• No results found

N [2 (Benzyl­sulfan­yl)benzyl­­idene] 2 (methyl­sulfan­yl)aniline

N/A
N/A
Protected

Academic year: 2020

Share "N [2 (Benzyl­sulfan­yl)benzyl­­idene] 2 (methyl­sulfan­yl)aniline"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o802

Hamakeret al. C

21H19NS2 doi:10.1107/S1600536806002819 Acta Cryst.(2006). E62, o802–o803

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N

-[2-(Benzylsulfanyl)benzylidene]-2-(methyl-sulfanyl)aniline

Christopher G. Hamaker,* Oksana Maryashina and Dominic P. Halbach

Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160 USA

Correspondence e-mail: chamake@ilstu.edu

Key indicators

Single-crystal X-ray study T= 297 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.043 wRfactor = 0.149

Data-to-parameter ratio = 19.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 19 January 2006 Accepted 23 January 2006

#2006 International Union of Crystallography All rights reserved

The title molecule, C21H19NS2, is non-planar with a dihedral angle between the two benzene rings bonded to the N CH group of 51.33 (8).

Comment

Schiff base ligands have played an important role in the development of coordination chemistry due to their ease of preparation (Che & Huang, 2003). Schiff base ligands are also readily modified, both sterically and electronically. Our group is interested in the synthesis and utility of sulfur-containing Schiff base ligands (Hamaker & Halbach, 2006; Hamaker & Corgliano, 2006). As part of our ongoing studies, we report the synthesis and crystal structure of the title compound, (I).

The ArN CHAr moiety in (I) (Fig. 1) is non-planar, with a dihedral angle of 51.33 (8) between the arene rings. The

N CH group is nearly coplanar with the C11–C16 arene ring, with an N—C10—C11—C16 torsion angle of 172.4 (2). The C2–C7 arene ring is twisted away from coplanarity to relieve the steric repulsion between H12 and the SCH3group, with a C10—N—C7—C2 torsion angle of 140.7 (2). The N C10

double-bond length is 1.274 (3) A˚ , similar to that in related molecules (Hamaker & Corgliano, 2006; Ainscough et al., 2000; O¨ zbeyet al., 1998).

In the crystal structure, the molecules stack along thecaxis; the crystal packing is shown in Fig. 2.

Experimental

(2)

2H, aromatic), 7.27 (m, 8H, aromatic), 6.93 (d, 1H, aromatic), 4.13 (s, 2H, SCH2Ph), 2.51 (s, 3H, SCH3). IR (Nujol,, cm

1): 1602 (C N).

Analysis calculated (found) for C21H19NS2: C 72.16 (72.24), H 5.48 (5.46), N 4.01% (4.00%).

Crystal data

C21H19NS2

Mr= 349.49

Monoclinic,P21=c

a= 9.7960 (7) A˚

b= 17.1416 (16) A˚

c= 11.2536 (14) A˚

= 106.699 (8)

V= 1810.0 (3) A˚3

Z= 4

Dx= 1.283 Mg m

3

MoKradiation Cell parameters from 25

reflections

= 5.6–13.7

= 0.30 mm1

T= 297 (2) K Plate, yellow

0.500.500.23 mm

Data collection

Enraf–Nonius CAD-4 diffractometer non–profiled!/2scans Absorption correction: scan

(Northet al., 1968)

Tmin= 0.784,Tmax= 0.931 4362 measured reflections

4154 independent reflections 2629 reflections withI> 2(I)

Rint= 0.045

max= 27.5

h=12!12

k= 0!22

l= 0!14

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.043

wR(F2) = 0.149

S= 1.10 4154 reflections 217 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0823P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.44 e A˚ 3

min=0.32 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

N—C10 1.274 (3) N—C7 1.420 (3)

C16—S2—C20 104.34 (11)

C2—S1—C1 102.87 (13)

C10—N—C7 118.00 (19)

N—C10—C11 122.8 (2)

H atoms were treated as riding, with C—H distances of 0.93– 0.97 A˚ and withUiso(H) = 1.2Ueq(C) for the aromatic and methylene H atoms andUiso(H) = 1.5Ueq(C) for the methyl H atoms.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: DIRDIF99

(Beurskens et al., 1999); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

CGH thanks Illinois State University for partial financial support.

References

Ainscough, E. W., Brodie, A. M., Burrell, A. K., Xiaohong, F., Halstead, M. J. R., Kennedy, S. M. F. & Waters, J. M. (2000).Polyhedron,19, 2585–2592. Beurskens, P. T., Beurskens, G., de Gelder, R., Garcı´a-Granda, S., Gould, R.

O., Israel, R. & Smits, J. M. M. (1999).The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Che, C.-M. & Huang, J.-S. (2003).Coord. Chem. Rev.242, 97–113.

Enraf–Nonius (1994).CAD-4 EXPRESS. Enraf–Nonius, Delft, The Nether-lands.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Hamaker, C. G. & Corgliano, D. M. (2006).Acta Cryst.E62, o68–o69. Hamaker, C. G. & Halbach, D. P. (2006).Inorg. Chim. Acta,359, 846–852. Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

O¨ zbey, S., Temel, A., Ancin, N., O¨ztas, S. G. & Tu¨zu¨n, M. (1998).Z. Kristallogr. New Cryst. Struct.213, 207–208.

[image:2.610.312.566.70.204.2]

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Figure 1

[image:2.610.315.566.255.398.2]

View of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o802–o803

supporting information

Acta Cryst. (2006). E62, o802–o803 [https://doi.org/10.1107/S1600536806002819]

N

-[2-(Benzylsulfanyl)benzylidene]-2-(methylsulfanyl)aniline

Christopher G. Hamaker, Oksana Maryashina and Dominic P. Halbach

N-[2-(Benzylsulfanyl)benzylidene]-2-(methylsulfanyl)aniline

Crystal data

C21H19NS2

Mr = 349.49

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 9.7960 (7) Å

b = 17.1416 (16) Å

c = 11.2536 (14) Å

β = 106.699 (8)°

V = 1810.0 (3) Å3

Z = 4

F(000) = 736

Dx = 1.283 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 5.6–13.7°

µ = 0.30 mm−1

T = 297 K Plate, yellow

0.50 × 0.50 × 0.23 mm

Data collection

Enraf–Nonius CAD-4 diffractometer non–profiled ω/2θ scans Absorption correction: ψ scan

(North et al., 1968)

Tmin = 0.784, Tmax = 0.931 4362 measured reflections 4154 independent reflections

2629 reflections with I > 2σ(I)

Rint = 0.045

θmax = 27.5°, θmin = 2.2°

h = −12→12

k = 0→22

l = 0→14

3 standard reflections every 120 min intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.149

S = 1.10 4154 reflections 217 parameters

0 restraints

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0823P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.44 e Å−3 Δρmin = −0.32 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

S1 0.31832 (8) 0.37154 (4) 0.14512 (6) 0.0618 (2) N 0.14846 (19) 0.26240 (10) 0.24171 (18) 0.0441 (4) C16 0.0200 (2) 0.05986 (12) 0.1948 (2) 0.0431 (5) C2 0.3342 (2) 0.36076 (11) 0.3037 (2) 0.0418 (5) C21 0.1808 (3) −0.11917 (13) 0.4433 (2) 0.0496 (6) C15 −0.0849 (2) 0.01618 (13) 0.1119 (2) 0.0525 (6)

H15 −0.092 −0.037 0.1254 0.063*

C12 −0.0689 (2) 0.17371 (13) 0.0705 (2) 0.0505 (6)

H12 −0.0642 0.2269 0.0558 0.061*

C6 0.2453 (3) 0.30037 (13) 0.4611 (2) 0.0497 (6)

H6 0.1816 0.267 0.4829 0.06*

C10 0.1288 (2) 0.19093 (12) 0.2632 (2) 0.0437 (5)

H10 0.1813 0.1695 0.3383 0.052*

C7 0.2429 (2) 0.30657 (11) 0.3375 (2) 0.0403 (5) C14 −0.1782 (3) 0.05059 (15) 0.0106 (3) 0.0579 (7)

H14 −0.2472 0.0204 −0.0441 0.069*

C3 0.4314 (3) 0.40135 (12) 0.3971 (2) 0.0511 (6)

H3 0.4947 0.4356 0.3766 0.061*

C11 0.0273 (2) 0.14123 (12) 0.1747 (2) 0.0417 (5) C20 0.0813 (3) −0.08046 (13) 0.3328 (3) 0.0564 (6)

H20A −0.0138 −0.0777 0.3426 0.068*

H20B 0.0769 −0.1099 0.2582 0.068*

C24 0.3673 (3) −0.19226 (17) 0.6466 (3) 0.0698 (8)

H24 0.4298 −0.2164 0.7147 0.084*

C5 0.3409 (3) 0.34295 (14) 0.5519 (2) 0.0573 (6)

H5 0.3411 0.3385 0.6344 0.069*

C22 0.3023 (3) −0.15707 (14) 0.4328 (3) 0.0587 (6)

H22 0.3218 −0.1581 0.3566 0.07*

C23 0.3946 (3) −0.19324 (16) 0.5342 (3) 0.0698 (8)

H23 0.4756 −0.2183 0.526 0.084*

C26 0.1560 (3) −0.11897 (15) 0.5572 (3) 0.0622 (7)

H26 0.0757 −0.0936 0.5665 0.075*

C13 −0.1707 (3) 0.12955 (15) −0.0113 (2) 0.0574 (6)

H13 −0.2337 0.1525 −0.0805 0.069*

C4 0.4361 (3) 0.39206 (14) 0.5200 (3) 0.0571 (6)

H4 0.5036 0.419 0.5814 0.068*

C25 0.2475 (4) −0.15565 (18) 0.6587 (3) 0.0708 (8)

H25 0.2279 −0.1555 0.7348 0.085*

C1 0.4201 (3) 0.45838 (16) 0.1414 (3) 0.0695 (8)

H1A 0.4177 0.4697 0.0573 0.104*

H1B 0.517 0.4505 0.1903 0.104*

H1C 0.3799 0.5013 0.1747 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o802–o803

N 0.0410 (10) 0.0313 (9) 0.0595 (12) −0.0054 (7) 0.0138 (8) 0.0011 (8) C16 0.0356 (11) 0.0328 (10) 0.0610 (14) −0.0006 (8) 0.0142 (10) 0.0007 (9) C2 0.0393 (11) 0.0263 (9) 0.0601 (13) 0.0011 (8) 0.0150 (10) 0.0010 (9) C21 0.0507 (13) 0.0303 (10) 0.0693 (16) −0.0037 (9) 0.0195 (12) 0.0019 (10) C15 0.0432 (12) 0.0368 (11) 0.0726 (17) −0.0034 (10) 0.0087 (11) −0.0022 (11) C12 0.0459 (12) 0.0387 (12) 0.0673 (15) −0.0012 (10) 0.0167 (11) 0.0051 (11) C6 0.0501 (13) 0.0378 (11) 0.0654 (16) 0.0009 (10) 0.0233 (12) 0.0027 (10) C10 0.0396 (11) 0.0336 (10) 0.0583 (13) −0.0001 (9) 0.0147 (10) 0.0022 (10) C7 0.0364 (10) 0.0286 (9) 0.0564 (13) 0.0043 (8) 0.0144 (9) 0.0021 (9) C14 0.0424 (12) 0.0498 (13) 0.0740 (17) −0.0058 (11) 0.0047 (12) −0.0083 (12) C3 0.0448 (12) 0.0369 (11) 0.0701 (17) −0.0080 (10) 0.0140 (11) −0.0026 (11) C11 0.0369 (10) 0.0325 (10) 0.0578 (13) −0.0017 (8) 0.0172 (10) 0.0007 (9) C20 0.0561 (14) 0.0339 (11) 0.0752 (17) −0.0066 (10) 0.0125 (12) 0.0061 (11) C24 0.0664 (17) 0.0590 (16) 0.076 (2) −0.0015 (14) 0.0076 (15) 0.0118 (14) C5 0.0684 (16) 0.0494 (13) 0.0539 (14) 0.0055 (12) 0.0170 (12) −0.0007 (11) C22 0.0644 (16) 0.0463 (13) 0.0726 (17) 0.0049 (12) 0.0309 (14) 0.0053 (12) C23 0.0560 (16) 0.0564 (15) 0.099 (2) 0.0142 (13) 0.0253 (16) 0.0109 (15) C26 0.0609 (16) 0.0543 (15) 0.0788 (19) 0.0025 (12) 0.0320 (14) −0.0016 (14) C13 0.0470 (13) 0.0541 (14) 0.0644 (16) 0.0026 (11) 0.0051 (12) 0.0053 (12) C4 0.0573 (15) 0.0440 (13) 0.0629 (17) −0.0027 (11) 0.0060 (12) −0.0071 (11) C25 0.084 (2) 0.0702 (18) 0.0636 (17) −0.0055 (16) 0.0291 (15) 0.0038 (15) C1 0.0712 (18) 0.0582 (16) 0.0815 (19) −0.0123 (14) 0.0258 (15) 0.0182 (14)

Geometric parameters (Å, º)

S2—C16 1.769 (2) C14—C13 1.381 (3)

S2—C20 1.817 (2) C14—H14 0.93

S1—C2 1.756 (2) C3—C4 1.380 (4)

S1—C1 1.799 (3) C3—H3 0.93

N—C10 1.274 (3) C20—H20A 0.97

N—C7 1.420 (3) C20—H20B 0.97

C16—C15 1.391 (3) C24—C23 1.365 (4)

C16—C11 1.418 (3) C24—C25 1.371 (4)

C2—C3 1.386 (3) C24—H24 0.93

C2—C7 1.415 (3) C5—C4 1.378 (4)

C21—C26 1.372 (4) C5—H5 0.93

C21—C22 1.391 (3) C22—C23 1.383 (4)

C21—C20 1.496 (3) C22—H22 0.93

C15—C14 1.373 (3) C23—H23 0.93

C15—H15 0.93 C26—C25 1.384 (4)

C12—C13 1.374 (3) C26—H26 0.93

C12—C11 1.393 (3) C13—H13 0.93

C12—H12 0.93 C4—H4 0.93

C6—C5 1.380 (3) C25—H25 0.93

C6—C7 1.388 (3) C1—H1A 0.96

C6—H6 0.93 C1—H1B 0.96

C10—C11 1.462 (3) C1—H1C 0.96

(6)

C16—S2—C20 104.34 (11) C21—C20—S2 107.65 (16)

C2—S1—C1 102.87 (13) C21—C20—H20A 110.2

C10—N—C7 118.00 (19) S2—C20—H20A 110.2

C15—C16—C11 119.0 (2) C21—C20—H20B 110.2

C15—C16—S2 122.42 (17) S2—C20—H20B 110.2

C11—C16—S2 118.58 (16) H20A—C20—H20B 108.5

C3—C2—C7 118.4 (2) C23—C24—C25 119.9 (3)

C3—C2—S1 123.98 (18) C23—C24—H24 120

C7—C2—S1 117.63 (17) C25—C24—H24 120

C26—C21—C22 117.8 (2) C4—C5—C6 119.7 (2)

C26—C21—C20 121.8 (2) C4—C5—H5 120.1

C22—C21—C20 120.4 (2) C6—C5—H5 120.1

C14—C15—C16 120.8 (2) C23—C22—C21 120.8 (3)

C14—C15—H15 119.6 C23—C22—H22 119.6

C16—C15—H15 119.6 C21—C22—H22 119.6

C13—C12—C11 122.0 (2) C24—C23—C22 120.2 (3)

C13—C12—H12 119 C24—C23—H23 119.9

C11—C12—H12 119 C22—C23—H23 119.9

C5—C6—C7 121.0 (2) C21—C26—C25 121.5 (3)

C5—C6—H6 119.5 C21—C26—H26 119.2

C7—C6—H6 119.5 C25—C26—H26 119.2

N—C10—C11 122.8 (2) C12—C13—C14 119.1 (2)

N—C10—H10 118.6 C12—C13—H13 120.5

C11—C10—H10 118.6 C14—C13—H13 120.5

C6—C7—C2 119.3 (2) C5—C4—C3 120.1 (2)

C6—C7—N 122.7 (2) C5—C4—H4 119.9

C2—C7—N 118.0 (2) C3—C4—H4 119.9

C15—C14—C13 120.8 (2) C24—C25—C26 119.7 (3)

C15—C14—H14 119.6 C24—C25—H25 120.1

C13—C14—H14 119.6 C26—C25—H25 120.1

C4—C3—C2 121.3 (2) S1—C1—H1A 109.5

C4—C3—H3 119.3 S1—C1—H1B 109.5

C2—C3—H3 119.3 H1A—C1—H1B 109.5

C12—C11—C16 118.3 (2) S1—C1—H1C 109.5

C12—C11—C10 120.27 (19) H1A—C1—H1C 109.5

C16—C11—C10 121.4 (2) H1B—C1—H1C 109.5

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o802–o803

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical