• No results found

The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space

N/A
N/A
Protected

Academic year: 2020

Share "The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

The Third Laplace-Beltrami Operator of the

Rotational Hypersurface in 4-Space

Erhan Güler

Bartın University Faculty of Sciences Department of Mathematics 74100, Bartın Turkey; [email protected]

* Correspondence: [email protected]; Tel.: +90-378-5011000-1553

Academic Editor: name

Version June 11, 2018 submitted to Preprints

Abstract:We consider rotational hypersurface in the four dimensional Euclidean space. We calculate 1

the mean curvature and the Gaussian curvature, and some relations of the rotational hypersurface. 2

Moreover, we define the third Laplace-Beltrami operator and apply it to the rotational hypersurface. 3

Keywords:4-space; the third Laplace-Beltrami operator; rotational hypersurface; Gaussian curvature; 4

mean curvature 5

1. Introduction 6

Chen [4] posed the problem of classifying the finite type surfaces in the 3-dimensional Euclidean 7

spaceE3. A Euclidean submanifold is said to be of Chen finite type if its coordinate functions are a 8

finite sum of eigenfunctions of its Laplacian∆. Further, the notion of finite type can be extended to any 9

smooth function on a submanifold of a Euclidean space or a pseudo-Euclidean space. Then the theory 10

of submanifolds of finite type has been studied by many geometers. 11

Takahashi [23] states that minimal surfaces and spheres are the only surfaces inE3satisfying the 12

condition∆r=λr,λ∈R. Ferrandez, Garay and Lucas [11] prove that the surfaces ofE3satisfying 13

∆H=AH,A∈Mat(3, 3)are either minimal, or an open piece of sphere or of a right circular cylinder. 14

Choi and Kim [7] characterize the minimal helicoid in terms of pointwise 1-type Gauss map of the first 15

kind. Chen, Choi and Kim [5] study on surfaces of revolution with pointwise 1-type Gauss map. 16

Dillen, Pas and Verstraelen [9] prove that the only surfaces inE3satisfying∆r= Ar+B,A ∈ 17

Mat(3, 3),B∈Mat(3, 1)are the minimal surfaces, the spheres and the circular cylinders. Senoussi and 18

Bekkar [22] study helicoidal surfacesM2inE3which are of finite type in the sense of Chen with respect 19

to the fundamental formsI,I IandI I I, i.e., their position vector fieldr(u,v)satisfies the condition 20

∆Jr=Ar,J= I,I I,I I I, whereA= (a

ij)is a constant 3×3 matrix and∆Jdenotes the Laplace operator

21

with respect to the fundamental formsI,I IandI I I. 22

When we focus on the ruled (helicoid) and rotational characters, we see Bour’s theorem in [3]. 23

About helicoidal surfaces in Euclidean 3-space, do Carmo and Dajczer [10] prove that, by using a result 24

of Bour [3], there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal 25

surface. Güler [13] studies on a helicoidal surface with lightlike profile curve using Bour’s theorem 26

in Minkowski geometry. Also, Hieu and Thang [14] study helicoidal surfaces by Bour’s theorem in 27

4-space. Choi et al [8] study on helicoidal surfaces and their Gauss map in Minkowski 3-space. Kim 28

and Turgay [15] classify the helicoidal surfaces withL1-pointwise 1-type Gauss map. 29

Lawson [16] gives the general definition of the Laplace-Beltrami operator in his lecture notes. 30

Magid, Scharlach and Vrancken [17] introduce the affine umbilical surfaces in 4-space. Vlachos [25] 31

consider hypersurfaces inE4with harmonic mean curvature vector field. Scharlach [21] studies the 32

affine geometry of surfaces and hypersurfaces in 4-space. Cheng and Wan [6] consider complete 33

hypersurfaces of 4-space with constant mean curvature. 34

Arvanitoyeorgos, Kaimakamais and Magid [2] show that if the mean curvature vector field ofM13 35

satisfies the equation∆H=αH(αa constant), thenM31has constant mean curvature in Minkowski

36

4-spaceE41. This equation is a natural generalization of the biharmonic submanifold equation∆H=0. 37

(2)

General rotational surfaces as a source of examples of surfaces in the four dimensional Euclidean 38

space were introduced by Moore [18,19]. Arslan et al [1] study on generalized rotation surfaces in 39

E4. Ganchev and Milousheva [12] consider the analogue of these surfaces in the Minkowski 4-space. 40

They classify completely the minimal general rotational surfaces and the general rotational surfaces 41

consisting of parabolic points. Moruz and Munteanu [20] consider hypersurfaces in the Euclidean 42

spaceE4defined as the sum of a curve and a surface whose mean curvature vanishes. They call them 43

minimal translation hypersurfaces inE4and give a classification of these hypersurfaces. Verstraelen, 44

Walrave and Yaprak [24] study the minimal translation surfaces inEnfor arbitrary dimensionn. 45

We consider the rotational hypersurfaces in Euclidean 4-spaceE4in this paper. We give some 46

basic notions of the four dimensional Euclidean geometry in Section2. In Section3, we give the 47

definition of a rotational hypersurface. We calculate the mean curvature and the Gaussian curvature of 48

the rotational hypersurface. We introduce the third Laplace-Beltrami operator in Section4. Moreover, 49

we calculate the third Laplace-Beltrami operator of the rotational hypersurface inE4in the last section. 50

2. Preliminaries 51

In this section, we will introduce the first and second fundamental forms, matrix of the shape 52

operatorS, Gaussian curvatureK, and the mean curvature Hof hypersurfaceM = M(r,θ1,θ2)in 53

Euclidean 4-spaceE4. In the rest of this work, we shall identify a vector−→α with its transpose.

54

LetM=M(r,θ1,θ2)be an isometric immersion of a hypersurfaceM3in theE4. 55

Definition 1. The inner product of−→x = (x1,x2,x3,x4),−→y = (y1,y2,y3,y4)onE4is defined by as follows: −→x · −y =x

1y1+x2y2+x3y3+x4y4.

Definition 2. The vector product of−→x = (x1,x2,x3,x4),−→y = (y1,y2,y3,y4),−→z = (z1,z2,z3,z4)onE4is defined by as follows:

−→x × −y × −z =det

   

e1 e2 e3 e4 x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4

   

.

Definition 3. For a hypersurfaceM(r,θ1,θ2)in 4-space, we have

detI=det

 

E F A

F G B

A B C

= (EG−F

2)CA2G+2ABFB2E, (1)

detII=det

 

L M P

M N T

P T V

=

LN−M2V−P2N+2PTM−T2L, (2)

and

detIII=det

 

X Y U

Y Z J

U J O

=

XZ−Y2O−J2X+2JUY−U2Z, (3)

whereI,IIandIIIare the first, the second and the third fundamental form matrices, respectively, A=MMθ2, B = MθMθ2,C = MθMθ2,P = Mrθ2 ·e,T = Mθ1θ2 ·e,V = Mθ2θ2 ·e,X = eer,Y = eeθ1, U=eeθ2,Z=eθeθ1,J=eθeθ2,O=eθeθ2.Here,eis the Gauss map (i.e. the unit normal vector) defined by

e= MMθMθ2

MMθMθ2

(3)

Definition 4. Product matrices

 

E F A

F G B

A B C

 

−1

 

L M P

M N T

P T V

 

gives the matrix of the shape operatorSas follows:

S= 1 detI

 

s11 s12 s13 s21 s22 s23 s31 s32 s33

, (5)

where

s11 =ABM−CFM−AGP+BFP+CGL−B2L, s12 =ABN−CFN−AGT+BFT+CGM−B2M,

s13 =ABT−CFT−AGV+BFV+CGP−B2P, s21 =ABL−CFL+AFP−BPE+CME−A2M, s22= ABM−CFM+AFT−BTE+CNE−A2N,

s23= ABP−CFP+AFV−BVE+CTE−A2T, s31 =−AGL+BFL+AFM−BME+GPE−F2P, s32 =−AGM+BFM+AFN−BNE+GTE−F2T,

s33=−AGP+BFP+AFT−BTE+GVE−F2V.

Definition 5. The formulas of the Gaussian and the mean curvatures, respectively as follow:

K=det(S) =detII

detI, (6)

and

H= 1

3tr(S), (7)

where 56

tr(S) = 1

detI[(EN+GL−2FM)C+ (EG−F

2)VA2N

−B2L−2(APG+BTE−ABM−ATF−BPF)]. A hypersurfaceMis minimal if H=0identically onM.

57

3. Curvatures of a rotational hypersurface in 4-space 58

We define the rotational hypersurface inE4. For an open intervalI ⊂R, letγ:I−→Πbe a curve

59

in a planeΠinE4, and let`be a straight line inΠ. 60

Definition 6. A rotational hypersurface inE4is hypersurface rotating a curveγaround a line`(these are

61

(4)

We may suppose that`is the line spanned by the vector(0, 0, 0, 1)t. The orthogonal matrix which fixes the above vector is

Z(θ1,θ2) =

   

cosθ1cosθ2 −sinθ1 −cosθ1sinθ2 0 sinθ1cosθ2 cosθ1 −sinθ1sinθ2 0

sinθ2 0 cosθ2 0

0 0 0 1

   

, (8)

whereθ1,θ2∈R. The matrixZcan be found by solving the following equations simultaneously; Z`=`, ZtZ=ZZt= I4, detZ=1.

When the axis of rotation is`, there is an Euclidean transformation by which the axis is`transformed to thex4-axis ofE4. Parametrization of the profile curve is given by

γ(r) = (r, 0, 0,ϕ(r)),

whereϕ(r): I ⊂R −→Ris a differentiable function for allr∈ I. So, the rotational hypersurface which is spanned by the vector(0, 0, 0, 1), is as follows:

R(r,θ1,θ2) =Z(θ1,θ2).γ(r)t (9)

inE4, wherer∈ I,θ1,θ2∈[0, 2π]. Whenθ2=0, we have rotational surface inE4. 63

R(r,θ1,θ2) =

   

rcosθ1cosθ2 rsinθ1cosθ2

rsinθ2

ϕ(r) 

   

. (10)

wherer∈R\{0}and 0≤θ1,θ2≤2π.

64

Next, we obtain the mean curvature and the Gaussian curvature of the rotational hypersurface 65

(10). 66

The first differentials of(10)with respect tor,θ1,θ2, respectively, we get

Rr = 

   

cosθ1cosθ2 sinθ1cosθ2

sinθ2

ϕ0

   

, Rθ1 =

   

−rsinθ1cosθ2 rcosθ1cosθ2

0 0

   

, Rθ2 =

   

−rcosθ1sinθ2

−rsinθ1sinθ2 rcosθ2

0

   

.

The first quantities of(10)are as follow:

I=

 

1+ϕ02 0 0

0 r2cos2θ2 0

0 0 r2

. (11)

We have

detI=r4(1+ϕ02)cos2θ2,

whereϕ= ϕ(r),ϕ0 = dϕdr.

(5)

Using(4), we get the Gauss map of the rotational hypersurface(10)as follows

eR= √1

detI     

r2ϕ0cosθ1cos2θ2 r2ϕ0sinθ1cos2θ2

r2ϕ0sin

θ2cosθ2

−r2cosθ2

     . (12)

The second differentials of(10)with respect tor,θ1,θ2, respectively, we get

Rrr=      0 0 0 ϕ00     

, Rθ1θ1 =

   

−rcosθ1cosθ2

−rsinθ1cosθ2 0 0     

, Rθ2θ2 =

   

−rcosθ1cosθ2

−rsinθ1cosθ2

−rsinθ2 0      .

Using the second differentials above and the Gauss map(12)of the rotational hypersurface(10), we have the second quantities as follow:

II=

 

L M P

M N T

P T V

  =      

ϕ00

(1+ϕ02) 0 0

0 −rϕ0cos2θ2

(1+ϕ02) 0

0 0 −rϕ0

(1+ϕ02)

      . (13)

So, we have

detII=−r

2ϕ02

ϕ00cos2θ2 (1+ϕ02)3/2 .

We can write the Gauss map(12), clearly, as follow:

eR = p 1

1+ϕ02 

   

ϕ0cosθ1cosθ2

ϕ0sinθ1cosθ2

ϕ0sinθ2

−1      . (14)

Using the differentials of the Gauss map(14)of the rotational hypersurface(10)with respect tor,θ1,θ2, we get

reR=

ϕ00

(1+ϕ02)3/2 

   

cosθ1cosθ2 sinθ1cosθ2

sinθ2

−1      , ∂θ1 eR =

ϕ0 p

1+ϕ02 

   

−sinθ1cosθ2 cosθ1cosθ2

0 0      , ∂θ2 eR =

ϕ0 p

1+ϕ02 

   

−cosθ1sinθ2

−sinθ1sinθ2 cosθ2

(6)

After some computations, we have the third quantities as follow:

III=

 

X Y U

Y Z J

U J O

=

   

ϕ002

(1+ϕ02)2 0 0 0 ϕ02cos2θ2

1+ϕ02 0

0 0 1+ϕ02

ϕ02 

   

.

So, we get

detIII= ϕ 04

ϕ002cos2θ2 (1+ϕ02)4 .

We calculate the shape operator matrix of the rotational hypersurface(10), using(5), as follows:

S=

    

ϕ00

(1+ϕ02)3/2 0 0

0 − ϕ0

r(1+ϕ02)1/2 0

0 0 − ϕ0

r(1+ϕ02)1/2 

    

.

Finally, using(6)and(7), respectively, we calculate the Gaussian curvature and the mean curvature of the rotational hypersurface(10)as follow:

K=− ϕ

02

ϕ00

r2(1+ϕ02)5/2, and

H=−rϕ

00+2

ϕ03+2ϕ0

3r(1+ϕ02)3/2

.

Corollary 1. Let R: M3−→

E4 be an isometric immersion given by(10). Then M3 has constant Gaussian curvature if and only if

ϕ04ϕ002−Cr2

1+ϕ02 5

=0.

68

Corollary 2.LetR: M3−→E4be an isometric immersion given by(10). Then M3has constant mean curvature (CMC) if and only if

rϕ00+2ϕ03+2ϕ0 2

−9Cr21+ϕ02 3

=0.

Corollary 3.LetR: M3−→

E4be an isometric immersion given by(10). Then M3has zero Gaussian curvature if and only if

ϕ(r) =c1r+c2.

Proof.Solving the 2nd order differential eq.K=0, i.e. ϕ02ϕ00=0, we get the solution.

69

Corollary 4. LetR: M3−→

E4be an isometric immersion given by(10). Then M3has zero mean 70

curvature if and only if 71

ϕ(r) = ±√c1

Z dr

p

(7)

Proof.When we solve the 2nd order differential eq. H=0, i.e. rϕ00+2ϕ03+2ϕ0 =0,

we get the solution. 73

4. The third Laplace-Beltrami operator 74

The inverse of the matrix

eij

=

 

e11 e12 e13 e21 e22 e23 e31 e32 e33

 

is as follows:

1 e

 

e22e33−e23e32 −(e12e33−e13e32) e12e23−e13e22

−(e21e33−e31e23) e11e33−e13e31 −(e11e23−e21e13) e21e32−e22e31 −(e11e32−e12e31) e11e22−e12e21

 ,

where 75

e = det eij

= e11e22e33−e11e23e32+e12e31e23

−e12e21e33+e21e13e32−e13e22e31.

Definition 7. The third Laplace-Beltrami operator of a smooth functionφ=φ(x1,x2,x3)|D (D ⊂R3)of class C3with respect to the third fundamental form of hypersurfaceMis the operator∆which is defined by as follows:

III

φ= √1

e 3

i,j=1

xi

eeij∂φ

xj

. (15)

where eij

= (ekl)−1and e=det eij.

76

Clearly, we write∆IIIφas follows:

1

e

   

∂x1

ee11∂x∂φ1

∂x1

ee12∂x∂φ2

+ ∂x1

ee13∂x∂φ3

∂x2

ee21∂x∂φ1

+ ∂x2

ee22∂x∂φ2

∂x2

ee23∂x∂φ3

+ ∂x3

ee31∂x∂φ1

∂x3

ee32∂x∂φ2

+ ∂x3

ee33∂x∂φ3

   

. (16)

So, using more clear notation, we get

III−1= 1 detIII

 

OZ−J2 JUOY JYUZ JU−OY OX−U2 UY−JX JY−UZ UY−JX XZ−Y2

 ,

where

detIII=XZ−Y2O−J2X+2JUY−U2Z.

Hence, using more transparent notation we get the third Laplace-Beltrami operator of a smooth 77

(8)

III

φ= p 1

|detIII| 

      

∂r

(OZ−J2)φ

r−(JU−OY)φθ1+(JY−UZ)φθ2 |detIII|

∂θ1

(JU−OY)φr−(OX−U2)φθ1+(UY−JX)φθ2

|detIII|

+ ∂θ2

(JY−UZ)φr−(UY−JX)φθ1+(XZ−Y2)φθ2

|detIII|

      

. (17)

We continue our calculations to find the third Laplace-Beltrami operator∆IIIRof the rotational 79

hypersurfaceRusing(17)to the(10). 80

The third Laplace-Beltrami operator of the hypersurface(10)is given by

IIIR= 1

p

|detIII|

rU

∂θ1V +

∂θ2W

,

where 81

U = OZ−J 2

Rr−(JU−OY)Rθ1+ (JY−UZ)Rθ2

p

|detIII| ,

V = (JU−OY)Rr− OX−U 2

Rθ1+ (UY−JX)Rθ2

p

|detIII| ,

W = (JY−UZ)Rr−(UY−JX)Rθ1+ XZ−Y 2

Rθ2

p

|detIII| .

Here, using the hypersurface(10), we getY = U = J = 0. Therefore, we writeU,V,Wagain, as 82

follow: 83

U = p OZ

|detIII|Rr =

ϕ04cos2θ2 (1+ϕ02)2p|detIII|

!

Rr,

V = −p OX

|detIII|Rθ1 = −

ϕ02ϕ002

(1+ϕ02)3p|detIII| !

Rθ1,

W = p XZ

|detIII|Rθ2 =

ϕ02ϕ002cos2θ2 (1+ϕ02)3p|detIII|

!

Rθ2,

where

detIII= ϕ 04

ϕ002cos2θ2 (1+ϕ02)4 .

We obtain the matrices:

U= ϕ

02cos

θ2 (1+ϕ02)2ϕ00

   

cosθ1cosθ2 sinθ1cosθ2

sinθ2

ϕ0

   

,

V=− ϕ

00

(1+ϕ02)cosθ2

   

−rsinθ1cosθ2 rcosθ1cosθ2

0 0

   

and

W= ϕ 00cos

θ2 1+ϕ02

   

−rcosθ1sinθ2

−rsinθ1sinθ2 rcosθ2

0

   

(9)

Taking differentials with respect tor,θ1,θ2onU,V,W, respectively, we get

r(U) =

r

ϕ02

(1+ϕ02)2ϕ00 !

   

cosθ1cos2θ2 sinθ1cos2θ2 sinθ2cosθ2

ϕ0cosθ2

   

+ ϕ 02

(1+ϕ02)2 

   

0 0 0 cosθ2

   

,

∂θ1 (V) =

ϕ

00

(1+ϕ02)

   

−rcosθ1

−rsinθ1 0 0

   

,

∂θ2 (W) =

ϕ00

1+ϕ02

   

rcosθ1cos 2θ2 rsinθ1cos 2θ2

−rsin 2θ2 0

   

.

Hence, we have

IIIR=IIIR1,IIIR2,IIIR3,IIIR4,

where 84

IIIR1 =

η.{[−4ϕ0ϕ00+2ϕ0

1+ϕ02

ϕ002−

1+ϕ02

ϕ000]cosθ1cos2θ2

+1+ϕ02

ϕ003rcosθ1+

1+ϕ02

ϕ003rcosθ1cos 2θ2}, 85

IIIR2 =

η.{[−4ϕ0ϕ00+2ϕ0

1+ϕ02

ϕ002−

1+ϕ02

ϕ000]sinθ1cos2θ2

+1+ϕ02

ϕ003rsinθ1+

1+ϕ02

ϕ003rsinθ1cos 2θ2}, 86

IIIR3 =

η.{[−4ϕ0ϕ00+2ϕ0

1+ϕ02

ϕ002−

1+ϕ02

ϕ000]sinθ2cosθ2

−1+ϕ02

ϕ003rsin 2θ2}, 87

IIIR

4 = η.{[−4ϕ0ϕ00+2ϕ0

1+ϕ02

ϕ002−

1+ϕ02

ϕ000]ϕ0cosθ2

+ϕ02ϕ002cosθ2},

and

η=

ϕ02ϕ003cosθ2

−1

.

Remark 1. When the rotational hypersurfaceRhas the equation∆IIIR=0, i.e. the rotational hypersurface(10)isIII−minimal, then we have to solve the system of eq. as follow:

IIIR i=0,

where 1≤i≤4. Here, finding the functionϕis a hard problem for us.

88

Corollary 5. Here ϕ 6= c = const. or ϕ 6= c1r+c2, andθ2 6= π2 +2kπ,k ∈ Z, then we have 89

IIIR6=0. Hence, the rotational hypersurface(10)is notIIIminimal.

(10)

References 91

1. Arslan K., Kılıç Bayram B., Bulca B., Öztürk G. Generalized Rotation Surfaces inE4. Result Math. 61 (2012) 92

315-327. 93

2. Arvanitoyeorgos A., Kaimakamis G., Magid M. Lorentz hypersurfaces inE41satisfying∆H=αH. Illinois J.

94

Math. 53-2 (2009), 581-590. 95

3. Bour E. Théorie de la déformation des surfaces. J. de l.Êcole Imperiale Polytechnique 22-39 (1862) 1-148. 96

4. Chen B.Y. Total mean curvature and submanifolds of finite type. World Scientific, Singapore, 1984. 97

5. Chen B.Y., Choi M. and Kim Y.H. Surfaces of revolution with pointwise 1-type Gauss map. Korean Math. 98

Soc.42(2005), no. 3, 447-455. 99

6. Cheng Q.M., Wan Q.R. Complete hypersurfaces ofR4with constant mean curvature. Monatsh. Math. 118 100

(1994) 3-4, 171-204. 101

7. Choi M., Kim Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. 102

Korean Math. Soc. 38 (2001) 753-761. 103

8. Choi M., Kim Y.H., Liu H., Yoon D.W. Helicoidal surfaces and their Gauss map in Minkowski 3-space. Bull. 104

Korean Math. Soc. 47-4 (2010), 859-881. 105

9. Dillen F., Pas J., Verstraelen L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13 (1990) 10-21. 106

10. Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34 (1982) 107

351-367. 108

11. Ferrandez A., Garay O.J., Lucas P. On a certain class of conformally at Euclidean hypersurfaces. Proc. of the 109

Conf. in Global Analysis and Global Differential Geometry, Berlin, 1990. 110

12. Ganchev G., Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. 111

Math. 38 (2014) 883-895. 112

13. Güler, E. Bour’s theorem and lightlike profile curve, Yokohama Math. J. 54-1 (2007), 55-77. 113

14. Hieu D.T., Thang, N.N. Bour’s theorem in 4-dimensional Euclidean space. Bull. Korean Math. Soc. 54-6 114

(2017) 2081-2089. 115

15. Kim Y.H., Turgay N.C. Classifications of helicoidal surfaces withL1-pointwise 1-type Gauss map. Bull. 116

Korean Math. Soc. 50-4 (2013) 1345-1356. 117

16. Lawson H.B. Lectures on minimal submanifolds. Vol. 1, Rio de Janeiro, 1973. 118

17. Magid M., Scharlach C., Vrancken L. Affine umbilical surfaces inR4. Manuscripta Math. 88 (1995) 275-289. 119

18. Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919) 81-93. 120

19. Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 121

(1920) 454-460. 122

20. Moruz M., Munteanu M.I. Minimal translation hypersurfaces inE4. J. Math. Anal. Appl. 439 (2016) 798-812. 123

21. Scharlach, C. Affine geometry of surfaces and hypersurfaces inR4. Symposium on the Differential Geometry 124

of Submanifolds, France (2007) 251-256. 125

22. Senoussi B., Bekkar M. Helicoidal surfaces with∆Jr=Arin 3-dimensional Euclidean space. Stud. Univ. 126

Babe¸s-Bolyai Math. 60-3 (2015) 437-448. 127

23. Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18 (1966) 380-385. 128

24. Verstraelen L., Walrave J., Yaprak S. The minimal translation surfaces in Euclidean space. Soochow J. Math. 129

20-1 (1994) 77–82. 130

25. Vlachos Th. Hypersurfaces inE4with harmonic mean curvature vector field. Math. Nachr. 172 (1995) 131

References

Related documents

Looking at the developments in 2013, the mobile revenue generated per device remained constant, but shows an interesting turn in early 2014: While all devices are increasing

In 3–dimensional Minkowski space, there are three types of rotational surfaces with respect to the casual characters of rotation axes and the concept of angle to define loxodromes

An on-site garden, used either as wander space or a treatment environment or both, is perceived as improving quality of life, sleep, appetite, stress levels, and mood for

We maintained our commitments to authenticity by ref- erencing research on authentic assessment, posing questions about PA quality from the perspective of community part- ners,

Thus the connected sum of the above non–liftable immersed 3–sphere and a liftable immersed 3–manifold in R 4 is a non–liftable immersed orientable closed 3–manifolds in R 4

Because I believe in what can be done with film in our big round put-on, I wanted to write about it so that others, the new ones who are driven to work with it, who want to say

Inundation map for all different return periods and land cover scenarios are generated according to the processes described previously. Once the depth of water

Summing up these facts, we see that there are very fruitful ruled minimal surfaces in four dimensional Minkowski space or four dimensional pseudo-Euclidean space with neutral