• No results found

(S) 2 [(S) 2 Acetamido 3 phenyl­propanamido] 3 phenyl­propanoic acid

N/A
N/A
Protected

Academic year: 2020

Share "(S) 2 [(S) 2 Acetamido 3 phenyl­propanamido] 3 phenyl­propanoic acid"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o372

Liet al. C

20H22N2O4 doi:10.1107/S1600536806053955 Acta Cryst.(2007). E63, o372–o373

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

S

)-2-[(

S

)-2-Acetamido-3-phenylpropanamido]-3-phenylpropanoic acid

Gao-Ning Li,aJian Liband Zu-Pei Liangb*

a

College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China, and bDepartment of Chemistry and Chemical

Engineering, Weifang University, Weifang 261061, People’s Republic of China

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.035

wRfactor = 0.088 Data-to-parameter ratio = 8.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 26 November 2006 Accepted 12 December 2006

#2007 International Union of Crystallography

All rights reserved

In the title compound, C20H22N204, the two phenyl rings form

a dihedral angle of 89.2 (2). The crystal structure is stabilized

by weak N—H O and O—H O hydrogen bonds.

Comment

N-Acetyl amino acids play an important role in methylation, sulfuration, detoxication and antioxidation. They are very useful in the pharmaceutical and food industries.

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The geometry of the N-acetyl-l

-phenyl-alanine system is comparable to that reported forN-acetyl-l

-phenylalanine (Stoutet al., 2000). The dihedral angle between the two phenyl rings is 89.2 (2). The crystal structure is

stabilized by weak N—H O and O—H O intermolecular hydrogen bonds (Fig. 2 and Table 1).

Experimental

A mixture of (S)-2-amino-3-phenylpropanoic acid (0.1 mol), acetic anhydryde (0.2 mol) in water (30 ml) was stirred for 20 min at 298 K. After cooling, filtration and drying, the title compound was obtained. 10 mg of (I) was dissolved in 10 ml ethanol–N,N-dimethylacetamide (1:1 v/v) and the solution was allowed to evaporate at room temperature. Colourless single crystals of the title compound were formed after 35 d.

Crystal data

C20H22N2O4 Mr= 354.40

Monoclinic,P21 a= 10.185 (3) A˚

b= 8.633 (2) A˚

c= 10.427 (3) A˚

= 96.364 (5) V= 911.1 (4) A˚3

Z= 2

Dx= 1.292 Mg m

3

MoKradiation

= 0.09 mm1 T= 294 (2) K Block, colourless 0.340.300.24 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1997)

Tmin= 0.970,Tmax= 0.979

5164 measured reflections 1978 independent reflections 1573 reflections withI> 2(I)

(2)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.035 wR(F2) = 0.088

S= 1.06 1978 reflections 237 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0407P)2

+ 0.0961P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002

max= 0.12 e A˚3 min=0.14 e A˚

[image:2.610.314.562.71.325.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O2—H2A O3i 0.82 1.79 2.598 (2) 169 N1—H1 O4ii

0.86 1.98 2.819 (3) 166 N2—H2 O1iii

0.86 2.02 2.872 (3) 168

Symmetry codes: (i) xþ1;y1

2;zþ1; (ii) xþ1;y 1

2;zþ2; (iii)

xþ1;yþ1 2;zþ1.

The absolute configuration was known from the synthesis and assumed for the structure. H atoms were initially located in difference maps and then refined in a riding model, with C—H = 0.93–0.98 A˚ and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In the absence of

significant anomalous dispersion effects, Friedel pairs were merged prior to refinement.

Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine

structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

This work was supported by the Doctoral Fund of Weifang University.

References

Bruker (1997).SADABS,SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

[image:2.610.45.296.71.166.2]

Stout, K. L., Hallock, K. J., Kampf, J. W. & Ramamoorthy, A. (2000).Acta Cryst.C56, e100.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o372–o373

supporting information

Acta Cryst. (2007). E63, o372–o373 [https://doi.org/10.1107/S1600536806053955]

(

S

)-2-[(

S

)-2-Acetamido-3-phenylpropanamido]-3-phenylpropanoic acid

Gao-Ning Li, Jian Li and Zu-Pei Liang

(DL)-2-[(DL)-2-Acetamido-3-phenylpropanamido]-3-phenylpropanoic acid

Crystal data C20H22N2O4

Mr = 354.40

Monoclinic, P21

Hall symbol: P 2yb a = 10.185 (3) Å b = 8.633 (2) Å c = 10.427 (3) Å β = 96.364 (5)° V = 911.1 (4) Å3

Z = 2

F(000) = 376 Dx = 1.292 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2129 reflections θ = 2.7–24.4°

µ = 0.09 mm−1

T = 294 K Block, colourless 0.34 × 0.30 × 0.24 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1997) Tmin = 0.970, Tmax = 0.979

5164 measured reflections 1978 independent reflections 1573 reflections with I > 2σ(I) Rint = 0.028

θmax = 26.4°, θmin = 2.0°

h = −12→11 k = −9→10 l = −13→10

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.088

S = 1.06 1978 reflections 237 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0407P)2 + 0.0961P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.12 e Å−3

Δρmin = −0.14 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.69996 (18) 0.4395 (3) 0.48036 (15) 0.0562 (5) O2 0.53139 (18) 0.3649 (3) 0.57981 (16) 0.0559 (5)

H2A 0.5057 0.3268 0.5094 0.084*

O3 0.57688 (18) 0.7336 (2) 0.62996 (16) 0.0525 (5) O4 0.4503 (2) 0.9361 (2) 0.98687 (16) 0.0650 (6) N1 0.6224 (2) 0.5530 (2) 0.77869 (17) 0.0433 (5)

H1 0.6135 0.5233 0.8560 0.052*

N2 0.4033 (2) 0.8729 (2) 0.78138 (18) 0.0448 (5)

H2 0.3774 0.9056 0.7048 0.054*

C1 0.9695 (3) 0.2567 (4) 0.6947 (3) 0.0646 (9)

H1A 1.0103 0.3429 0.7351 0.077*

C2 1.0398 (3) 0.1607 (5) 0.6216 (3) 0.0769 (11)

H2B 1.1276 0.1830 0.6127 0.092*

C3 0.9825 (4) 0.0349 (5) 0.5631 (3) 0.0793 (11)

H3 1.0300 −0.0285 0.5129 0.095*

C4 0.8559 (4) 0.0017 (4) 0.5779 (3) 0.0800 (10)

H4 0.8163 −0.0861 0.5391 0.096*

C5 0.7857 (3) 0.0963 (4) 0.6495 (3) 0.0644 (8)

H5 0.6983 0.0721 0.6588 0.077*

C6 0.8408 (3) 0.2257 (4) 0.7079 (2) 0.0505 (7) C7 0.7611 (3) 0.3296 (3) 0.7824 (2) 0.0530 (7)

H7A 0.8143 0.3619 0.8607 0.064*

H7B 0.6858 0.2727 0.8071 0.064*

C8 0.7124 (2) 0.4724 (3) 0.7061 (2) 0.0426 (6)

H8 0.7878 0.5398 0.6956 0.051*

C9 0.6478 (2) 0.4265 (3) 0.5755 (2) 0.0421 (6) C10 0.5532 (3) 0.6716 (3) 0.7296 (2) 0.0421 (6) C11 0.4359 (3) 0.7133 (3) 0.7976 (2) 0.0428 (6)

H11 0.4563 0.6914 0.8899 0.051*

C12 0.3218 (3) 0.6105 (3) 0.7428 (3) 0.0548 (7)

H12A 0.2982 0.6368 0.6527 0.066*

H12B 0.3507 0.5034 0.7466 0.066*

C13 0.2029 (3) 0.6255 (3) 0.8121 (2) 0.0495 (6) C14 0.0979 (3) 0.7094 (4) 0.7607 (3) 0.0638 (8)

H14 0.1009 0.7576 0.6813 0.077*

C15 −0.0117 (4) 0.7246 (5) 0.8228 (4) 0.0822 (10)

H15 −0.0825 0.7833 0.7858 0.099*

C16 −0.0182 (4) 0.6563 (5) 0.9359 (4) 0.0860 (12)

H16 −0.0932 0.6679 0.9783 0.103*

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o372–o373

H17 0.0794 0.5205 1.0684 0.098*

C18 0.1966 (3) 0.5535 (4) 0.9279 (3) 0.0665 (8)

H18 0.2672 0.4943 0.9648 0.080*

C19 0.4107 (2) 0.9727 (3) 0.8764 (2) 0.0444 (6) C20 0.3687 (4) 1.1323 (4) 0.8419 (3) 0.0671 (9)

H20A 0.2793 1.1474 0.8602 0.101*

H20B 0.3741 1.1491 0.7516 0.101*

H20C 0.4254 1.2044 0.8914 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0661 (11) 0.0734 (13) 0.0291 (8) −0.0080 (11) 0.0059 (8) −0.0022 (9) O2 0.0598 (12) 0.0696 (14) 0.0380 (9) −0.0108 (11) 0.0048 (9) −0.0142 (10) O3 0.0645 (11) 0.0531 (11) 0.0401 (10) 0.0091 (10) 0.0062 (8) 0.0144 (9) O4 0.1090 (17) 0.0522 (12) 0.0307 (9) 0.0077 (12) −0.0063 (10) −0.0095 (9) N1 0.0651 (14) 0.0386 (12) 0.0250 (9) 0.0081 (11) 0.0000 (9) 0.0004 (9) N2 0.0688 (14) 0.0386 (12) 0.0256 (9) 0.0055 (11) −0.0014 (9) −0.0016 (9) C1 0.068 (2) 0.062 (2) 0.0609 (18) 0.0066 (16) −0.0032 (16) 0.0105 (15) C2 0.066 (2) 0.093 (3) 0.073 (2) 0.025 (2) 0.0176 (17) 0.026 (2) C3 0.103 (3) 0.073 (3) 0.062 (2) 0.034 (2) 0.012 (2) 0.0021 (19) C4 0.106 (3) 0.061 (2) 0.071 (2) 0.020 (2) −0.003 (2) −0.0123 (17) C5 0.0706 (19) 0.056 (2) 0.0651 (19) 0.0101 (16) 0.0012 (15) −0.0040 (16) C6 0.0607 (17) 0.0512 (16) 0.0380 (13) 0.0111 (14) −0.0016 (12) 0.0070 (13) C7 0.0704 (18) 0.0495 (17) 0.0381 (13) 0.0108 (14) 0.0019 (13) 0.0042 (12) C8 0.0546 (14) 0.0403 (15) 0.0318 (12) 0.0024 (12) −0.0003 (11) −0.0002 (11) C9 0.0513 (15) 0.0405 (14) 0.0338 (12) 0.0029 (12) 0.0017 (11) 0.0012 (11) C10 0.0595 (15) 0.0394 (14) 0.0258 (11) 0.0000 (11) −0.0030 (10) −0.0014 (10) C11 0.0643 (16) 0.0355 (13) 0.0278 (11) 0.0029 (12) 0.0009 (11) −0.0014 (11) C12 0.0674 (18) 0.0465 (16) 0.0499 (15) −0.0025 (14) 0.0045 (13) −0.0122 (13) C13 0.0651 (17) 0.0380 (14) 0.0445 (14) −0.0079 (13) 0.0017 (12) −0.0062 (12) C14 0.076 (2) 0.0571 (19) 0.0582 (17) −0.0012 (17) 0.0068 (16) −0.0065 (16) C15 0.077 (2) 0.080 (2) 0.089 (3) 0.007 (2) 0.007 (2) −0.016 (2) C16 0.080 (2) 0.090 (3) 0.092 (3) −0.015 (2) 0.028 (2) −0.032 (3) C17 0.123 (3) 0.073 (2) 0.0540 (18) −0.039 (3) 0.027 (2) −0.0105 (18) C18 0.091 (2) 0.0542 (18) 0.0532 (17) −0.0117 (18) 0.0034 (16) 0.0015 (16) C19 0.0562 (15) 0.0412 (15) 0.0355 (14) −0.0010 (12) 0.0032 (11) −0.0060 (11) C20 0.094 (2) 0.0456 (17) 0.0598 (18) 0.0121 (17) −0.0005 (17) −0.0085 (15)

Geometric parameters (Å, º)

O1—C9 1.181 (3) C7—H7B 0.97

O2—C9 1.305 (3) C8—C9 1.498 (3)

O2—H2A 0.82 C8—H8 0.98

O3—C10 1.216 (3) C10—C11 1.499 (4)

O4—C19 1.220 (3) C11—C12 1.523 (4)

N1—C10 1.314 (3) C11—H11 0.98

(6)

N1—H1 0.86 C12—H12A 0.97

N2—C19 1.308 (3) C12—H12B 0.97

N2—C11 1.423 (3) C13—C14 1.352 (4)

N2—H2 0.86 C13—C18 1.366 (4)

C1—C6 1.360 (4) C14—C15 1.357 (5)

C1—C2 1.379 (5) C14—H14 0.93

C1—H1A 0.93 C15—C16 1.327 (6)

C2—C3 1.346 (6) C15—H15 0.93

C2—H2B 0.93 C16—C17 1.357 (5)

C3—C4 1.346 (5) C16—H16 0.93

C3—H3 0.93 C17—C18 1.377 (5)

C4—C5 1.362 (5) C17—H17 0.93

C4—H4 0.93 C18—H18 0.93

C5—C6 1.363 (4) C19—C20 1.475 (4)

C5—H5 0.93 C20—H20A 0.96

C6—C7 1.485 (4) C20—H20B 0.96

C7—C8 1.520 (4) C20—H20C 0.96

C7—H7A 0.97

C9—O2—H2A 109.5 O3—C10—C11 122.8 (2)

C10—N1—C8 121.3 (2) N1—C10—C11 115.1 (2)

C10—N1—H1 119.3 N2—C11—C10 111.3 (2)

C8—N1—H1 119.3 N2—C11—C12 111.2 (2)

C19—N2—C11 123.7 (2) C10—C11—C12 107.3 (2)

