• No results found

Aqua­(2,2′ bi­pyridine)maleatocopper(II) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Aqua­(2,2′ bi­pyridine)maleatocopper(II) dihydrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m916

Liet al. [Cu(C

10H8N2)(C4H2O4)(H2O)].2H2O doi:10.1107/S1600536806011020 Acta Cryst.(2006). E62, m916–m918

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(2,2

000

-bipyridine)maleatocopper(II)

dihydrate

Ming-Tian Li,a,bXu-Cheng Fuc and Cheng-Gang Wanga*

a

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China,bDepartment of Chemistry, Shangqiu Normal University, Shangqiu, Henan 476000, People’s Republic of China, andcChemistry and Biology Department, West Anhui University, Liu an Anhui 237000, People’s Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.052

wRfactor = 0.123

Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 17 March 2006 Accepted 27 March 2006

#2006 International Union of Crystallography

All rights reserved

In the molecule of the title compound, [Cu(C10H8N2)-(C4H2O4)(H2O)]2H2O, the Cu(II) atom has elongated tetra-gonal pyramidal geometry, coordinated by one water O atom, two N atoms of the 2,20-bipyridine ligand and two O atoms of

the two carboxylate groups of the maleate dianion. The molecules are linked through hydrogen-bonding and –

stacking interactions, forming a two-dimensional supra-molecular structure.

Comment

Metal–organic coordination complexes containing the maleate ligand have been studied extensively due to their wide range of applications (Maruoka et al., 1993; Chen & Suslick, 1993; Hoskins & Robson, 1990; Kondoet al., 1997). Here, we report the crystal structure of one such complex, the title compound, (I).

The structure of (I) consists of discrete monomers. The CuII atom exhibits an elongated tetragonal pyramidal geometry, coordinated by one water O atom, two N atoms of the 2,20

-bipyridine ligand and two O atoms of the two carboxylate groups of the maleate dianion (Table 1, Fig. 1).

The Cu—O(maleate) and Cu—O(water) bonds (Table 1) are slightly longer than the corresponding ones [1.876 (6), 1.894 (6) and 2.150 (6) A˚ ] in [Cu(pz)2(male)(H2O)] -1.5H2O, (II), where pz and male are 3,5-dimethylpyrazole and the maleate anion, respectively (Chen et al., 2003). It is not possible to compare the Cu—O(water) bond in (I) with those [1.975 (2) and 2.414 (2) A˚ ] reported in {[Cu(4,40

(2)

In the crystal structure, the molecules are packed via hydrogen bonds (Fig. 2) between water molecules and the uncoordinated O(maleate) atoms of neighbouring molecules (Table 2), and – stacking interactions with centroid– centroid distances of 3.811 (3) and 3.974 (3) A˚ between the pyridine ring of the molecule at (x;y;z) and those at (2x, y, 2z) and (2x,y, 1z), respectively, forming a two-dimensional supramolecular structure.

Experimental

Cu(NO3)23H2O (0.241 g, 1.0 mmol) was added slowly to an aqueous solution of maleic acid (0.116 g, 1.0 mmol, 15 ml), and the reaction mixture was stirred for 1 h at 353 K. An ethanol solution (5 ml) of 2,20-bipyridine (0.156 g, 1.0 mmol) was then added with continuous

stirring. NaOH solution (0.1 mol/l) was added until a pH of 7 was obtained. After 1 h, the reaction mixture was cooled to room temperature and then filtered. Blue single crystals were obtained from the filtrate after two weeks (yield 139.9 mg, 36%, m.p. 525 K).

Crystal data

[Cu(C10H8N2)(C4H2O4

)-(H2O)]2H2O

Mr= 387.83

Monoclinic,P21=c

a= 8.9793 (18) A˚

b= 22.487 (5) A˚

c= 7.7187 (15) A˚

= 95.62 (3) V= 1551.0 (5) A˚3

Z= 4

Dx= 1.661 Mg m 3

MoKradiation Cell parameters from 3123

reflections

= 2.6–27.8

= 1.45 mm1

T= 292 (2) K Block, blue

0.200.060.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.760,Tmax= 0.918

10456 measured reflections

3528 independent reflections 2257 reflections withI> 2(I)

Rint= 0.073

max= 27.5

h=11!11

k=28!24

l=9!6

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.052

wR(F2) = 0.123

S= 0.97 3528 reflections 241 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.05P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.42 e A˚

3

min=0.36 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Cu1—O1 1.931 (3) Cu1—O3 1.931 (3) Cu1—O5 2.261 (3)

Cu1—N1 2.003 (3) Cu1—N2 2.003 (3) O1—Cu1—O3 93.44 (12)

O3—Cu1—N1 91.72 (12) O1—Cu1—N2 90.55 (12) N1—Cu1—N2 80.53 (13)

[image:2.610.52.292.68.311.2]

O1—Cu1—O5 107.62 (12) O3—Cu1—O5 100.11 (12) N1—Cu1—O5 86.57 (12) N2—Cu1—O5 93.38 (12)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O5—H5a O7i

0.80 (3) 1.96 (3) 2.752 (5) 172 (5) O7—H7b O6 0.75 (3) 2.07 (4) 2.819 (6) 174 (5) O6—H6a O4ii 0.75 (4) 2.18 (4) 2.889 (5) 159 (7) O7—H7a O2 0.83 (4) 2.03 (4) 2.850 (5) 169 (5) O5—H5b O4iii

0.80 (3) 1.99 (3) 2.783 (4) 174 (4) O6—H6b O2iv

0.79 (4) 2.14 (4) 2.903 (5) 162 (6)

Symmetry codes: (i) x;y;zþ1; (ii) xþ1;yþ3 2;z

1

2; (iii) x;yþ 3 2;zþ

1 2; (iv)

x;yþ3 2;z

1 2.

Atoms H5a, H5b, H6a, H6b, H7a and H7b were located in a difference map and refined isotropically [O—H = 0.75 (3)–0.83 (4) A˚ andUiso(H) = 0.043 (17)–0.10 (3) A˚

2]. The remaining H atoms were

positioned geometrically, with C—H = 0.93 A˚ for aromatic H, and constrained to ride on their parent atoms, withUiso(H) = 1.2Ueq(C). Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve

metal-organic papers

Acta Cryst.(2006). E62, m916–m918 Liet al. [Cu(C

10H8N2)(C4H2O4)(H2O)].2H2O

m917

Figure 1

[image:2.610.315.563.73.188.2]

The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

[image:2.610.313.566.568.641.2]
(3)

structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactors and Green Chemical Technology (grant No. RCT2004011).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000).SMART(Version 6.10),SAINT(Version 6.10) andSADABS

(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Chen, C.-T. & Suslick, K. S. (1993).Coord. Chem. Rev.128, 293–322. Chen, X.-Y., Shen, W.-Z., Cheng, P., Yan, S.-P., Liao, D.-Z. & Jiang, Z.-H.

(2003).Z. Anorg. Allg. Chem.629, 697–702.

Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546– 1554.

Kang, Y., Li, -Z. J., Qin, Y.-Y., Chen, Y.-B., Zhang, J., Hu, R.-F., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004).Chin. J. Struct. Chem.23, 862–864. Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H. & Kitagawa, S. (1997).

Angew. Chem. Int. Ed. Engl.36, 1725–1727.

Maruoka, K., Murase, N. & Yamamoto, H. (1993).J. Org. Chem.58, 2938– 2939.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

m918

Liet al. [Cu(C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, m916–m918

supporting information

Acta Cryst. (2006). E62, m916–m918 [https://doi.org/10.1107/S1600536806011020]

Aqua(2,2

-bipyridine)maleatocopper(II) dihydrate

Ming-Tian Li, Xu-Cheng Fu and Cheng-Gang Wang

Aquamaleato(2,2′-bipyridine)copper(II) dihydrate

Crystal data

[Cu(C10H8N2)(C4H2O4)(H2O)].2H2O

Mr = 387.83

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 8.9793 (18) Å

b = 22.487 (5) Å

c = 7.7187 (15) Å

β = 95.62 (3)°

V = 1551.0 (5) Å3

Z = 4

F(000) = 796

Dx = 1.661 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 3123 reflections

θ = 2.6–27.8°

µ = 1.45 mm−1

T = 292 K

Block, blue

0.20 × 0.06 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.760, Tmax = 0.918

10456 measured reflections 3528 independent reflections 2257 reflections with I > 2σ(I) Rint = 0.073

θmax = 27.5°, θmin = 1.8°

h = −11→11

k = −28→24

l = −9→6

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.052

wR(F2) = 0.123

S = 0.97

3528 reflections 241 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.42 e Å−3 Δρmin = −0.36 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, m916–m918

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.08386 (5) 0.60739 (2) 0.63719 (6) 0.02924 (17)

O1 0.2542 (3) 0.62204 (12) 0.5087 (4) 0.0431 (8)

O2 0.4522 (3) 0.67026 (13) 0.4346 (4) 0.0435 (8)

O3 −0.0163 (3) 0.67980 (12) 0.5575 (4) 0.0407 (7)

O4 −0.0346 (3) 0.77636 (13) 0.5061 (4) 0.0455 (8)

O5 0.1509 (4) 0.63151 (14) 0.9184 (4) 0.0354 (7)

H5a 0.235 (4) 0.637 (2) 0.959 (6) 0.050 (15)*

H5b 0.102 (4) 0.6584 (18) 0.950 (5) 0.043 (15)*

O6 0.6422 (5) 0.7250 (2) −0.0366 (6) 0.0673 (12)

H6a 0.723 (5) 0.725 (3) 0.000 (8) 0.10 (3)*

H6b 0.606 (6) 0.7568 (19) −0.054 (7) 0.08 (2)*

O7 0.4389 (4) 0.64095 (17) 0.0742 (6) 0.0473 (9)

H7a 0.451 (5) 0.646 (2) 0.181 (5) 0.053 (17)*

H7b 0.497 (5) 0.661 (2) 0.043 (6) 0.043 (17)*

N1 −0.1045 (3) 0.57454 (15) 0.7188 (4) 0.0312 (8)

N2 0.1452 (3) 0.52221 (14) 0.6714 (4) 0.0269 (7)

C1 −0.2298 (4) 0.6060 (2) 0.7369 (6) 0.0407 (11)

H1 −0.2329 0.6462 0.7085 0.049*

C2 −0.3532 (4) 0.5797 (2) 0.7966 (6) 0.0500 (13)

H2 −0.4393 0.6018 0.8071 0.060*

C3 −0.3484 (5) 0.5206 (2) 0.8406 (6) 0.0508 (13)

H3 −0.4307 0.5023 0.8823 0.061*

C4 −0.2196 (5) 0.4885 (2) 0.8223 (5) 0.0429 (11)

H4 −0.2147 0.4483 0.8502 0.051*

C5 −0.0990 (4) 0.51663 (18) 0.7623 (5) 0.0302 (9)

C6 0.0423 (4) 0.48682 (18) 0.7357 (5) 0.0297 (9)

C7 0.0717 (5) 0.42719 (19) 0.7704 (5) 0.0407 (11)

H7 0.0005 0.4033 0.8157 0.049*

C8 0.2087 (5) 0.4037 (2) 0.7368 (6) 0.0480 (12)

H8 0.2302 0.3638 0.7587 0.058*

C9 0.3121 (5) 0.4400 (2) 0.6708 (6) 0.0453 (12)

H9 0.4049 0.4252 0.6478 0.054*

C10 0.2763 (4) 0.49848 (19) 0.6394 (5) 0.0375 (10)

H10 0.3465 0.5228 0.5936 0.045*

C11 0.3419 (4) 0.66653 (18) 0.5198 (5) 0.0312 (9)

C12 0.3159 (4) 0.71698 (17) 0.6396 (5) 0.0304 (9)

H12 0.3995 0.7306 0.7091 0.037*

C13 0.1889 (4) 0.74438 (17) 0.6585 (5) 0.0294 (9)

H13 0.1941 0.7752 0.7391 0.035*

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, m916–m918

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0301 (3) 0.0223 (3) 0.0358 (3) −0.0035 (2) 0.0056 (2) 0.0006 (2)

O1 0.0499 (18) 0.0297 (18) 0.053 (2) −0.0103 (13) 0.0236 (15) −0.0069 (14)

O2 0.0315 (15) 0.046 (2) 0.056 (2) −0.0033 (13) 0.0152 (14) 0.0012 (15)

O3 0.0393 (16) 0.0251 (17) 0.055 (2) −0.0079 (13) −0.0075 (14) 0.0061 (14)

O4 0.0351 (15) 0.0292 (17) 0.071 (2) 0.0022 (13) 0.0015 (15) 0.0161 (15)

O5 0.0380 (18) 0.0312 (18) 0.0367 (18) −0.0018 (15) 0.0017 (15) −0.0043 (14)

O6 0.041 (2) 0.052 (3) 0.109 (4) 0.003 (2) 0.009 (2) 0.000 (2)

O7 0.0375 (19) 0.053 (2) 0.051 (3) 0.0041 (17) 0.0032 (18) −0.0050 (19)

N1 0.0278 (17) 0.032 (2) 0.034 (2) −0.0037 (14) 0.0026 (15) −0.0038 (15)

N2 0.0302 (16) 0.0234 (18) 0.0272 (18) −0.0019 (14) 0.0027 (14) −0.0003 (14)

C1 0.035 (2) 0.044 (3) 0.043 (3) 0.004 (2) 0.007 (2) −0.009 (2)

C2 0.025 (2) 0.076 (4) 0.050 (3) 0.004 (2) 0.011 (2) −0.012 (3)

C3 0.039 (3) 0.077 (4) 0.040 (3) −0.016 (3) 0.016 (2) 0.003 (3)

C4 0.045 (3) 0.046 (3) 0.039 (3) −0.015 (2) 0.008 (2) 0.003 (2)

C5 0.037 (2) 0.029 (2) 0.025 (2) −0.0082 (18) 0.0021 (17) −0.0002 (17)

C6 0.034 (2) 0.027 (2) 0.026 (2) −0.0042 (17) −0.0029 (17) −0.0023 (17)

C7 0.052 (3) 0.028 (3) 0.041 (3) −0.006 (2) −0.003 (2) 0.0048 (19)

C8 0.059 (3) 0.033 (3) 0.049 (3) 0.013 (2) −0.010 (2) 0.000 (2)

C9 0.039 (2) 0.045 (3) 0.051 (3) 0.016 (2) −0.002 (2) −0.002 (2)

C10 0.035 (2) 0.040 (3) 0.037 (2) 0.0006 (19) 0.0006 (19) −0.003 (2)

C11 0.029 (2) 0.030 (2) 0.034 (2) −0.0015 (17) −0.0018 (18) 0.0075 (18)

C12 0.035 (2) 0.029 (2) 0.026 (2) −0.0064 (17) −0.0003 (18) 0.0055 (17)

C13 0.036 (2) 0.024 (2) 0.028 (2) −0.0058 (17) 0.0023 (18) −0.0007 (17)

C14 0.032 (2) 0.031 (2) 0.033 (2) 0.0005 (18) 0.0083 (18) 0.0004 (19)

Geometric parameters (Å, º)

Cu1—O1 1.931 (3) C10—C9 1.369 (6)

Cu1—O3 1.931 (3) C10—H10 0.9300

Cu1—O5 2.261 (3) C11—C12 1.497 (6)

Cu1—N1 2.003 (3) C12—C13 1.317 (5)

Cu1—N2 2.003 (3) C12—H12 0.9300

O3—C14 1.270 (4) C7—C8 1.386 (6)

O5—H5a 0.80 (3) C7—H7 0.9300

O5—H5b 0.80 (3) C9—C8 1.372 (6)

O1—C11 1.271 (4) C9—H9 0.9300

N2—C10 1.338 (5) C8—H8 0.9300

N2—C6 1.350 (5) C13—H13 0.9300

O4—C14 1.244 (5) C4—C3 1.382 (6)

O2—C11 1.244 (4) C4—H4 0.9300

N1—C5 1.345 (5) C2—C3 1.371 (7)

N1—C1 1.348 (5) C2—H2 0.9300

C6—C7 1.388 (5) C3—H3 0.9300

C6—C5 1.467 (5) O7—H7b 0.75 (3)

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m916–m918

C14—C13 1.505 (5) O6—H6a 0.75 (4)

C1—C2 1.374 (6) O6—H6b 0.79 (4)

C1—H1 0.9300

O1—Cu1—O3 93.44 (12) N2—C10—C9 123.1 (4)

O1—Cu1—N1 163.76 (13) N2—C10—H10 118.5

O3—Cu1—N1 91.72 (12) C9—C10—H10 118.5

O1—Cu1—N2 90.55 (12) O2—C11—O1 122.5 (4)

O3—Cu1—N2 164.04 (12) O2—C11—C12 117.1 (4)

N1—Cu1—N2 80.53 (13) O1—C11—C12 120.4 (4)

O1—Cu1—O5 107.62 (12) C13—C12—C11 127.7 (4)

O3—Cu1—O5 100.11 (12) C13—C12—H12 116.1

N1—Cu1—O5 86.57 (12) C11—C12—H12 116.1

N2—Cu1—O5 93.38 (12) C8—C7—C6 119.2 (4)

C14—O3—Cu1 127.3 (3) C8—C7—H7 120.4

Cu1—O5—H5a 125 (3) C6—C7—H7 120.4

Cu1—O5—H5b 112 (3) C10—C9—C8 118.8 (4)

H5a—O5—H5b 106 (4) C10—C9—H9 120.6

C11—O1—Cu1 128.1 (3) C8—C9—H9 120.6

C10—N2—C6 118.6 (4) C9—C8—C7 119.2 (4)

C10—N2—Cu1 126.3 (3) C9—C8—H8 120.4

C6—N2—Cu1 115.0 (3) C7—C8—H8 120.4

C5—N1—C1 119.5 (4) C12—C13—C14 128.4 (4)

C5—N1—Cu1 115.1 (3) C12—C13—H13 115.8

C1—N1—Cu1 125.4 (3) C14—C13—H13 115.8

N2—C6—C7 121.1 (4) C5—C4—C3 119.3 (4)

N2—C6—C5 114.5 (3) C5—C4—H4 120.3

C7—C6—C5 124.4 (4) C3—C4—H4 120.3

N1—C5—C4 121.3 (4) C3—C2—C1 119.6 (4)

N1—C5—C6 114.7 (3) C3—C2—H2 120.2

C4—C5—C6 123.9 (4) C1—C2—H2 120.2

O4—C14—O3 123.1 (4) C2—C3—C4 119.1 (4)

O4—C14—C13 116.2 (4) C2—C3—H3 120.5

O3—C14—C13 120.7 (3) C4—C3—H3 120.5

N1—C1—C2 121.2 (4) H7b—O7—H7a 102 (5)

N1—C1—H1 119.4 H6a—O6—H6b 116 (6)

C2—C1—H1 119.4

O1—Cu1—O3—C14 −53.2 (3) C1—N1—C5—C6 179.5 (3)

N1—Cu1—O3—C14 142.2 (3) Cu1—N1—C5—C6 −2.4 (4)

N2—Cu1—O3—C14 −157.4 (4) N2—C6—C5—N1 0.0 (5)

O5—Cu1—O3—C14 55.4 (3) C7—C6—C5—N1 −179.4 (4)

O3—Cu1—O1—C11 58.3 (3) N2—C6—C5—C4 178.3 (4)

N1—Cu1—O1—C11 166.6 (4) C7—C6—C5—C4 −1.1 (6)

N2—Cu1—O1—C11 −137.2 (3) Cu1—O3—C14—O4 177.4 (3)

O5—Cu1—O1—C11 −43.4 (4) Cu1—O3—C14—C13 −4.7 (5)

O1—Cu1—N2—C10 11.8 (3) C5—N1—C1—C2 −1.0 (6)

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, m916–m918

N1—Cu1—N2—C10 178.2 (3) C6—N2—C10—C9 −0.9 (6)

O5—Cu1—N2—C10 −95.9 (3) Cu1—N2—C10—C9 178.0 (3)

O1—Cu1—N2—C6 −169.2 (3) Cu1—O1—C11—O2 177.2 (3)

O3—Cu1—N2—C6 −64.7 (5) Cu1—O1—C11—C12 −2.2 (5)

N1—Cu1—N2—C6 −2.9 (2) O2—C11—C12—C13 134.2 (4)

O5—Cu1—N2—C6 83.1 (3) O1—C11—C12—C13 −46.3 (6)

O1—Cu1—N1—C5 60.3 (6) N2—C6—C7—C8 −0.6 (6)

O3—Cu1—N1—C5 168.8 (3) C5—C6—C7—C8 178.7 (4)

N2—Cu1—N1—C5 2.9 (3) N2—C10—C9—C8 0.6 (6)

O5—Cu1—N1—C5 −91.1 (3) C10—C9—C8—C7 −0.3 (7)

O1—Cu1—N1—C1 −121.7 (5) C6—C7—C8—C9 0.3 (6)

O3—Cu1—N1—C1 −13.1 (3) C11—C12—C13—C14 0.5 (7)

N2—Cu1—N1—C1 −179.1 (3) O4—C14—C13—C12 −132.4 (4)

O5—Cu1—N1—C1 86.9 (3) O3—C14—C13—C12 49.6 (6)

C10—N2—C6—C7 0.8 (5) N1—C5—C4—C3 −1.0 (6)

Cu1—N2—C6—C7 −178.2 (3) C6—C5—C4—C3 −179.2 (4)

C10—N2—C6—C5 −178.6 (3) N1—C1—C2—C3 0.8 (7)

Cu1—N2—C6—C5 2.4 (4) C1—C2—C3—C4 −0.6 (7)

C1—N1—C5—C4 1.1 (6) C5—C4—C3—C2 0.7 (7)

Cu1—N1—C5—C4 179.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O5—H5a···O7i 0.80 (3) 1.96 (3) 2.752 (5) 172 (5)

O7—H7b···O6 0.75 (3) 2.07 (4) 2.819 (6) 174 (5)

O6—H6a···O4ii 0.75 (4) 2.18 (4) 2.889 (5) 159 (7)

O7—H7a···O2 0.83 (4) 2.03 (4) 2.850 (5) 169 (5)

O5—H5b···O4iii 0.80 (3) 1.99 (3) 2.783 (4) 174 (4)

O6—H6b···O2iv 0.79 (4) 2.14 (4) 2.903 (5) 162 (6)

Figure

Figure 1

References

Related documents

The above experiments used the data set of sentences with their spoken forms and additional information like morphological tags and classes.. Details about the data set and

In this paper we aim to study three points of interest: (1) whether controlling for such fac- tors as age, level of education and native lan- guage of the annotator group in the task

In short, our contributions are two-fold: (i) an effective syntax- based evaluator is built as a post-hoc checker, yielding compression with better quality based upon the

profit rates increase for higher values of tu , though this relationship tends to flatten for scenarios where firms give more importance to the capacity utilization rate than to

Drafts are manually aligned at the sentence level, and the writer’s pur- pose for each revision is annotated with categories analogous to those used in argu- ment mining and

We use two proxies of Financial Inclusion: the overall rate of demographic penetration of financial services (DemoF) that represents the access and the available supply of

We further relax the linear program to a linear system, which gives us a geometric view of the unanimity: We predict on a new input if it can be expressed as a “linear combination”

Thus, this paper employs the ARDL cointegration technique to test the long-run the relationship between future spot and forward rates in the South African foreign exchange market