• No results found

Mu Integration Solutions MA National Convention

N/A
N/A
Protected

Academic year: 2021

Share "Mu Integration Solutions MA National Convention"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)

1. C By power rule we know: ∫(2π‘₯3+ 2π‘₯ + 2)𝑑π‘₯ =π‘₯4 2 + π‘₯

2+ 2π‘₯ + 𝐢 . Now plugging

in both bounds yields 696 βˆ’ 0 = 696 2. E Using angle sum identities, we know:

sin((20 + 22)π‘₯) = sin(20π‘₯) cos(22π‘₯) + cos(22π‘₯) sin⁑(20π‘₯) sin((20 βˆ’ 22π‘₯)) = sin(20π‘₯) cos(22π‘₯) βˆ’ cos(22π‘₯) sin⁑(20π‘₯) So 2 sin(20π‘₯) cos(22π‘₯) = sin(42π‘₯) βˆ’ sin(2π‘₯).

𝐼 =1 2∫ (sin(42π‘₯) βˆ’ sin(2π‘₯))𝑑π‘₯ 2022πœ‹ 0 = 1/2 (βˆ’cos(42π‘₯) 42 + cos(2π‘₯) 2 ) Now evaluating both bounds yields:

𝐼 =1 2(βˆ’ 1 42+ 1 2) βˆ’ 1 2(βˆ’ 1 42+ 1 2) = 0

3. A Observe βˆ’π‘₯2+ 8π‘₯ βˆ’ 15 = βˆ’(π‘₯ βˆ’ 5)(π‘₯ βˆ’ 3) which is a downward sloping parabola and is only nonnegative when 3 ≀ π‘₯ ≀ 5. Thus:

𝑀 = βˆ’ ∫ (π‘₯ βˆ’ 3)(π‘₯ βˆ’ 5)𝑑π‘₯

5

3

Making the substitution 𝑒 = π‘₯ βˆ’ 4 yields:

𝑀 = βˆ’ ∫(𝑒 + 1)(𝑒 βˆ’ 1)𝑑𝑒 = βˆ’2 ∫ (𝑒2βˆ’ 1) 1 0 𝑑𝑒 =4 3 1 βˆ’1 4. E Notice that 1

π‘₯βˆ’2022 is undefined and unbounded only at x = 2022. Since

∫π‘₯βˆ’2022𝑑π‘₯ = ln|x βˆ’ 2022| + C, the integral of the function is also unbounded since 2021 ≀ 2022 ≀ 2022 + 𝑒. 5. B Notice that: 𝐼 = ∫ √2022π‘₯ βˆ’ π‘₯2𝑑π‘₯ 2022 0 = ∫ √10112βˆ’ (π‘₯ βˆ’ 1011)2𝑑π‘₯ 2022 0

Making the substitution 𝑒 = π‘₯ βˆ’ 1011 yields:

𝐼 = ∫ √10112 βˆ’ 𝑒2𝑑𝑒 = 2 ∫ √10112βˆ’ 𝑒2𝑑𝑒 1011

0 1011

βˆ’1011

Making the substitution 𝑒 = 1011sin⁑(𝑑) yields:

(3)

𝐼 = ∫ 𝑑π‘₯ π‘₯(π‘₯4+ 1)= ∫ π‘₯3𝑑π‘₯ π‘₯4(π‘₯4+ 1) 2 1 2 1

Making the substitution 𝑒 = π‘₯4 yields: 𝐼 =1 4∫ 𝑑𝑒 𝑒(𝑒 + 1) 16 1 Now observe: ∫ 𝑑𝑒 𝑒(𝑒 + 1)= ∫ ( 1 π‘’βˆ’ 1 𝑒 + 1) 𝑑𝑒 = ln | 𝑒 𝑒 + 1| + 𝐢 Plugging in the desired bounds gives:

𝐼 =ln ( 32 17)

4 β†’ 1 + 32 + 17 + 4 = 54 7. B With 𝑒 = π‘₯2 + 1 the integral becomes:

1 2∫ 𝑑𝑒 βˆšπ‘’ 2 1 = √2 βˆ’ 1 β‰ˆ 0.4 8. D Observe: ∫(π‘₯4+ 4π‘₯3+ 6π‘₯2+ 4π‘₯ + 2)𝑑π‘₯ = ∫((π‘₯ + 1)4+ 1)𝑑π‘₯ =(π‘₯ + 1) 5 5 + π‘₯ + 𝐢 Now evaluating the desired bounds gives 𝐼 = 6/5⁑

9. A Substituting cos2(π‘₯) = 1 βˆ’ sin2(π‘₯) we find: 𝐼 = ∫ cos(π‘₯) 𝑑π‘₯ 3 + sin2(π‘₯) πœ‹ 2 0 ⁑ Making the substitution 𝑒 = sin⁑(π‘₯) yields:

𝐼 = ∫ 𝑑𝑒 𝑒2+ 3 1

0

Making the substitution 𝑒 = π‘£βˆš3 yields: 𝐼 =√3 3 ∫ 𝑑𝑣 𝑣2+ 1 1 √3 0 =πœ‹βˆš3 18 10. D Using power rule for integrals this evaluates to:

(2 3π‘₯ 3 2+3 2π‘₯ 4 3+6 7π‘₯ 6 7) |10 =2 3+ 3 2+ 6 7= 127 42

11. B First note that 𝑓(π‘₯) = (π‘₯ + 2)2+ 1 . Thus, when 0 ≀ π‘Ž ≀ 1, 𝑓(βˆ’π‘Ž) < 𝑓(π‘Ž).

This means that the solid formed by revolving the region in [0,3] absorbs the solid formed by revolving the region in [-1,0]. Now using shell method:

(4)

12. D Observe that: 𝐴 = ∫ (π‘₯2+ 4π‘₯ + 5) 3 βˆ’1 𝑑π‘₯ = 9 + 18 + 15 βˆ’ (βˆ’1 3+ 2 βˆ’ 5) = 136 3 13. C Since (π‘₯2+ 4π‘₯ + 5)β€² = 2π‘₯ + 4 we have that:

2𝑐 + 4 =1 4∫ (2π‘₯ + 4) 3 βˆ’1 𝑑π‘₯ 8𝑐 + 16 = (π‘₯2+ 4π‘₯)|βˆ’13 = 24 β†’ 𝑐 = 1

Remark: It is not an accident that the correct answer is the average of the endpoints. The result holds for all linear functions when applying the MVT for integrals and all quadratic polynomials when applying the MVT for derivatives. The proof is left as an exercise to the reader.

14. B 𝑉2 = πœ‹ ∫ ((π‘₯ + 2)2+ 1)2 3 βˆ’1 𝑑π‘₯ = πœ‹ ∫ ((π‘₯ + 2)4+ 2(π‘₯ + 2)2+ 1) 3 βˆ’1 𝑑π‘₯ = πœ‹(625 +250 3 + 3 βˆ’ ( 1 5+ 2 3βˆ’ 1) = πœ‹ (628 + 250 3 + 2 15) = πœ‹ (2134 3 + 2 15) = πœ‹ ( 10672 15 ) 15. C Notice that: 𝐼 = ∫ 2022 βˆ’π‘₯2 1 + 2022βˆ’π‘₯𝑑π‘₯ ∞ βˆ’βˆž

Making the substitution π‘₯ = βˆ’π‘₯ yields: 𝐼 = ∫ 2022 βˆ’π‘₯2 1 + 2022π‘₯𝑑π‘₯ ∞ βˆ’βˆž . Adding both integrals gives:

2𝐼 = ∫ 2022βˆ’π‘₯2( 1 1 + 2022βˆ’π‘₯+ 1 1 + 2022π‘₯) 𝑑π‘₯ ∞ βˆ’βˆž ⁑ = ∫ 2022βˆ’π‘₯2 ∞ βˆ’βˆž (2022 βˆ’π‘₯+ 2022π‘₯+ 2 2022βˆ’π‘₯+ 2022π‘₯+ 2) 𝑑π‘₯ β†’ 2𝐼 = ∫ 2022βˆ’π‘₯ 2 𝑑π‘₯. ∞ βˆ’βˆž

Making the substitution π‘₯ = π‘’βˆšlog2022𝑒 yields:

2𝐼 = (√log2022𝑒) ∫ π‘’βˆ’π‘₯2 ∞ βˆ’βˆž 𝑑π‘₯ = βˆšπœ‹ (√ ln(𝑒) ln(2022)) β†’ 𝐼 = βˆšπœ‹ 2√ln(2022) 16. C Notice that π‘₯3βˆ’ π‘₯2βˆ’ 2π‘₯ = π‘₯(π‘₯ βˆ’ 2)(π‘₯ + 1). Define 𝐺(π‘₯) = ∫ (𝑑0π‘₯ 3 βˆ’ 𝑑2βˆ’ 2𝑑)𝑑𝑑 =π‘₯4 4 βˆ’ π‘₯3 3 βˆ’ π‘₯ 2

(5)

𝐺(2) = 4 βˆ’8 3+ 4 = βˆ’ 8 3 𝐺(3) =81 4 βˆ’ 9 βˆ’ 9 = 9 4 Now we know: 𝐼 = |𝐺(βˆ’3) βˆ’ 𝐺(βˆ’1)| + |𝐺(βˆ’1) βˆ’ 𝐺(0)| + |𝐺(0) βˆ’ 𝐺(2)| + |𝐺(2) βˆ’ 𝐺(3)| =81 4 + 5 12+ 5 12+ 8 3+ 8 3+ 9 4= 86 3 17. E Making the substitution π‘₯ = 1

𝑒 yields: 𝐼 = ∫ 𝑒 2βˆ’ 𝑒4 1 + 𝑒8 ∞ 0 𝑑𝑒. Adding this to the original integral gives 2𝐼 = 0. 18. A Observe that: 𝐴 = ∫ sin(π‘₯) (sin2(π‘₯)) 𝑑π‘₯ πœ‹ 2 0 = ∫ sin(π‘₯) (1 βˆ’ cos2(π‘₯))𝑑π‘₯ πœ‹ 2 0

Now applying the u substitution 𝑒 = cos⁑(π‘₯) yields: 𝐴 = ∫ (1 βˆ’ 𝑒2

1

0

)𝑑𝑒 = 2 3 19. B First notice that:

(𝑒𝑓(𝑒))β€²= 𝑒𝑓′(𝑒) + 𝑓(𝑒) Via product rule for derivatives.

Thus: 𝐴 = ∫ 𝑒𝑓′(𝑒)𝑑𝑒 1 0 = ∫ (5𝑒5+ 3𝑒3+ 𝑒)𝑑𝑒 1 0 = 5 6+ 3 4+ 1 2= 25 12 20. C Since the bounds are always positive, we have |π‘₯|3 = π‘₯3.

Thus, the integral evaluates to:

∫ π‘₯6𝑑π‘₯

2

1

= 127 7 21. E Taking the derivative of both sides yields:

1 + 𝑓(π‘₯) = βˆ’π‘“

β€²(π‘₯)

2022. Separation of variables yields:

𝑑π‘₯(βˆ’2022) = 𝑑(𝑓(π‘₯)) 1 + 𝑓(π‘₯). Integrating both sides yields:

βˆ’2022π‘₯ + 𝐢 = ln(|1 + 𝑓(π‘₯)|).

(6)

Thus:

|1 + 𝑓(π‘₯)| = π‘’βˆ’2022π‘₯ β†’ 𝑓(π‘₯) = Β±π‘’βˆ’2022π‘₯βˆ’ 1

Thus, the requested limit is -1.

22. B First observe βˆ’3π‘₯2 βˆ’ 4π‘₯ + 11 = βˆ’3(π‘₯2+ 2π‘₯ + 5) + (2π‘₯ + 26), and ⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ π‘₯2+ 2π‘₯ + 5 = (π‘₯ + 1)2+ 4. Thus: 𝐼 = ∫ 𝑑π‘₯ (π‘₯ + 1)2+ 4 1 0 (βˆ’3 + 2π‘₯ + 26 (π‘₯ + 1)2+ 4) 𝑑π‘₯⁑.

Now applying the substitution π‘₯ + 1 = 2tan⁑(π‘Ž) yields (where π‘Ÿ = arctan (1

2)): 𝐼 = ∫ 2 sec 2π‘Ž 4 sec2π‘Ž πœ‹ 4 π‘Ÿ (βˆ’3 +4 tan(π‘Ž) + 24 4 sec2π‘Ž ) π‘‘π‘Žβ‘ 𝐼 =1 4∫ (βˆ’6 πœ‹ 4 π‘Ÿ

+ 2 sin(π‘Ž) cos(π‘Ž) + 12 cos2(π‘Ž))π‘‘π‘Ž 𝐼 =1 4∫ (βˆ’6 + sin⁑(2π‘Ž) πœ‹ 4 π‘Ÿ + 6 + 6cos⁑(2π‘Ž))π‘‘π‘Ž 𝐼 =1 4∫ (sin(2π‘Ž) + 6 cos(2π‘Ž))π‘‘π‘Ž πœ‹ 4 π‘Ÿ

Now making the substitution 𝑏 = 2π‘Ž yields: 𝐼 =1

8∫ (sin(𝑏) + 6 cos(𝑏))𝑑𝑏

πœ‹ 2 2π‘Ÿ

Now we can easily calculate the indefinite to be: 𝐺(𝑏) =6 sin(𝑏) βˆ’ cos(𝑏)

8 .

The final answer is then 𝐺 (πœ‹

2) βˆ’ 𝐺(2π‘Ÿ) = 3

4βˆ’ 𝐺(2π‘Ÿ)

Now since π‘Ÿ = arctan (1

2) , sin(π‘Ÿ) = √5 5 , cos(π‘Ÿ) = 2√5 5 , so: sin(2π‘Ÿ) = 2 (√5 5 ) ( 2√5 5 ) = 4 5 cos(2π‘Ÿ) = 2 (2√5 5 ) 2 βˆ’ 1 =3 5 Thus 𝐺(2π‘Ÿ) = 21/40 and thus the integral evaluates to 9/40 . 23. C Consider the function 𝑓(π‘Ž) = ∫ sin(π‘Žπ‘₯)

π‘₯ 𝑑π‘₯ ∞

(7)

∫ sin2(π‘₯) 𝑑π‘₯ 2πœ‹

0

= 𝐾 Where K is some positive constant

Thus the integral across infinitely many periods of sin^2(x) is necessarily infinity. 25. B Recall the triple angle formula sin(3π‘₯) = 3 sin(π‘₯) βˆ’ 4 sin3(π‘₯).

Rearranging yields:

sin3(π‘₯) =3 sin(π‘₯) βˆ’ sin(3π‘₯)

4 Thus, 𝐼 =3𝑓(1)βˆ’π‘“(3) 4 = 𝑓(1) 2 = πœ‹

4 (using notation and results from #23).

26. C Observe that:

(π‘’βˆ’π‘₯)β€²= βˆ’π‘’βˆ’π‘₯.

Thus, the requested answer is:

βˆ’π‘’βˆ’π‘₯|0∞= 1.

27. C Applying the substitution π‘₯ β†’πœ‹

2βˆ’ π‘₯ yields: 𝐼 = ∫ 𝑑π‘₯ 1 + (cot(π‘₯))2022⁑ πœ‹ 2 0 = ∫ tan 2022(π‘₯) tan2022(π‘₯) + 1𝑑π‘₯. πœ‹ 2 0

Adding this to the original integral gives: 2𝐼 = ∫ 1 + tan 2022(π‘₯) 1 + tan2022(π‘₯) πœ‹ 2 0 𝑑π‘₯ β†’ 𝐼 = πœ‹ 4 28. B We have: 𝐼 = ∫ 𝑑π‘₯ 1 +1π‘₯ = ∫ π‘₯𝑑π‘₯ π‘₯ + 1 1 0 1 0 = ∫ (1 βˆ’ 1 π‘₯ + 1) 𝑑π‘₯ 1 0 = π‘₯ βˆ’ ln(π‘₯ + 1) |10 = 1 βˆ’ ln(2). 29. C We wish to compute: 𝐼 = ∫ 𝑑π‘₯ 1 + π‘₯2 ∞ 0 = arctan(π‘₯) |0∞= πœ‹ 2

30. E Observe that on it’s domain the derivative of ln⁑(π‘₯) is always positive. Thus the function is 1-1.

Now observe that:

ln(π‘₯𝑙𝑛(𝑦)) = ln(𝑦) β‹… ln(π‘₯) = ln(𝑦𝑙𝑛(π‘₯)).

Thus:

References

Related documents

pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized

Seats and as the honda touring manual transmission could be right there are very patient and for the palm of purchase and comfortable, available in virginia.. Mailed to leave a

Chanting of this mantra gives quick eradication of all enemies, strength, fortune, protection, health, wealth and all round success.. Bagalamukhi (Hleem) This is the beej mantra

If a logical archive of a known server is replicated to the original server, this archive can be checked in Replicated Archives in the Archives object of the console tree..

Different from the standard method that using mean and standard deviation of accuracies of segmentations to evaluate and compare the overall accuracy performances of

For purposes of this analysis, it is considered reasonable and consistent with criteria pollutant calculations to consider only those GHG emissions resulting from

PwC Workflow Document universe Train the β€˜computer’ Categorise document universe Manually review categorised documents Validate results Slide 13 April 2013

species with potential to survive after the discarding process. Present results on time-to- mortality show significant differences when comparing individual sizes for some