C19—N2—H2 118.2 N2—C11—H11 109.0

C11—N2—H2 118.2 C10—C11—H11 109.0

C6—C1—C2 120.2 (3) C12—C11—H11 109.0

C6—C1—H1A 119.9 C13—C12—C11 113.4 (2)

C2—C1—H1A 119.9 C13—C12—H12A 108.9

C3—C2—C1 120.7 (3) C11—C12—H12A 108.9

C3—C2—H2B 119.7 C13—C12—H12B 108.9

C1—C2—H2B 119.7 C11—C12—H12B 108.9

C2—C3—C4 119.5 (3) H12A—C12—H12B 107.7

C2—C3—H3 120.3 C14—C13—C18 118.8 (3)

C4—C3—H3 120.3 C14—C13—C12 120.4 (3)

C3—C4—C5 120.2 (4) C18—C13—C12 120.8 (3)

C3—C4—H4 119.9 C13—C14—C15 121.3 (3)

C5—C4—H4 119.9 C13—C14—H14 119.4

C4—C5—C6 121.4 (3) C15—C14—H14 119.4

C4—C5—H5 119.3 C16—C15—C14 120.4 (4)

C6—C5—H5 119.3 C16—C15—H15 119.8

C1—C6—C5 118.0 (3) C14—C15—H15 119.8

C1—C6—C7 121.5 (3) C15—C16—C17 120.0 (4)

C5—C6—C7 120.5 (3) C15—C16—H16 120.0

C6—C7—C8 112.5 (2) C17—C16—H16 120.0

C6—C7—H7A 109.1 C16—C17—C18 120.2 (4)

C8—C7—H7A 109.1 C16—C17—H17 119.9

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o372–o373

C8—C7—H7B 109.1 C13—C18—C17 119.4 (3)

H7A—C7—H7B 107.8 C13—C18—H18 120.3

N1—C8—C9 111.5 (2) C17—C18—H18 120.3

N1—C8—C7 108.02 (19) O4—C19—N2 122.0 (2) C9—C8—C7 110.2 (2) O4—C19—C20 121.9 (2)

N1—C8—H8 109.0 N2—C19—C20 116.1 (2)

C9—C8—H8 109.0 C19—C20—H20A 109.5

C7—C8—H8 109.0 C19—C20—H20B 109.5

O1—C9—O2 124.2 (2) H20A—C20—H20B 109.5 O1—C9—C8 123.1 (2) C19—C20—H20C 109.5 O2—C9—C8 112.7 (2) H20A—C20—H20C 109.5 O3—C10—N1 121.8 (2) H20B—C20—H20C 109.5

C6—C1—C2—C3 −0.4 (5) C19—N2—C11—C10 −115.5 (3) C1—C2—C3—C4 −1.0 (5) C19—N2—C11—C12 125.0 (3) C2—C3—C4—C5 1.2 (5) O3—C10—C11—N2 −32.5 (3) C3—C4—C5—C6 −0.1 (5) N1—C10—C11—N2 153.4 (2) C2—C1—C6—C5 1.4 (4) O3—C10—C11—C12 89.3 (3) C2—C1—C6—C7 −177.9 (3) N1—C10—C11—C12 −84.8 (3) C4—C5—C6—C1 −1.2 (4) N2—C11—C12—C13 −65.0 (3) C4—C5—C6—C7 178.2 (3) C10—C11—C12—C13 173.1 (2) C1—C6—C7—C8 79.0 (3) C11—C12—C13—C14 102.6 (3) C5—C6—C7—C8 −100.3 (3) C11—C12—C13—C18 −78.2 (3) C10—N1—C8—C9 −50.9 (3) C18—C13—C14—C15 0.9 (5) C10—N1—C8—C7 −172.1 (2) C12—C13—C14—C15 −179.9 (3) C6—C7—C8—N1 172.1 (2) C13—C14—C15—C16 −0.3 (6) C6—C7—C8—C9 50.0 (3) C14—C15—C16—C17 −0.6 (6) N1—C8—C9—O1 137.0 (3) C15—C16—C17—C18 0.8 (6) C7—C8—C9—O1 −103.0 (3) C14—C13—C18—C17 −0.6 (5) N1—C8—C9—O2 −45.8 (3) C12—C13—C18—C17 −179.8 (3) C7—C8—C9—O2 74.2 (3) C16—C17—C18—C13 −0.2 (5) C8—N1—C10—O3 −12.0 (4) C11—N2—C19—O4 2.2 (4) C8—N1—C10—C11 162.2 (2) C11—N2—C19—C20 −178.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2A···O3i 0.82 1.79 2.598 (2) 169

N1—H1···O4ii 0.86 1.98 2.819 (3) 166

N2—H2···O1iii 0.86 2.02 2.872 (3) 168

Figure

Table 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical