• No results found

catena Poly[piperazinium [di­aqua­cobalt(II) μ benzene 1,3,5 tricaboxylato tetra­aqua­cobalt(II) μ benzene 1,3,5 tricaboxylato] dihydrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[piperazinium [di­aqua­cobalt(II) μ benzene 1,3,5 tricaboxylato tetra­aqua­cobalt(II) μ benzene 1,3,5 tricaboxylato] dihydrate]"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m26

Weiet al. (C

4H12N2)[Co2(C9H3O6)2(H2O)6]2H2O doi:10.1107/S160053680503970X Acta Cryst.(2006). E62, m26–m27 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena

-Poly[piperazinium

[diaquacobalt(II)-l

-benzene-1,3,5-tricaboxylato-tetraaquacobalt(II)-l

-benzene-1,3,5-tricaboxylato] dihydrate]

Wenying Wei, Yang Dong, Jinyu Han and Heying Chang*

Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China

Correspondence e-mail: wwy7324@eyou.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.036

wRfactor = 0.098

Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

The title polymer, {(C4H12N2)[Co2(C9H3O6)2(H2O)6]2H2O}n,

contains two independent CoII atoms, both of which are

located on inversion centres. The benzene-1,3,5-tricarboxylate

ligand bridges the CoIIatoms in two coordination modes to

form a one-dimensional polymeric zigzag chain structure. The

zigzag chains are connected via O—H O and N—H O

hydrogen bonds to form a three-dimensional network. This determination corrects a previous report which formulated this compound as (C4H10N2)n[C18H20Co2O18]n2nH2O [Chen

& Liu (2004).Chem. J. Chin. Univ.25, 1189–1193].

Comment

Benzene-1,3,5-tricarboxylate (BTC) usually plays the role of a bridging ligand in metal complexes. We present here the

crystal structure of the title CoII complex,

[(C18H18Co2O18) 2

]nn[C4H12N2] 2+

2nH2O, (I). This

determi-nation corrects a previous report which formulated this compound as [C18H20Co2O18]nn[C4H10N2]2nH2O, (II) (Chen

& Liu, 2004). In compound (II), the C—O bond lengths [1.251 and 1.262 A˚ ] of the uncoordinated carboxylate groups clearly indicate proton transfer from them to a piperazine ring, resulting in a [C4H12N2]2+ cation. However, in (II), the

components were reported as neutral. In (I), the proton transfer is taken into account, and the protons are assigned to the piperazine ring.

Compound (I) contains two independent CoIIatoms, which

are located at the centres of different centrosymmetric CoO6

octahedra (Fig. 1). Each BTC ligand bridges two CoIIatoms to form a polymeric zigzag chain, and these are further linkedvia

O—H O hydrogen bonds to form a three-dimensional

network (Table 1). Two carboxylate groups of the BTC ligand

coordinate to CoIIatoms, one in a monodentate fashion and

the other in a bidentate chelating fashion. The third

(2)

carboxylate group is not coordinated to CoII. The packing of the chains forms quadrilateral pores, which are occupied by [C4H12N2]

2+

cations and uncoordinated water molecules (Fig. 2).

Experimental

An aqueous solution (10 ml) of benzene-1,3,5-tricarboxylic acid (0.210 g), terephthalic acid (0.166 g) and piperazine hexahydrate (0.132 g) was mixed with an aqueous solution (5 ml) of cobalt(III) nitrate hexahydrate (0.292 g) with continuous stirring. The mixture was sealed in a 40 ml Teflon-lined stainless steel vessel and heated at 453 K for 96 h under autogenous conditions. After cooling to room temperature, the resulting product was filtered off to obtain pale-red crystals of (I) (about 76.2% yield, based on the Co source). Spec-troscopic analysis: IR (KBr,, cm1): 3120, 2445, 2345, 1610, 1532, 1454, 1429, 1363, 1202, 1087, 754, 712, 542, 521, 459. Elemental analysis, calculated for C11H17N Co O10: C 34.54, H 4.48, N 3.66%;

found: C 34.45, H 4.51, N 3.62%.

Crystal data

(C4H12N2)[Co2(C9H3O6)2(H2O)6] -2H2O

Mr= 764.38

Triclinic,P1 a= 7.1443 (11) A˚ b= 10.5308 (16) A˚ c= 10.5385 (16) A˚

= 110.753 (2) = 102.521 (2) = 91.351 (2)

V= 719.40 (19) A˚3

Z= 1

Dx= 1.764 Mg m 3 MoKradiation Cell parameters from 1224

reflections

= 2.1–25.0 = 1.25 mm1 T= 293 (2) K Block, pale red 0.200.120.10 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.638,Tmax= 0.883 3896 measured reflections

2503 independent reflections 1957 reflections withI> 2(I) Rint= 0.015

max= 25.1 h=8!8 k=12!12 l=8!12

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.036 wR(F2) = 0.098 S= 1.01 2503 reflections 211 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.0626P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.56 e A˚

3

min=0.56 e A˚

[image:2.610.315.567.70.222.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1A O5i

0.90 1.86 2.751 (4) 168 N1—H1B O9ii

0.90 2.03 2.880 (4) 157 N1—H1B O8iii

0.90 2.42 3.011 (4) 124 O7—H7A O4iv

0.85 1.78 2.622 (3) 173 O7—H7B O11 0.85 1.93 2.733 (4) 157 O8—H8A O1v 0.85 1.91 2.740 (3) 162 O8—H8B O6vi

0.85 1.83 2.657 (3) 166 O9—H9A O6v

0.85 1.87 2.703 (3) 165 O9—H9B O4 0.85 1.83 2.640 (3) 158 O11—H11A O5vi

0.85 1.91 2.722 (4) 158 O11—H11B O7vii

0.85 2.14 2.934 (4) 156

Symmetry codes: (i)x;y1;z1; (ii)xþ1;y1;z; (iii) xþ1;yþ1;z; (iv)

x;y1;z; (v)x;y;z1; (vi)xþ1;yþ2;zþ1; (vii)xþ1;yþ1;zþ1.

The water H atoms were located in a difference map; their bond lengths were set to ideal values [O—H = 0.85 and H H = 1.37 A˚ ] and they were refined using a riding model [Uiso(H) = 1.5Ueq(O)].

The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 A˚ and N—H = 0.90 A˚ , and withUiso(H) = 1.2Ueq(C,N).

Data collection:APEX2(Bruker, 1997); cell refinement:APEX2; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

References

Bruker (1997). APEX2 (Version 1.0-22) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J.-X. & Liu, S.-X. (2004).Chem. J. Chin. Univ.25, 1189–1193. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.

Figure 1

Part of the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffixes A, B and C are generated by the symmetry operations (x, 2y,z), (2x, 1y,z) and (x, 1y, 1z), respectively.

Figure 2

[image:2.610.43.296.601.712.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, m26–m27

supporting information

Acta Cryst. (2006). E62, m26–m27 [doi:10.1107/S160053680503970X]

catena

-Poly[piperazinium [diaquacobalt(II)-

µ

-benzene-1,3,5-tricaboxylato-tetra-aquacobalt(II)-

µ

-benzene-1,3,5-tricaboxylato] dihydrate]

Wenying Wei, Yang Dong, Jinyu Han and Heying Chang

S1. Comment

Benzene-1,3,5-tricarboxylate (BTC) usually plays the role of a bridging ligand in metal complexes. We present here the crystal structure of the title CoII complex, [(C

18H18Co2O18)2−]n.n[C4H12N2]2+.2nH2O, (I). This determination corrects a

previous report which formulated this compound as [C18H20Co2O18]n.n[C4H10N2].2nH2O, (II) (Chen & Liu, 2004). In

compound (II), the C—O bond lengths [1.251 and 1.262 Å] of the uncoordinated carboxyl groups clearly indicate proton transfer from them to a piperazine ring, resulting in a [C4H12N2]2+ cation. However, in (II), the components were reported

as neutral. In (I), the proton transfer is taken into account, and the protons are assigned to the piperazine ring.

Compound (I) contains two independent CoII atoms, which are located at the centres of different centrosymmetric CoO 6

octahedra (Fig. 1). Each BTC ligand bridges two CoII atoms to form a polymeric zigzag chain, and these are further

linked via O—H···O hydrogen bonds to form a three-dimensional network (Table 1). The two carboxylate groups of the BTC ligand coordinate to CoII atoms, one in a monodentate fashion and the other in a bidentate chelating fashion. The

third carboxylate group is not coordinated to CoII. The packing of the chains forms quadrilateral pores, which are

occupied by C4H12N2]2+ cations and free water molecules (Fig. 2).

S2. Experimental

An aqueous solution (10 ml) of benzene-1,3,5-tricarboxylic acid (0.210 g), terephthalic acid (0.166 g) and piperazine hexahydrate (0.132 g) was mixed with an aqueous solution (5 ml) of cobalt nitrate hexahydrate (0.292 g) with continuous stirring. The mixture was sealed in a 40 ml Teflon-lined stainless steel vessel and heated at 453 K for 96 h under

autogenous conditions. After cooling to room temperature, the resulting product was filtered off to obtain pale-red crystals of (I) (about 76.2% yield, based on the Co source). Spectroscopic analysis: IR (KBr, ν, cm−1): 3120, 2445, 2345,

1610, 1532, 1454, 1429, 1363, 1202, 1087, 754, 712, 542, 521, 459. Elemental analysis, calculated for C11H17N Co O10: C

34.54, H 4.48, N 3.66%; found: C 34.45, H 4.51, N 3.62%.

S3. Refinement

The water H atoms were located in a difference map, their bond lengths were set to ideal values [O—H = 0.85 (1) and H···H = 1.37 (2) Å] and they were refined using a riding model [Uiso(H) = 1.5Ueq(O)]. The remaining H atoms were

(4)
[image:4.610.130.481.70.282.2]

Figure 1

Part of the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffixes A, B and C are generated by the symmetry operations (−x, 2 − y, −z), (2 − x, 1 − y,-z) and (−x, 1 − y, 1 − z), respectively.

Figure 2

The crystal packing of (I), viewed along the a axis.

catena-Poly[piperazinium [diaquacobalt(II)-µ-benzene-tricaboxylato-tetraaquacobalt(II)-µ-benzene-

1,3,5-tricaboxylato] dihydrate]

Crystal data

(C4H12N2)[Co2(C9H3O6)2(H2O)6]·2H2O

Mr = 764.38

[image:4.610.129.483.356.589.2]
(5)

supporting information

sup-3

Acta Cryst. (2006). E62, m26–m27

a = 7.1443 (11) Å

b = 10.5308 (16) Å

c = 10.5385 (16) Å

α = 110.753 (2)°

β = 102.521 (2)°

γ = 91.351 (2)°

V = 719.40 (19) Å3

Z = 1

F(000) = 394

Dx = 1.764 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1224 reflections

θ = 2.1–25.0°

µ = 1.25 mm−1

T = 293 K Block, pale-red 0.20 × 0.12 × 0.10 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.638, Tmax = 0.883

3896 measured reflections 2503 independent reflections 1957 reflections with I > 2σ(I)

Rint = 0.015

θmax = 25.1°, θmin = 1.5°

h = −8→8

k = −12→12

l = −8→12

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.036

wR(F2) = 0.098

S = 1.01 2503 reflections 211 parameters 12 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0626P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.56 e Å−3

Δρmin = −0.56 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

O7 0.2534 (3) 0.4354 (2) 0.4549 (2) 0.0356 (6) H7A 0.2522 0.3504 0.4100 0.053* H7B 0.3036 0.4780 0.4133 0.053* O8 0.1637 (3) 0.8460 (2) −0.0887 (2) 0.0249 (5) H8A 0.1686 0.8175 −0.1740 0.037* H8B 0.2771 0.8528 −0.0390 0.037* O9 0.2139 (3) 1.1639 (2) 0.0473 (2) 0.0225 (5) H9A 0.3049 1.1501 0.0054 0.034* H9B 0.2622 1.1769 0.1326 0.034* C1 0.1986 (4) 0.8720 (3) 0.5422 (3) 0.0187 (6) C2 0.1654 (4) 0.9058 (3) 0.4244 (3) 0.0183 (6) H2 0.0936 0.8428 0.3398 0.022* C3 0.2369 (4) 1.0315 (3) 0.4298 (3) 0.0170 (6) C4 0.3451 (4) 1.1244 (3) 0.5569 (3) 0.0191 (6) H4 0.3963 1.2084 0.5614 0.023* C5 0.3778 (4) 1.0939 (3) 0.6769 (3) 0.0178 (6) C6 0.3053 (4) 0.9673 (3) 0.6696 (3) 0.0196 (7) H6 0.3277 0.9459 0.7496 0.024* C7 0.1223 (4) 0.7339 (3) 0.5306 (3) 0.0208 (7) C8 0.2030 (4) 1.0652 (3) 0.3004 (3) 0.0189 (6) C9 0.5054 (4) 1.1914 (3) 0.8138 (3) 0.0211 (7) C10 0.8829 (5) 0.5889 (3) 0.0791 (3) 0.0296 (8) H10A 0.7579 0.5663 0.0130 0.036* H10B 0.8703 0.6591 0.1652 0.036* C11 0.9435 (5) 0.4647 (3) 0.1073 (3) 0.0321 (8) H11C 1.0621 0.4892 0.1802 0.038* H11D 0.8450 0.4291 0.1401 0.038* N1 0.9741 (4) 0.3578 (3) −0.0211 (3) 0.0288 (6) H1A 0.8612 0.3291 −0.0857 0.035* H1B 1.0165 0.2857 −0.0010 0.035* O11 0.4461 (4) 0.5031 (3) 0.2864 (3) 0.0631 (9) H11A 0.4503 0.5576 0.2435 0.095* H11B 0.5514 0.5066 0.3442 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, m26–m27

C1 0.0168 (15) 0.0197 (16) 0.0198 (15) −0.0009 (12) 0.0041 (12) 0.0077 (13) C2 0.0169 (15) 0.0202 (16) 0.0158 (14) −0.0002 (12) 0.0006 (12) 0.0062 (12) C3 0.0145 (14) 0.0225 (16) 0.0153 (14) 0.0007 (12) 0.0033 (11) 0.0086 (12) C4 0.0166 (15) 0.0189 (15) 0.0232 (15) −0.0022 (12) 0.0034 (12) 0.0105 (13) C5 0.0119 (14) 0.0226 (16) 0.0175 (14) −0.0010 (12) 0.0019 (11) 0.0068 (13) C6 0.0179 (15) 0.0260 (17) 0.0173 (14) −0.0005 (13) 0.0040 (12) 0.0111 (13) C7 0.0207 (15) 0.0213 (16) 0.0181 (15) −0.0019 (13) 0.0026 (12) 0.0061 (13) C8 0.0168 (15) 0.0230 (17) 0.0175 (15) 0.0028 (13) 0.0048 (12) 0.0077 (13) C9 0.0142 (14) 0.0249 (17) 0.0210 (15) −0.0013 (13) 0.0002 (12) 0.0072 (13) C10 0.0264 (17) 0.0300 (19) 0.0260 (17) −0.0041 (14) −0.0003 (14) 0.0069 (15) C11 0.039 (2) 0.0311 (19) 0.0225 (16) −0.0068 (16) 0.0004 (14) 0.0107 (15) N1 0.0329 (15) 0.0219 (15) 0.0269 (14) −0.0048 (12) −0.0044 (12) 0.0106 (12) O11 0.0496 (18) 0.077 (2) 0.071 (2) −0.0133 (16) −0.0056 (15) 0.0500 (18)

Geometric parameters (Å, º)

Co1—O3 2.0787 (19) O9—H9B 0.85

Co1—O3i 2.0787 (19) C1—C2 1.383 (4)

Co1—O8 2.088 (2) C1—C6 1.399 (4)

Co1—O8i 2.088 (2) C1—C7 1.495 (4)

Co1—O9 2.1210 (19) C2—C3 1.385 (4)

Co1—O9i 2.1210 (19) C2—H2 0.93

Co2—O7 2.041 (2) C3—C4 1.391 (4)

Co2—O7ii 2.041 (2) C3—C8 1.500 (4)

Co2—O2ii 2.111 (2) C4—C5 1.386 (4)

Co2—O2 2.111 (2) C4—H4 0.93

Co2—O1ii 2.175 (2) C5—C6 1.389 (4)

Co2—O1 2.175 (2) C5—C9 1.517 (4)

Co2—C7ii 2.480 (3) C6—H6 0.93

Co2—C7 2.480 (3) C10—N1iii 1.489 (4)

O1—C7 1.266 (3) C10—C11 1.494 (5)

O2—C7 1.262 (3) C10—H10A 0.97

O3—C8 1.267 (3) C10—H10B 0.97

O4—C8 1.251 (3) C11—N1 1.486 (4)

O5—C9 1.256 (4) C11—H11C 0.97

O6—C9 1.258 (4) C11—H11D 0.97

O7—H7A 0.85 N1—C10iii 1.489 (4)

O7—H7B 0.85 N1—H1A 0.90

O8—H8A 0.85 N1—H1B 0.90

O8—H8B 0.85 O11—H11A 0.85

O9—H9A 0.85 O11—H11B 0.85

O3—Co1—O3i 180.0 Co1—O9—H9A 119.0

O3—Co1—O8 87.26 (8) Co1—O9—H9B 99.1 O3i—Co1—O8 92.74 (8) H9A—O9—H9B 107.7

O3—Co1—O8i 92.74 (8) C2—C1—C6 119.2 (3)

O3i—Co1—O8i 87.26 (8) C2—C1—C7 119.5 (3)

(8)

O3—Co1—O9 93.22 (8) C1—C2—C3 121.4 (3) O3i—Co1—O9 86.78 (8) C1—C2—H2 119.3

O8—Co1—O9 95.51 (8) C3—C2—H2 119.3 O8i—Co1—O9 84.49 (8) C2—C3—C4 118.7 (3)

O3—Co1—O9i 86.78 (8) C2—C3—C8 120.6 (3)

O3i—Co1—O9i 93.22 (8) C4—C3—C8 120.6 (3)

O8—Co1—O9i 84.49 (8) C5—C4—C3 121.0 (3)

O8i—Co1—O9i 95.51 (8) C5—C4—H4 119.5

O9—Co1—O9i 180.00 (11) C3—C4—H4 119.5

O7—Co2—O7ii 180.00 (14) C4—C5—C6 119.5 (3)

O7—Co2—O2ii 90.77 (9) C4—C5—C9 121.2 (3)

O7ii—Co2—O2ii 89.23 (9) C6—C5—C9 119.1 (3)

O7—Co2—O2 89.23 (9) C5—C6—C1 120.1 (3) O7ii—Co2—O2 90.77 (9) C5—C6—H6 119.9

O2ii—Co2—O2 180.0 C1—C6—H6 119.9

O7—Co2—O1ii 90.37 (9) O2—C7—O1 119.6 (3)

O7ii—Co2—O1ii 89.63 (9) O2—C7—C1 119.5 (3)

O2ii—Co2—O1ii 61.26 (8) O1—C7—C1 120.9 (2)

O2—Co2—O1ii 118.74 (8) O2—C7—Co2 58.34 (15)

O7—Co2—O1 89.63 (9) O1—C7—Co2 61.25 (15) O7ii—Co2—O1 90.37 (9) C1—C7—Co2 177.1 (2)

O2ii—Co2—O1 118.74 (8) O4—C8—O3 124.2 (3)

O2—Co2—O1 61.26 (8) O4—C8—C3 118.9 (2) O1ii—Co2—O1 180.00 (8) O3—C8—C3 116.9 (3)

O7—Co2—C7ii 91.33 (9) O5—C9—O6 124.3 (3)

O7ii—Co2—C7ii 88.67 (9) O5—C9—C5 118.1 (3)

O2ii—Co2—C7ii 30.58 (9) O6—C9—C5 117.5 (3)

O2—Co2—C7ii 149.42 (9) N1iii—C10—C11 111.0 (3)

O1ii—Co2—C7ii 30.69 (8) N1iii—C10—H10A 109.4

O1—Co2—C7ii 149.31 (8) C11—C10—H10A 109.4

O7—Co2—C7 88.67 (9) N1iii—C10—H10B 109.4

O7ii—Co2—C7 91.33 (9) C11—C10—H10B 109.4

O2ii—Co2—C7 149.42 (9) H10A—C10—H10B 108.0

O2—Co2—C7 30.58 (9) N1—C11—C10 110.7 (3) O1ii—Co2—C7 149.31 (8) N1—C11—H11C 109.5

O1—Co2—C7 30.69 (8) C10—C11—H11C 109.5 C7ii—Co2—C7 180.0 N1—C11—H11D 109.5

C7—O1—Co2 88.06 (17) C10—C11—H11D 109.5 C7—O2—Co2 91.08 (18) H11C—C11—H11D 108.1 C8—O3—Co1 125.94 (19) C11—N1—C10iii 111.1 (2)

Co2—O7—H7A 116.6 C11—N1—H1A 109.4

Co2—O7—H7B 114.5 C10iii—N1—H1A 109.4

H7A—O7—H7B 107.5 C11—N1—H1B 109.4

Co1—O8—H8A 124.2 C10iii—N1—H1B 109.4

Co1—O8—H8B 114.2 H1A—N1—H1B 108.0

H8A—O8—H8B 108.2 H11A—O11—H11B 113.6

(9)

supporting information

sup-7

Acta Cryst. (2006). E62, m26–m27

O7ii—Co2—O1—C7 −91.97 (18) Co2—O1—C7—C1 −177.9 (3)

O2ii—Co2—O1—C7 178.70 (17) C2—C1—C7—O2 −0.8 (4)

O2—Co2—O1—C7 −1.30 (17) C6—C1—C7—O2 −179.9 (3) C7ii—Co2—O1—C7 180.000 (1) C2—C1—C7—O1 179.3 (3)

O7—Co2—O2—C7 −88.70 (19) C6—C1—C7—O1 0.1 (4) O7ii—Co2—O2—C7 91.30 (19) O7—Co2—C7—O2 90.73 (19)

O1ii—Co2—O2—C7 −178.70 (17) O7ii—Co2—C7—O2 −89.27 (19)

O1—Co2—O2—C7 1.30 (17) O2ii—Co2—C7—O2 180.000 (1)

C7ii—Co2—O2—C7 180.000 (1) O1ii—Co2—C7—O2 2.2 (3)

O8—Co1—O3—C8 120.4 (2) O1—Co2—C7—O2 −177.8 (3) O8i—Co1—O3—C8 −59.6 (2) O7—Co2—C7—O1 −91.51 (17)

O9—Co1—O3—C8 25.1 (2) O7ii—Co2—C7—O1 88.49 (17)

O9i—Co1—O3—C8 −154.9 (2) O2ii—Co2—C7—O1 −2.2 (3)

C6—C1—C2—C3 0.5 (4) O2—Co2—C7—O1 177.8 (3) C7—C1—C2—C3 −178.6 (3) O1ii—Co2—C7—O1 180.000 (2)

C1—C2—C3—C4 0.4 (4) Co1—O3—C8—O4 −10.9 (4) C1—C2—C3—C8 178.7 (3) Co1—O3—C8—C3 170.14 (18) C2—C3—C4—C5 −1.4 (4) C2—C3—C8—O4 −178.5 (3) C8—C3—C4—C5 −179.7 (3) C4—C3—C8—O4 −0.2 (4) C3—C4—C5—C6 1.5 (4) C2—C3—C8—O3 0.5 (4) C3—C4—C5—C9 176.4 (3) C4—C3—C8—O3 178.7 (3) C4—C5—C6—C1 −0.6 (4) C4—C5—C9—O5 −11.3 (4) C9—C5—C6—C1 −175.5 (3) C6—C5—C9—O5 163.6 (3) C2—C1—C6—C5 −0.5 (4) C4—C5—C9—O6 169.7 (3) C7—C1—C6—C5 178.7 (3) C6—C5—C9—O6 −15.5 (4) Co2—O2—C7—O1 −2.3 (3) N1iii—C10—C11—N1 −56.1 (4)

Co2—O2—C7—C1 177.8 (2) C10—C11—N1—C10iii 56.1 (4)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x, −y+1, −z+1; (iii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···O5iv 0.90 1.86 2.751 (4) 168

N1—H1B···O9v 0.90 2.03 2.880 (4) 157

N1—H1B···O8vi 0.90 2.42 3.011 (4) 124

O7—H7A···O4vii 0.85 1.78 2.622 (3) 173

O7—H7B···O11 0.85 1.93 2.733 (4) 157 O8—H8A···O1viii 0.85 1.91 2.740 (3) 162

O8—H8B···O6ix 0.85 1.83 2.657 (3) 166

O9—H9A···O6viii 0.85 1.87 2.703 (3) 165

O9—H9B···O4 0.85 1.83 2.640 (3) 158 O11—H11A···O5ix 0.85 1.91 2.722 (4) 158

O11—H11B···O7x 0.85 2.14 2.934 (4) 156

Figure

Figure 1
Figure 1

References

Related documents

The typical assumption of LC and LM models is that the underlying heterogeneity of subjects is explained by the latent group- ing variable, and every individual is clustered

Given models (3.8) and (3.11), one can stress the expected loss based on a given level of forward looking recession probability as follows: Find the value for

The Productive Sector Operational Programme refers to the ‘ the insufficient investment in RTDI as a constraint to the sustainable growth of indigenous industry which must move

Second, we conduct exten- sive analyses on conversational aspects such as turn-by-turn interaction, the sentiment expressed during the interaction, linguistic alignment, and

In particular, using the United Nations’ human development index at the municipal level, this paper evaluates the process of regional conver- gence through the lens of three

The present cross-sectional study was conducted at Vydehi Institute of Medical sciences and Research Centre, Bengaluru, India, over a.. period of one year, from October 2015 to

Unlike other ambiguity resolution tasks, the ambiguity detec- tion problem makes general ambiguity judgments about terms, rather than resolving individual in- stances.. By doing so,

We test the model using a corpus of child-directed speech with realistic phonetic variation and either gold standard or automati- cally induced word boundaries.. In both cases