• No results found

4 (Benzoyl­thio­carbonyl)morpholine

N/A
N/A
Protected

Academic year: 2020

Share "4 (Benzoyl­thio­carbonyl)morpholine"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o295±o297 doi:10.1107/S1600536805000449 Liuet al. C12H13NO2S

o295

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-(Benzoylthiocarbonyl)morpholine

Wei-Wei Liu,a,bYi-Zhi Li,b

Ling-Dong Kongcand Hong-Wen

Hub*

aDepartment of Chemical Engineering, Huaihai

Institute of Technology, Lianyungang 222005, People's Republic of China,bCoordination

Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, andcSchool of Life Science, Nanjing University,

Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.057

wRfactor = 0.108

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C12H13NO2S, was synthesized from a mixture of morpholine, acetophenone and elemental sulfur dissolved in pyridine. In the crystal structure, the molecules

interact through weak intermolecular CÐH O/S

inter-actions, resulting in a three-dimensional network.

Comment

Thioamides have higher chemical activities than their corre-sponding amides in many chemical reactions as a result of the electronegativity of the S atom. Moreover, they can be synthesized and puri®ed easily (Sosnickiet al., 2001), which is an important consideration for industrial applications. Recently, thioamides have been used as fungistatic reagents (Matysiaket al., 2000) and chain terminators in Sanger±DNA sequencing reactions (Schwarzeret al., 2001). The Willgerodt± Kindler reaction is a more convenient procedure for preparing thioamides than other routes (Kawaiet al., 1999).

We report here the result of the reaction between morpholine, acetophenone and elemental sulfur, which led to the title compound, (I) (Fig. 1). The geometric parameters for (I) (Table 1) are normal.

There are ®ve weak intermolecular CÐH O/S

inter-actions in the crystal structure (Table 2), as shown in Fig. 2, which connect molecules, resulting in a three-dimensional network (Fig. 3).

Received 4 January 2005 Accepted 5 January 2005 Online 15 January 2005

Figure 1

(2)

Experimental

A mixture of elemental sulfur (2.6 g, 0.08 mol), morpholine (6.1 ml, 0.07 mol) and acetophenone (6 g, 0.05 mol) in anhydrous pyridine (30 ml) was re¯uxed with stirring until the acetophenone had almost disappeared (monitored by thin-layer chromatography). To the cooled mixture was added iced water, and then the organic phase was extracted with toluene. The solvent was removedin vacuoand the title compound was separated on a column of silica gel with petro-leum ether/ethyl acetate as eluants. Yellow crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from acetone.

Crystal data

C12H13NO2S Mr= 235.29 Monoclinic,P21/c a= 10.715 (2) AÊ b= 9.200 (1) AÊ c= 11.692 (2) AÊ

= 92.02 (4)

V= 1151.8 (3) AÊ3 Z= 4

Dx= 1.357 Mg mÿ3 MoKradiation

Cell parameters from 551 re¯ections

= 2.8±18.8

= 0.27 mmÿ1 T= 293 (2) K Block, yellow 0.300.200.20 mm

Data collection

Bruker SMART APEX CCD diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin= 0.94,Tmax= 0.95 6029 measured re¯ections

2264 independent re¯ections 1578 re¯ections withI> 2(I) Rint= 0.044

max= 26.0 h=ÿ13!10 k=ÿ11!11 l=ÿ14!13

Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.057 wR(F2) = 0.108 S= 1.10 2264 re¯ections 145 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.04P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.32 e AÊÿ3

min=ÿ0.26 e AÊÿ3

Table 1

Selected torsion angles ().

O2ÐC7ÐC8ÐN1 ÿ83.7 (3) C1ÐC7ÐC8ÐN1 99.0 (3) O2ÐC7ÐC8ÐS1 93.9 (2) C1ÐC7ÐC8ÐS1 ÿ83.4 (2)

S1ÐC8ÐN1ÐC9 ÿ1.5 (4) C7ÐC8ÐN1ÐC12 ÿ7.1 (4) S1ÐC8ÐN1ÐC12 175.67 (19)

Table 2

Hydrogen-bond geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C3ÐH3 S1i 0.93 2.90 3.781 (3) 159 C12ÐH12a O2ii 0.97 2.59 3.401 (3) 141 C11ÐH11a S1iii 0.97 2.97 3.890 (3) 159 C11ÐH11b O2iv 0.97 2.54 3.500 (3) 170 C9ÐH9b O1v 0.97 2.57 3.467 (3) 154 Symmetry codes: (i) x;ÿ1

2ÿy;12‡z; (ii) 1ÿx;ÿy;ÿz; (iii) x;12ÿy;12‡z; (iv)

1ÿx;1

2‡y;12ÿz; (v) 1ÿx;1ÿy;ÿz.

All H atoms were placed in calculated positions, with CÐH distances 0.93±0.97 AÊ, and included in the re®nement as riding, with

Uiso(H) = 1.2Ueq(carrier atom).

Data collection:SMART(Bruker, 2000); cell re®nement:SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

This work was supported by the Education Department, Natural Science Foundation of Jiangsu Province, People's Republic of China (grant No. 03 KJB150009).

References

Bruker (2000).SMART(Version 5.625),SAINT(Version 6.01),SHELXTL (Version 6.10) andSADABS(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

o296

Liuet al. C12H13NO2S Acta Cryst.(2005). E61, o295±o297

Figure 3

The three-dimensional structure of (I). Dashed lines indicate the weak intermolecular CÐH O/S interactions. H atoms not involved in the CÐ H O/S bonds have been omitted for clarity.

Figure 2

Weak intermolecular interactions (dashed lines) in (I) [symmetry codes: (i)x,ÿ1

2ÿy,12+z; (ii) 1ÿx,ÿy,ÿz; (iii)x,12ÿy,12+z; (iv) 1ÿx,12+y, 1

2ÿz; (v) 1ÿx, 1ÿy,ÿz]. H atoms not involved in the CÐH O/S

(3)

Kawai, Y., Kanbara, T. & Hasegawa, K. (1999).J. Polym. Sci. Polym. Chem.37, 1737±1740.

Matysiak, J., Niewiadomy, A., Macik-Niewiadomy, G. & Kornillowicz, T. (2000).Eur. J. Med. Chem.35, 393±404.

Schwarzer, K., Wojczewski, C. & Engels, J. W. (2001).Nucleosides Nucleotides Nucleic Acids,20, 879±882.

Sosnicki, J. G., Jagodzinski, T. S. & Hansen, P. E. (2001).Tetrahedron,57, 8705± 8718.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o295–o297

supporting information

Acta Cryst. (2005). E61, o295–o297 [https://doi.org/10.1107/S1600536805000449]

4-(Benzoylthiocarbonyl)morpholine

Wei-Wei Liu, Yi-Zhi Li, Ling-Dong Kong and Hong-Wen Hu

4-(Benzoylthiocarbonyl)morpholine

Crystal data

C12H13NO2S

Mr = 235.29

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 10.715 (2) Å b = 9.200 (1) Å c = 11.692 (2) Å β = 92.02 (4)° V = 1151.8 (3) Å3

Z = 4

F(000) = 496 Dx = 1.357 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 551 reflections θ = 2.8–18.8°

µ = 0.27 mm−1

T = 293 K Block, yellow

0.30 × 0.20 × 0.20 mm

Data collection

Bruker Smart Apex CCD diffractometer

Radiation source: sealed tube Graphite monochromator φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.94, Tmax = 0.95

6029 measured reflections 2264 independent reflections 1578 reflections with I > 2σ(I) Rint = 0.044

θmax = 26.0°, θmin = 1.9°

h = −13→10

k = −11→11

l = −14→13

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.057

wR(F2) = 0.108

S = 1.10 2264 reflections 145 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.04P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.32 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o295–o297

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 9.6516 (0.0058) x + 0.8893 (0.0096) y - 5.3186 (0.0121) z = 3.4255 (0.0042)

* -0.2050 (0.0017) N1 * 0.2544 (0.0017) O1 * 0.2096 (0.0019) C9 * -0.2351 (0.0019) C10 * -0.2347 (0.0019) C11 * 0.2108 (0.0018) C12

Rms deviation of fitted atoms = 0.2256

7.2822 (0.0088) x + 3.8415 (0.0095) y + 6.7677 (0.0101) z = 2.5477 (0.0029) Angle to previous plane (with approximate e.s.d.) = 66.60 (0.07)

* -0.0081 (0.0017) C1 * 0.0016 (0.0018) C2 * 0.0080 (0.0019) C3 * -0.0112 (0.0020) C4 * 0.0047 (0.0019) C5 * 0.0050 (0.0017) C6

Rms deviation of fitted atoms = 0.0071

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.2035 (2) −0.0571 (2) 0.18876 (19) 0.0365 (6)

C2 0.2186 (3) −0.1866 (3) 0.2474 (2) 0.0509 (7)

H2 0.2767 −0.2543 0.2236 0.061*

C3 0.1474 (3) −0.2164 (3) 0.3418 (2) 0.0577 (8)

H3 0.1584 −0.3032 0.3818 0.069*

C4 0.0613 (3) −0.1172 (4) 0.3754 (2) 0.0607 (8)

H4 0.0116 −0.1379 0.4370 0.073*

C5 0.0474 (3) 0.0126 (3) 0.3190 (2) 0.0538 (8)

H5 −0.0099 0.0806 0.3436 0.065*

C6 0.1182 (2) 0.0424 (3) 0.2259 (2) 0.0430 (6)

H6 0.1083 0.1306 0.1878 0.052*

C7 0.2821 (2) −0.0276 (2) 0.0897 (2) 0.0361 (6)

C8 0.2632 (2) 0.1145 (3) 0.0261 (2) 0.0416 (6)

C9 0.3381 (3) 0.3597 (3) −0.0098 (2) 0.0465 (7)

H9A 0.2675 0.3618 −0.0640 0.056*

H9B 0.4138 0.3712 −0.0520 0.056*

C10 0.3273 (3) 0.4822 (3) 0.0746 (2) 0.0546 (8)

H10A 0.3293 0.5742 0.0342 0.065*

H10B 0.2477 0.4752 0.1113 0.065*

C11 0.4203 (3) 0.3455 (3) 0.2205 (2) 0.0503 (7)

H11A 0.3409 0.3381 0.2574 0.060*

H11B 0.4860 0.3447 0.2796 0.060*

C12 0.4357 (2) 0.2174 (3) 0.1433 (2) 0.0422 (6)

H12A 0.5183 0.2192 0.1119 0.051*

H12B 0.4276 0.1282 0.1867 0.051*

N1 0.34113 (19) 0.2213 (2) 0.05054 (16) 0.0427 (5)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o295–o297

S1 0.14719 (7) 0.11239 (7) −0.07143 (6) 0.0479 (2)

O2 0.35731 (18) −0.11459 (19) 0.05521 (15) 0.0600 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0436 (15) 0.0291 (13) 0.0363 (14) −0.0077 (11) −0.0049 (12) −0.0009 (11)

C2 0.0613 (19) 0.0327 (14) 0.0580 (18) −0.0031 (13) −0.0064 (15) 0.0015 (13)

C3 0.078 (2) 0.0390 (16) 0.0551 (19) −0.0130 (17) −0.0127 (17) 0.0102 (14)

C4 0.072 (2) 0.070 (2) 0.0401 (16) −0.0240 (19) 0.0013 (15) 0.0070 (16)

C5 0.0570 (19) 0.0593 (18) 0.0454 (17) −0.0033 (15) 0.0047 (15) −0.0003 (14)

C6 0.0539 (17) 0.0413 (14) 0.0336 (15) −0.0037 (13) −0.0040 (13) −0.0002 (12)

C7 0.0411 (15) 0.0276 (13) 0.0388 (15) 0.0007 (11) −0.0083 (12) −0.0072 (11)

C8 0.0475 (16) 0.0392 (14) 0.0379 (14) −0.0057 (13) −0.0033 (12) −0.0016 (12)

C9 0.0519 (17) 0.0475 (16) 0.0396 (15) −0.0202 (13) −0.0074 (13) 0.0087 (12)

C10 0.0590 (19) 0.0396 (16) 0.0648 (19) −0.0093 (14) −0.0021 (17) 0.0033 (14)

C11 0.0535 (18) 0.0582 (18) 0.0386 (15) −0.0076 (14) −0.0085 (13) −0.0048 (13)

C12 0.0396 (15) 0.0446 (15) 0.0418 (15) −0.0055 (13) −0.0082 (12) −0.0010 (12)

N1 0.0477 (13) 0.0405 (13) 0.0396 (13) −0.0093 (11) −0.0045 (11) −0.0007 (10)

O1 0.0693 (14) 0.0460 (12) 0.0550 (12) −0.0182 (10) −0.0078 (11) −0.0073 (9)

S1 0.0530 (4) 0.0484 (4) 0.0412 (4) −0.0115 (4) −0.0136 (3) 0.0016 (3)

O2 0.0668 (13) 0.0499 (11) 0.0636 (13) 0.0172 (11) 0.0080 (11) −0.0070 (10)

Geometric parameters (Å, º)

C1—C6 1.374 (3) C8—S1 1.657 (3)

C1—C2 1.382 (3) C9—N1 1.455 (3)

C1—C7 1.482 (3) C9—C10 1.505 (4)

C2—C3 1.391 (3) C9—H9A 0.9700

C2—H2 0.9300 C9—H9B 0.9700

C3—C4 1.366 (4) C10—O1 1.410 (3)

C3—H3 0.9300 C10—H10A 0.9700

C4—C5 1.369 (4) C10—H10B 0.9700

C4—H4 0.9300 C11—O1 1.424 (3)

C5—C6 1.375 (3) C11—C12 1.497 (3)

C5—H5 0.9300 C11—H11A 0.9700

C6—H6 0.9300 C11—H11B 0.9700

C7—O2 1.214 (3) C12—N1 1.459 (3)

C7—C8 1.514 (3) C12—H12A 0.9700

C8—N1 1.314 (3) C12—H12B 0.9700

C6—C1—C2 119.1 (2) C10—C9—H9A 109.7

C6—C1—C7 121.9 (2) N1—C9—H9B 109.7

C2—C1—C7 119.1 (2) C10—C9—H9B 109.7

C1—C2—C3 120.4 (3) H9A—C9—H9B 108.2

C1—C2—H2 119.8 O1—C10—C9 111.6 (2)

C3—C2—H2 119.8 O1—C10—H10A 109.3

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o295–o297

C4—C3—H3 120.3 O1—C10—H10B 109.3

C2—C3—H3 120.3 C9—C10—H10B 109.3

C3—C4—C5 120.5 (3) H10A—C10—H10B 108.0

C3—C4—H4 119.8 O1—C11—C12 111.5 (2)

C5—C4—H4 119.8 O1—C11—H11A 109.3

C4—C5—C6 120.1 (3) C12—C11—H11A 109.3

C4—C5—H5 120.0 O1—C11—H11B 109.3

C6—C5—H5 120.0 C12—C11—H11B 109.3

C1—C6—C5 120.5 (2) H11A—C11—H11B 108.0

C1—C6—H6 119.7 N1—C12—C11 109.9 (2)

C5—C6—H6 119.7 N1—C12—H12A 109.7

O2—C7—C1 122.8 (2) C11—C12—H12A 109.7

O2—C7—C8 119.0 (2) N1—C12—H12B 109.7

C1—C7—C8 118.2 (2) C11—C12—H12B 109.7

N1—C8—C7 117.8 (2) H12A—C12—H12B 108.2

N1—C8—S1 127.9 (2) C8—N1—C9 123.1 (2)

C7—C8—S1 114.32 (18) C8—N1—C12 124.2 (2)

N1—C9—C10 109.8 (2) C9—N1—C12 112.63 (19)

N1—C9—H9A 109.7 C10—O1—C11 109.61 (19)

C6—C1—C2—C3 0.8 (4) O2—C7—C8—S1 93.9 (2)

C7—C1—C2—C3 179.0 (2) C1—C7—C8—S1 −83.4 (2)

C1—C2—C3—C4 0.8 (4) N1—C9—C10—O1 56.3 (3)

C2—C3—C4—C5 −2.0 (4) O1—C11—C12—N1 −56.1 (3)

C3—C4—C5—C6 1.7 (4) C7—C8—N1—C9 175.8 (2)

C2—C1—C6—C5 −1.1 (4) S1—C8—N1—C9 −1.5 (4)

C7—C1—C6—C5 −179.3 (2) C7—C8—N1—C12 −7.1 (4)

C4—C5—C6—C1 −0.1 (4) S1—C8—N1—C12 175.67 (19)

C6—C1—C7—O2 −179.5 (2) C10—C9—N1—C8 125.2 (3)

C2—C1—C7—O2 2.3 (3) C10—C9—N1—C12 −52.2 (3)

C6—C1—C7—C8 −2.3 (3) C11—C12—N1—C8 −124.9 (3)

C2—C1—C7—C8 179.5 (2) C11—C12—N1—C9 52.5 (3)

O2—C7—C8—N1 −83.7 (3) C9—C10—O1—C11 −60.5 (3)

C1—C7—C8—N1 99.0 (3) C12—C11—O1—C10 60.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3···S1i 0.93 2.90 3.781 (3) 159

C12—H12A···O2ii 0.97 2.59 3.401 (3) 141

C11—H11A···S1iii 0.97 2.97 3.890 (3) 159

C11—H11B···O2iv 0.97 2.54 3.500 (3) 170

C9—H9B···O1v 0.97 2.57 3.467 (3) 154

References

Related documents

This Service Level Agreement (SLA or Agreement) document describes the general scope and nature of the services the Company will provide in relation to the System Software (RMS

Although theoretically the likelihood of finding evidence that dumped imports have in- jured the domestic industry should fall as the industry increases its output, the results from

In a surprise move, the Central Bank of Peru (BCRP) reduced its benchmark interest rate by 25 basis points (bps) to 3.25% in mid-January following disappointing economic growth data

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

Make measurements on timeslot 0 [FREQUENCY] {Timeslot Off} [Enter] Activate the ORFS measurement (figure 25) [MEASURE] {GMSK Output RF The default setting measures spectrum

Using a nationwide database of hospital admissions, we established that diverticulitis patients admitted to hospitals that encounter a low volume of diverticulitis cases have

Based on the findings and the discussion of this study, the investigator recommends the following strategies to enhance the process of educating students who are

de Klerk, South Africa’s last leader under the apartheid regime, Mandela found a negotiation partner who shared his vision of a peaceful transition and showed the courage to