0116 (0.0017) C9 * -0.0010 (0.0017) C10 * -0.0079 (0.0017) C11 * 0.0063 (0.0016) C12 * -0.0134 (0.0017) C17 * 0.0044 (0.0016) C18

Rms deviation of fitted atoms = 0.0085

-10.8629 (0.0199) x + 11.1742 (0.0354)y + 13.7331(0.0162)z =10.9624(0.0308) Angle to previous plane (with approximate e.s.d.) = 30.97 (0.12)

* 0.0037 (0.0007) C5 * -0.0039 (0.0007) C14 * 0.0082 (0.0015) C15 * -0.0080 (0.0015) C16 0.2671 (0.0044) N7 - 0.4964 (0.0052) C6

Rms deviation of fitted atoms = 0.0063

-11.0853(0.0168) x + 11.3381(0.0181)y + 13.6474(0.0084)z =10.9062(0.0217) Angle to previous plane (with approximate e.s.d.) = 1.13 (0.21)

* -0.0019 (0.0017) C1 * -0.0022 (0.0017) C2 * 0.0054 (0.0017) C3 * -0.0044 (0.0018) C4 * 0.0030 (0.0016) C15 * 0.0002 (0.0017) C16

Rms deviation of fitted atoms = 0.0033

16.9152(0.0113) x - 1.8882 (0.0201)y - 15.0788(0.0054)z =1.7426(0.0258) Angle to previous plane (with approximate e.s.d.) = 30.81 (0.09)

* 0.0116 (0.0017) C9 * -0.0010 (0.0017) C10 * -0.0079 (0.0017) C11 * 0.0063 (0.0016) C12 * -0.0134 (0.0017) C17 * 0.0044 (0.0016) C18

Rms deviation of fitted atoms = 0.0085

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl 1.03774 (4) 1.09641 (3) 0.90831 (5) 0.0657 (2) O1 1.19607 (10) 0.90460 (8) 1.11709 (13) 0.0676 (5) O2 1.06818 (11) 0.82930 (8) 0.98098 (14) 0.0705 (5) O3 0.66678 (10) 1.10771 (9) 0.42038 (14) 0.0794 (6) O4 0.53848 (10) 1.05153 (9) 0.36682 (13) 0.0695 (5) N7 0.84259 (11) 0.90284 (8) 0.74953 (15) 0.0545 (5) C1 0.75440 (13) 1.03225 (10) 0.55417 (17) 0.0476 (5)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o2020–o2021

C3 0.60890 (14) 1.02331 (11) 0.44409 (18) 0.0533 (6) C4 0.61610 (15) 0.96945 (12) 0.49381 (19) 0.0563 (6) C5 0.69690 (15) 0.88684 (12) 0.6282 (2) 0.0693 (8)

H5A 0.6872 0.8955 0.6793 0.083*

H5B 0.6553 0.8583 0.5778 0.083*

C6 0.77916 (15) 0.85759 (12) 0.6806 (2) 0.0693 (8)

H6A 0.7837 0.8219 0.7205 0.083*

H6B 0.7860 0.8436 0.6288 0.083*

C8 0.92052 (16) 0.87195 (12) 0.8126 (2) 0.0612 (7) C9 1.06352 (14) 0.89219 (10) 0.96494 (18) 0.0534 (6) C10 1.12769 (14) 0.93120 (11) 1.03296 (18) 0.0540 (6) C11 1.11841 (14) 0.99458 (11) 1.01508 (18) 0.0540 (6)

H11 1.1606 1.0216 1.0600 0.065*

C12 1.04563 (14) 1.01670 (10) 0.92968 (17) 0.0489 (5) C13 0.90082 (13) 1.00399 (10) 0.76794 (17) 0.0479 (5)

H13A 0.9120 1.0340 0.7331 0.058*

H13B 0.8725 1.0252 0.7911 0.058*

C14 0.84592 (13) 0.95368 (10) 0.69120 (17) 0.0469 (5)

H14 0.8708 0.9378 0.6589 0.056*

C15 0.76219 (13) 0.97748 (10) 0.60642 (16) 0.0460 (5) C16 0.69133 (14) 0.94619 (11) 0.57454 (19) 0.0518 (6) C17 0.98993 (14) 0.91580 (10) 0.88105 (18) 0.0507 (6) C18 0.97998 (13) 0.97912 (10) 0.86085 (17) 0.0461 (5) C19 0.73114 (15) 1.14429 (13) 0.4454 (2) 0.0726 (8)

H19A 0.7691 1.1204 0.4410 0.087*

H19B 0.7595 1.1598 0.5156 0.087*

C20 0.69804 (16) 1.19715 (12) 0.3701 (2) 0.0664 (7) C21 0.6184 (2) 1.2105 (2) 0.3057 (4) 0.119 (3)

H21 0.5815 1.1865 0.3074 0.124*

C22 0.5904 (3) 1.2596 (3) 0.2370 (5) 0.127 (4)

H22 0.5350 1.2679 0.1929 0.130*

C23 0.6416 (3) 1.29480 (18) 0.2331 (3) 0.1180 (14)

H23 0.6230 1.3289 0.1892 0.122*

C24 0.7201 (3) 1.28028 (17) 0.2933 (3) 0.1080 (12)

H24 0.7562 1.3029 0.2882 0.130*

C25 0.74877 (19) 1.23216 (15) 0.3634 (3) 0.0903 (10)

H25 0.8042 1.2239 0.4066 0.108*

C26 0.46454 (15) 1.02098 (15) 0.3301 (2) 0.0822 (9)

H26A 0.4634 0.9813 0.3023 0.123*

H26B 0.4196 1.0455 0.2768 0.123*

H26C 0.4606 1.0155 0.3863 0.123*

C27 1.27051 (15) 0.93765 (13) 1.1696 (2) 0.0728 (8)

H27A 1.2685 0.9737 1.2040 0.087*

H27B 1.2807 0.9514 1.1207 0.087*

C28 1.33600 (14) 0.89479 (11) 1.2471 (2) 0.0568 (6) C29 1.3690 (2) 0.85104 (17) 1.2202 (3) 0.0929 (10)

H29 1.3525 0.8487 1.1524 0.111*

(6)

H30 1.4504 0.7800 1.2779 0.128* C31 1.4515 (2) 0.81338 (18) 1.3938 (4) 0.1018 (12)

H31 1.4895 0.7854 1.4431 0.122*

C32 1.42108 (19) 0.85657 (16) 1.4213 (3) 0.0888 (10)

H32 1.4387 0.8594 1.4896 0.107*

C33 1.36345 (16) 0.89685 (12) 1.3474 (2) 0.0683 (7)

H33 1.3424 0.9267 1.3671 0.082*

C34 1.1295 (2) 0.79681 (14) 0.9841 (3) 0.0951 (10)

H34A 1.1061 0.7615 0.9392 0.123*

H34B 1.1704 0.7833 1.0538 0.123*

H34C 1.1536 0.8235 0.9615 0.123*

H4 0.5676 (14) 0.9475 (11) 0.4693 (18) 0.060 (7)* H8A 0.9205 (15) 0.8414 (12) 0.855 (2) 0.068 (7)* H8B 0.9368 (15) 0.8515 (12) 0.774 (2) 0.069 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o2020–o2021

C26 0.0470 (15) 0.109 (2) 0.077 (2) −0.0103 (15) 0.0297 (14) 0.0095 (17) C27 0.0579 (16) 0.0665 (18) 0.0680 (18) −0.0119 (13) 0.0234 (14) 0.0127 (13) C28 0.0510 (14) 0.0561 (15) 0.0580 (16) −0.0061 (11) 0.0295 (13) 0.0004 (12) C29 0.094 (2) 0.103 (3) 0.088 (2) 0.002 (2) 0.058 (2) −0.008 (2) C30 0.103 (3) 0.101 (3) 0.147 (4) 0.031 (2) 0.078 (3) −0.009 (3) C31 0.067 (2) 0.090 (3) 0.113 (3) 0.0219 (18) 0.035 (2) 0.015 (2) C32 0.075 (2) 0.087 (2) 0.071 (2) 0.0041 (18) 0.0259 (17) 0.0098 (17) C33 0.0618 (16) 0.0637 (17) 0.0673 (19) 0.0048 (13) 0.0320 (15) 0.0026 (13) C34 0.102 (3) 0.0593 (19) 0.121 (3) 0.0042 (17) 0.065 (2) 0.0042 (18)

Geometric parameters (Å, º)

Cl—C12 1.745 (2) C14—C15 1.509 (3)

O1—C10 1.365 (3) C14—H14 0.9800

O1—C27 1.419 (3) C15—C16 1.393 (3)

O2—C9 1.376 (3) C17—C18 1.393 (3)

O2—C34 1.413 (3) C19—C20 1.499 (3)

O3—C2 1.360 (3) C19—H19A 0.9700

O3—C19 1.376 (3) C19—H19B 0.9700

O4—C3 1.364 (3) C20—C25 1.341 (4)

O4—C26 1.419 (3) C20—C21 1.344 (4)

N7—C8 1.447 (3) C21—C22 1.384 (5)

N7—C6 1.468 (3) C21—H21 0.9300

N7—C14 1.471 (3) C22—C23 1.327 (5)

C1—C2 1.367 (3) C22—H22 0.9300

C1—C15 1.404 (3) C23—C24 1.329 (5)

C1—H1 0.9300 C23—H23 0.9300

C2—C3 1.410 (3) C24—C25 1.380 (4)

C3—C4 1.369 (3) C24—H24 0.9300

C4—C16 1.389 (3) C25—H25 0.9300

C4—H4 0.95 (2) C26—H26A 0.9600

C5—C6 1.503 (4) C26—H26B 0.9600

C5—C16 1.511 (3) C26—H26C 0.9600

C5—H5A 0.9700 C27—C28 1.489 (4)

C5—H5B 0.9700 C27—H27A 0.9700

C6—H6A 0.9700 C27—H27B 0.9700

C6—H6B 0.9700 C28—C33 1.354 (4)

C8—C17 1.506 (3) C28—C29 1.372 (4)

C8—H8A 0.95 (3) C29—C30 1.407 (5)

C8—H8B 0.97 (3) C29—H29 0.9300

C9—C10 1.386 (3) C30—C31 1.347 (5)

C9—C17 1.389 (3) C30—H30 0.9300

C10—C11 1.389 (3) C31—C32 1.335 (5)

C11—C12 1.377 (3) C31—H31 0.9300

C11—H11 0.9300 C32—C33 1.375 (4)

C12—C18 1.385 (3) C32—H32 0.9300

C13—C18 1.504 (3) C33—H33 0.9300

(8)

C13—H13A 0.9700 C34—H34B 0.9600

C13—H13B 0.9700 C34—H34C 0.9600

C10—O1—C27 118.81 (18) C9—C17—C18 120.7 (2)

C9—O2—C34 117.3 (2) C9—C17—C8 119.0 (2)

C2—O3—C19 120.08 (19) C18—C17—C8 120.3 (2)

C3—O4—C26 117.3 (2) C12—C18—C17 116.9 (2)

C8—N7—C6 109.42 (19) C12—C18—C13 122.88 (19) C8—N7—C14 109.85 (19) C17—C18—C13 120.3 (2) C6—N7—C14 111.92 (18) O3—C19—C20 107.9 (2)

C2—C1—C15 121.9 (2) O3—C19—H19A 110.1

C2—C1—H1 119.1 C20—C19—H19A 110.1

C15—C1—H1 119.1 O3—C19—H19B 110.1

O3—C2—C1 126.0 (2) C20—C19—H19B 110.1

O3—C2—C3 114.3 (2) H19A—C19—H19B 108.4

C1—C2—C3 119.8 (2) C25—C20—C21 117.4 (3)

O4—C3—C4 126.8 (2) C25—C20—C19 119.6 (2)

O4—C3—C2 114.5 (2) C21—C20—C19 122.9 (3)

C4—C3—C2 118.7 (2) C20—C21—C22 121.0 (3)

C3—C4—C16 121.8 (2) C20—C21—H21 119.5

C3—C4—H4 117.4 (14) C22—C21—H21 119.5

C16—C4—H4 120.8 (14) C23—C22—C21 120.9 (4)

C6—C5—C16 110.8 (2) C23—C22—H22 119.6

C6—C5—H5A 109.5 C21—C22—H22 119.6

C16—C5—H5A 109.5 C22—C23—C24 118.5 (3)

C6—C5—H5B 109.5 C22—C23—H23 120.7

C16—C5—H5B 109.5 C24—C23—H23 120.7

H5A—C5—H5B 108.1 C23—C24—C25 121.0 (3)

N7—C6—C5 109.6 (2) C23—C24—H24 119.5

N7—C6—H6A 109.7 C25—C24—H24 119.5

C5—C6—H6A 109.7 C20—C25—C24 121.1 (3)

N7—C6—H6B 109.7 C20—C25—H25 119.4

C5—C6—H6B 109.7 C24—C25—H25 119.5

H6A—C6—H6B 108.2 O4—C26—H26A 109.5

N7—C8—C17 112.9 (2) O4—C26—H26B 109.5

N7—C8—H8A 110.5 (15) H26A—C26—H26B 109.5

C17—C8—H8A 108.4 (16) O4—C26—H26C 109.5

N7—C8—H8B 114.8 (15) H26A—C26—H26C 109.5

C17—C8—H8B 102.7 (15) H26B—C26—H26C 109.5

H8A—C8—H8B 107 (2) O1—C27—C28 107.3 (2)

O2—C9—C10 121.7 (2) O1—C27—H27A 110.3

O2—C9—C17 117.3 (2) C28—C27—H27A 110.3

C10—C9—C17 120.9 (2) O1—C27—H27B 110.2

O1—C10—C9 117.1 (2) C28—C27—H27B 110.2

O1—C10—C11 123.6 (2) H27A—C27—H27B 108.5

C9—C10—C11 119.2 (2) C33—C28—C29 117.6 (3) C12—C11—C10 118.8 (2) C33—C28—C27 120.2 (2)

(9)

supporting information

sup-7

Acta Cryst. (2005). E61, o2020–o2021

C10—C11—H11 120.6 C28—C29—C30 119.8 (3)

C11—C12—C18 123.5 (2) C28—C29—H29 120.1

C11—C12—Cl 117.19 (17) C30—C29—H29 120.1

C18—C12—Cl 119.31 (17) C31—C30—C29 119.8 (3) C18—C13—C14 112.84 (18) C31—C30—H30 120.1

C18—C13—H13A 109.0 C29—C30—H30 120.1

C14—C13—H13A 109.0 C32—C31—C30 121.0 (3)

C18—C13—H13B 109.0 C32—C31—H31 119.5

C14—C13—H13B 109.0 C30—C31—H31 119.5

H13A—C13—H13B 107.8 C31—C32—C33 119.1 (3)

N7—C14—C15 111.71 (18) C31—C32—H32 120.4

N7—C14—C13 108.09 (18) C33—C32—H32 120.4

C15—C14—C13 112.45 (18) C28—C33—C32 122.7 (3)

N7—C14—H14 108.2 C28—C33—H33 118.6

C15—C14—H14 108.2 C32—C33—H33 118.6

C13—C14—H14 108.2 O2—C34—H34A 109.5

C16—C15—C1 117.8 (2) O2—C34—H34B 109.5

C16—C15—C14 122.8 (2) H34A—C34—H34B 109.5

C1—C15—C14 119.33 (19) O2—C34—H34C 109.5

C4—C16—C15 120.1 (2) H34A—C34—H34C 109.5

C4—C16—C5 120.3 (2) H34B—C34—H34C 109.5

C15—C16—C5 119.6 (2)

(10)

Figure

Figure 1

References

Related documents

Incoming teachers in the post- period in non-TA schools show decidedly negative estimates across all models; thus, incoming teachers to TA schools appear to have been generally

BRADY H., “The power of precedents: using the case law of the ad hoc international criminal Tribunals and hybrid Courts in adjudicating sexual violence and gender-based crimes at

Our study assessed the effects of school gardens and complementary nutrition and WASH interventions on children’s KAP about fruits and vegetables, their dietary

suplementación dietética de 1.0 % del polvo mixto de hojas de plantas con propiedades nutracéuticas como alternativa a los APC, para incrementar los indicadores productivos y

The  main  reasons  of  spring  floods  as  natural  disasters  (as  well  as  the  fall)  is  a 

Prader-Willi Syndrome Awareness Month National Military Appreciation Month Mental Health Awareness Month Skin Cancer Awareness Month Lupus Awareness Month National Arthritis

It is important to note that for the two metrics (Figure 26 and Figure 27) the objects updates are fresher under high traffic density for the periodic policies. This is the case

Thus, the prosecution’s legal case faces significant challenges on extraterritoriality grounds. Even if there were such a thing as criminal liability for secondary