• No results found

(E) 2 Bromo 4,5 di­meth­oxy­benzaldehyde oxime

N/A
N/A
Protected

Academic year: 2020

Share "(E) 2 Bromo 4,5 di­meth­oxy­benzaldehyde oxime"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1946

Li and Tian C

9H10BrNO3 doi:10.1107/S160053680601364X Acta Cryst.(2006). E62, o1946–o1947 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

E

)-2-Bromo-4,5-dimethoxybenzaldehyde oxime

Xiang Li* and Da-Min Tian

Chemistry and Chemical Engineering Depart-ment, Pingdingshan Institute of Technology, Pingdingshan 467000, People’s Republic of China

Correspondence e-mail: lixiang_acta@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 291 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.044

wRfactor = 0.107

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 1 April 2006 Accepted 15 April 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, C9H10BrNO3, which exists as the E

isomer, crystallizes with two independent molecules in the asymmetric unit. The bond lengths and angles in both molecules are normal. The crystal packing is stabilized by

intermolecular O—H O hydrogen bonds, which link the

molecules into circular tetramers, and by weak–stacking

interactions.

Comment

Substituted benzaldehyde oxime is an important intermediate in organic synthesis (Xu & Jin, 1999), existing in two isomeric forms,viz. ZandE(Sharghi & Sarvari, 2001). We report here the crystal structure of the title compound, (I).

Compound (I) crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The bond lengths and angles in both molecules (Table 1) are in agreement with the values reported previously (Jerslev, 1983; Jensen, 1970). The devia-tion of atom C17 from the mean plane formed by C10–C16/

C18/N2/O4–O6/Br1 is 0.106 (3) A˚ , while in the second

inde-pendent molecule the atoms C1–C9, N1, O1–O3 and Br2 are essentially coplanar, the largest deviation from the mean plane

being 0.040 (2) A˚ for atom C8. Intermolecular O—H O

hydrogen bonds (Table 2) link the molecules into nearly planar circular tetramers (Fig. 2). The relatively short distance

of 3.829 (4) A˚ between the centroids of benzene rings C1–C6

and C10–C15 [at (x,1 2+y,

1

2z)] indicates the presence of

weak–interactions, which contribute to the stability of the crystal packing.

Experimental

(2)

dichloromethane, and the organic phase was evaporated to afford the title product in 85% yield (2.21 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a mixture of ethyl acetate and petroleum ether (1:1v/v) at room temperature over a period of two weeks.

Crystal data

C9H10BrNO3

Mr= 260.09

Monoclinic,P21=c

a= 8.0870 (14) A˚

b= 9.6175 (17) A˚

c= 26.795 (5) A˚

= 94.964 (3) V= 2076.2 (6) A˚3

Z= 8

Dx= 1.664 Mg m

3

MoKradiation

= 3.94 mm1

T= 291 (2) K Block, colourless 0.340.310.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.348,Tmax= 0.439

(expected range = 0.296–0.373)

10481 measured reflections 3653 independent reflections 2458 reflections withI> 2(I)

Rint= 0.035

max= 25.0

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.107

S= 1.04 3653 reflections 253 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0506P)2

+ 0.3059P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.66 e A˚

3

min=0.40 e A˚

[image:2.610.311.564.68.256.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Br1—C10 1.913 (4) Br2—C1 1.903 (4)

N1—C9 1.233 (5) N2—C18 1.239 (5)

C3—O1—C7 117.8 (4) C4—O2—C8 117.5 (3)

C9—N1—O3 112.2 (4) C18—N2—O6 112.1 (4)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H3A O4i

0.84 2.36 3.098 (5) 147 O3—H3A O5i

0.84 2.03 2.747 (5) 142 O6—H6A O1ii

0.84 2.19 2.942 (4) 150 O6—H6A O2ii

0.84 2.33 3.038 (4) 142

Symmetry codes: (i)x1;yþ1 2;zþ

1

2; (ii)x;y 1 2;zþ

1 2.

All H atoms were placed in calculated positions, with C—H = 0.95– 0.98 A˚ and O—H = 0.84 A˚, and included in the final cycles of refinement using a riding model, withUiso(H) = 1.2Ueq(C) for the aryl H atoms and 1.5Ueq(O,C) for the hydroxyl and methyl H atoms.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1999); data reduction: SAINT; program(s) used to solve

structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

References

Bruker (1998).SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison,

Wisconsin, USA.

Jensen, K. G. (1970).Acta Chem. Scand.24, 3293–3330. Jerslev, B. (1983).Acta Cryst.C39, 1447–1454. Sharghi, H. & Sarvari, M. H. (2001).Synlett,1, 99–101.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

[image:2.610.316.564.300.474.2]

Xu, J. & Jin, S. (1999).Acta Cryst.C55, 1579–1581. Figure 1

View of the asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level.

Figure 2

[image:2.610.45.296.537.592.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o1946–o1947

supporting information

Acta Cryst. (2006). E62, o1946–o1947 [https://doi.org/10.1107/S160053680601364X]

(

E

)-2-Bromo-4,5-dimethoxybenzaldehyde oxime

Xiang Li and Da-Min Tian

(E)-2-Bromo-4,5-dimethoxybenzaldehyde oxime

Crystal data

C9H10BrNO3 Mr = 260.09 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 8.0870 (14) Å

b = 9.6175 (17) Å

c = 26.795 (5) Å

β = 94.964 (3)°

V = 2076.2 (6) Å3

Z = 8

F(000) = 1040

Dx = 1.664 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 1048 reflections

θ = 2.3–22.3°

µ = 3.94 mm−1

T = 291 K

Block, colourless 0.34 × 0.31 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.348, Tmax = 0.439

10481 measured reflections 3653 independent reflections 2458 reflections with I > 2σ(I) Rint = 0.035

θmax = 25.0°, θmin = 2.3°

h = −9→8

k = −11→11

l = −31→29

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.044 wR(F2) = 0.107

S = 1.04

3653 reflections 253 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0506P)2 + 0.3059P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.66 e Å−3

Δρmin = −0.40 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 0.34024 (6) 0.09276 (5) 0.424220 (19) 0.06379 (19)

Br2 0.14045 (6) 0.33461 (6) 0.274671 (19) 0.0723 (2)

O1 0.3145 (4) −0.0338 (3) 0.14501 (12) 0.0607 (8)

O2 0.0363 (4) −0.0329 (3) 0.09324 (11) 0.0633 (8)

O3 −0.4377 (4) 0.4071 (4) 0.19438 (13) 0.0820 (11)

H3A −0.5228 0.4115 0.1741 0.123*

O4 −0.3386 (4) −0.1673 (3) 0.40163 (11) 0.0624 (8)

O5 −0.2648 (4) 0.0223 (4) 0.34159 (12) 0.0678 (9)

O6 0.3021 (4) −0.2738 (4) 0.55941 (12) 0.0802 (10)

H6A 0.2688 −0.3343 0.5789 0.120*

N1 −0.3275 (5) 0.3143 (4) 0.17702 (14) 0.0584 (10)

N2 0.1758 (4) −0.2446 (4) 0.52174 (13) 0.0565 (10)

C1 0.0968 (5) 0.2226 (4) 0.21647 (15) 0.0468 (10)

C2 0.2250 (5) 0.1370 (4) 0.20384 (16) 0.0500 (11)

H2B 0.3283 0.1363 0.2237 0.060*

C3 0.2006 (5) 0.0531 (4) 0.16212 (16) 0.0461 (10)

C4 0.0460 (5) 0.0547 (4) 0.13376 (16) 0.0437 (10)

C5 −0.0766 (5) 0.1407 (4) 0.14686 (15) 0.0437 (10)

H5A −0.1797 0.1421 0.1270 0.052*

C6 −0.0546 (5) 0.2269 (4) 0.18889 (15) 0.0424 (10)

C7 0.4756 (6) −0.0393 (6) 0.17205 (19) 0.0713 (14)

H7A 0.5455 −0.1060 0.1559 0.107*

H7B 0.4645 −0.0687 0.2066 0.107*

H7C 0.5270 0.0530 0.1721 0.107*

C8 −0.1177 (6) −0.0412 (6) 0.06386 (19) 0.0749 (15)

H8A −0.1084 −0.1072 0.0364 0.112*

H8B −0.1473 0.0507 0.0501 0.112*

H8C −0.2038 −0.0729 0.0848 0.112*

C9 −0.1911 (6) 0.3184 (4) 0.20140 (17) 0.0527 (11)

H9A −0.1738 0.3814 0.2286 0.063*

C10 0.1271 (5) 0.0052 (4) 0.42097 (16) 0.0481 (11)

C11 0.0129 (5) 0.0487 (5) 0.38285 (16) 0.0525 (11)

H11A 0.0415 0.1194 0.3604 0.063*

C12 −0.1412 (5) −0.0103 (4) 0.37763 (15) 0.0479 (11)

C13 −0.1806 (5) −0.1147 (4) 0.41042 (16) 0.0484 (11)

C14 −0.0672 (5) −0.1555 (4) 0.44870 (16) 0.0496 (11)

H14A −0.0973 −0.2246 0.4716 0.060*

C15 0.0923 (5) −0.0972 (4) 0.45466 (15) 0.0451 (10)

C16 −0.2379 (7) 0.1353 (6) 0.3082 (2) 0.0884 (18)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o1946–o1947

H16B −0.1415 0.1148 0.2897 0.133*

H16C −0.2174 0.2209 0.3276 0.133*

C17 −0.3923 (6) −0.2650 (6) 0.43598 (19) 0.0751 (15)

H17A −0.5065 −0.2931 0.4255 0.113*

H17B −0.3879 −0.2230 0.4694 0.113*

H17C −0.3197 −0.3467 0.4369 0.113*

C18 0.2108 (5) −0.1445 (5) 0.49550 (17) 0.0516 (11)

H18A 0.3145 −0.0986 0.5019 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0507 (3) 0.0681 (3) 0.0717 (4) −0.0100 (2) 0.0005 (2) 0.0010 (3)

Br2 0.0573 (3) 0.0884 (4) 0.0688 (4) −0.0097 (3) −0.0086 (3) −0.0238 (3)

O1 0.0454 (19) 0.0646 (19) 0.070 (2) 0.0136 (16) −0.0073 (16) −0.0066 (17)

O2 0.052 (2) 0.073 (2) 0.062 (2) 0.0043 (16) −0.0151 (16) −0.0174 (18)

O3 0.056 (2) 0.112 (3) 0.076 (2) 0.024 (2) −0.0061 (18) −0.014 (2)

O4 0.0454 (19) 0.078 (2) 0.063 (2) −0.0087 (16) 0.0003 (15) 0.0030 (18)

O5 0.056 (2) 0.084 (2) 0.061 (2) −0.0068 (17) −0.0121 (17) 0.0069 (19)

O6 0.069 (2) 0.090 (3) 0.078 (2) −0.0052 (19) −0.0160 (19) 0.027 (2)

N1 0.046 (2) 0.062 (2) 0.069 (3) 0.0171 (19) 0.013 (2) 0.010 (2)

N2 0.052 (2) 0.063 (3) 0.051 (2) −0.001 (2) −0.0135 (19) 0.001 (2)

C1 0.043 (3) 0.049 (2) 0.047 (3) −0.009 (2) −0.002 (2) 0.002 (2)

C2 0.038 (3) 0.053 (3) 0.057 (3) −0.005 (2) −0.010 (2) 0.001 (2)

C3 0.040 (3) 0.046 (2) 0.051 (3) 0.000 (2) −0.003 (2) 0.008 (2)

C4 0.044 (3) 0.039 (2) 0.047 (3) −0.003 (2) −0.002 (2) 0.003 (2)

C5 0.032 (2) 0.048 (2) 0.050 (3) −0.0014 (19) −0.0067 (19) 0.012 (2)

C6 0.040 (2) 0.045 (2) 0.041 (2) −0.0029 (19) 0.0002 (19) 0.003 (2)

C7 0.043 (3) 0.093 (4) 0.076 (3) 0.012 (3) −0.007 (2) −0.001 (3)

C8 0.058 (3) 0.088 (4) 0.076 (4) 0.003 (3) −0.011 (3) −0.029 (3)

C9 0.053 (3) 0.054 (3) 0.050 (3) −0.003 (2) −0.004 (2) −0.001 (2)

C10 0.043 (3) 0.055 (3) 0.046 (3) 0.000 (2) 0.000 (2) −0.010 (2)

C11 0.049 (3) 0.056 (3) 0.052 (3) 0.001 (2) 0.004 (2) −0.001 (2)

C12 0.048 (3) 0.056 (3) 0.038 (2) 0.006 (2) −0.004 (2) −0.001 (2)

C13 0.038 (2) 0.056 (3) 0.051 (3) −0.002 (2) 0.002 (2) −0.013 (2)

C14 0.048 (3) 0.053 (3) 0.049 (3) 0.005 (2) 0.008 (2) −0.003 (2)

C15 0.044 (3) 0.047 (2) 0.044 (2) 0.001 (2) −0.001 (2) −0.007 (2)

C16 0.098 (5) 0.073 (4) 0.087 (4) −0.002 (3) −0.035 (3) 0.015 (3)

C17 0.054 (3) 0.096 (4) 0.076 (4) −0.023 (3) 0.008 (3) −0.011 (3)

C18 0.040 (3) 0.056 (3) 0.058 (3) −0.002 (2) 0.000 (2) −0.006 (2)

Geometric parameters (Å, º)

Br1—C10 1.913 (4) C6—C9 1.473 (6)

Br2—C1 1.903 (4) C7—H7A 0.9800

O1—C3 1.353 (5) C7—H7B 0.9800

O1—C7 1.436 (5) C7—H7C 0.9800

(6)

O2—C8 1.417 (5) C8—H8B 0.9800

O3—N1 1.370 (4) C8—H8C 0.9800

O3—H3A 0.8400 C9—H9A 0.9500

O4—C13 1.375 (5) C10—C11 1.381 (6)

O4—C17 1.410 (6) C10—C15 1.381 (6)

O5—C12 1.365 (5) C10—Br1 1.913 (4)

O5—C16 1.436 (6) C11—C12 1.366 (6)

O6—N2 1.401 (4) C11—H11A 0.9500

O6—H6A 0.8400 C12—C13 1.389 (6)

N1—C9 1.233 (5) C13—C14 1.373 (6)

N2—C18 1.239 (5) C14—C15 1.403 (6)

C1—C6 1.375 (5) C14—H14A 0.9500

C1—C2 1.388 (6) C15—C18 1.463 (6)

C1—Br2 1.903 (4) C16—H16A 0.9800

C2—C3 1.379 (6) C16—H16B 0.9800

C2—H2B 0.9500 C16—H16C 0.9800

C3—C4 1.406 (6) C17—H17A 0.9800

C4—C5 1.360 (6) C17—H17B 0.9800

C5—C6 1.398 (5) C17—H17C 0.9800

C5—H5A 0.9500 C18—H18A 0.9500

C3—O1—C7 117.8 (4) H8B—C8—H8C 109.5

C4—O2—C8 117.5 (3) N1—C9—C6 121.0 (4)

N1—O3—H3A 109.5 N1—C9—H9A 119.5

C13—O4—C17 117.8 (4) C6—C9—H9A 119.5

C12—O5—C16 118.3 (4) C11—C10—C15 122.6 (4)

N2—O6—H6A 109.5 C11—C10—Br1 116.2 (3)

C9—N1—O3 112.2 (4) C15—C10—Br1 121.2 (3)

C18—N2—O6 112.1 (4) C11—C10—Br1 116.2 (3)

C6—C1—C2 122.4 (4) C15—C10—Br1 121.2 (3)

C6—C1—Br2 121.1 (3) C12—C11—C10 119.7 (4)

C2—C1—Br2 116.5 (3) C12—C11—H11A 120.1

C6—C1—Br2 121.1 (3) C10—C11—H11A 120.1

C2—C1—Br2 116.5 (3) O5—C12—C11 125.6 (4)

C3—C2—C1 119.1 (4) O5—C12—C13 114.8 (4)

C3—C2—H2B 120.4 C11—C12—C13 119.5 (4)

C1—C2—H2B 120.4 C14—C13—O4 125.0 (4)

O1—C3—C2 125.6 (4) C14—C13—C12 120.3 (4)

O1—C3—C4 115.1 (4) O4—C13—C12 114.7 (4)

C2—C3—C4 119.3 (4) C13—C14—C15 121.3 (4)

C5—C4—O2 125.8 (4) C13—C14—H14A 119.4

C5—C4—C3 120.1 (4) C15—C14—H14A 119.4

O2—C4—C3 114.1 (4) C10—C15—C14 116.6 (4)

C4—C5—C6 121.6 (4) C10—C15—C18 123.6 (4)

C4—C5—H5A 119.2 C14—C15—C18 119.8 (4)

C6—C5—H5A 119.2 O5—C16—H16A 109.5

C1—C6—C5 117.4 (4) O5—C16—H16B 109.5

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o1946–o1947

C5—C6—C9 119.5 (4) O5—C16—H16C 109.5

O1—C7—H7A 109.5 H16A—C16—H16C 109.5

O1—C7—H7B 109.5 H16B—C16—H16C 109.5

H7A—C7—H7B 109.5 O4—C17—H17A 109.5

O1—C7—H7C 109.5 O4—C17—H17B 109.5

H7A—C7—H7C 109.5 H17A—C17—H17B 109.5

H7B—C7—H7C 109.5 O4—C17—H17C 109.5

O2—C8—H8A 109.5 H17A—C17—H17C 109.5

O2—C8—H8B 109.5 H17B—C17—H17C 109.5

H8A—C8—H8B 109.5 N2—C18—C15 119.9 (4)

O2—C8—H8C 109.5 N2—C18—H18A 120.0

H8A—C8—H8C 109.5 C15—C18—H18A 120.0

C6—C1—C2—C3 0.0 (6) C15—C10—C11—C12 0.1 (6)

Br2—C1—C2—C3 179.8 (3) Br1—C10—C11—C12 179.1 (3)

Br2—C1—C2—C3 179.8 (3) Br1—C10—C11—C12 179.1 (3)

C7—O1—C3—C2 −0.5 (6) C16—O5—C12—C11 −5.1 (6)

C7—O1—C3—C4 179.4 (4) C16—O5—C12—C13 176.0 (4)

C1—C2—C3—O1 179.1 (4) C10—C11—C12—O5 −179.6 (4)

C1—C2—C3—C4 −0.8 (6) C10—C11—C12—C13 −0.7 (6)

C8—O2—C4—C5 −3.9 (6) C17—O4—C13—C14 3.7 (6)

C8—O2—C4—C3 177.6 (4) C17—O4—C13—C12 −174.7 (4)

O1—C3—C4—C5 −178.5 (4) O5—C12—C13—C14 −179.2 (4)

C2—C3—C4—C5 1.4 (6) C11—C12—C13—C14 1.9 (6)

O1—C3—C4—O2 0.1 (5) O5—C12—C13—O4 −0.7 (5)

C2—C3—C4—O2 −180.0 (4) C11—C12—C13—O4 −179.7 (4)

O2—C4—C5—C6 −179.7 (4) O4—C13—C14—C15 179.4 (4)

C3—C4—C5—C6 −1.3 (6) C12—C13—C14—C15 −2.4 (6)

C2—C1—C6—C5 0.1 (6) C11—C10—C15—C14 −0.5 (6)

Br2—C1—C6—C5 −179.6 (3) Br1—C10—C15—C14 −179.4 (3)

Br2—C1—C6—C5 −179.6 (3) Br1—C10—C15—C14 −179.4 (3)

C2—C1—C6—C9 −179.2 (4) C11—C10—C15—C18 −179.7 (4)

Br2—C1—C6—C9 1.1 (6) Br1—C10—C15—C18 1.4 (5)

Br2—C1—C6—C9 1.1 (6) Br1—C10—C15—C18 1.4 (5)

C4—C5—C6—C1 0.5 (6) C13—C14—C15—C10 1.6 (6)

C4—C5—C6—C9 179.8 (4) C13—C14—C15—C18 −179.2 (4)

O3—N1—C9—C6 −180.0 (3) O6—N2—C18—C15 −179.0 (3)

C1—C6—C9—N1 −176.6 (4) C10—C15—C18—N2 −174.1 (4)

C5—C6—C9—N1 4.1 (6) C14—C15—C18—N2 6.8 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H3A···O4i 0.84 2.36 3.098 (5) 147

(8)

O6—H6A···O1ii 0.84 2.19 2.942 (4) 150

O6—H6A···O2ii 0.84 2.33 3.038 (4) 142

Figure

Figure 1View of the asymmetric unit of (I), with displacement ellipsoids drawn atthe 40% probability level.

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical