# On fractional Hahn calculus

N/A
N/A
Protected

Share "On fractional Hahn calculus"

Copied!
15
0
0

Full text

(1)

## On fractional Hahn calculus

### Tanapat Brikshavana and Thanin Sitthiwirattham

*

*Correspondence:

thanin_sit@dusit.ac.th

Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand

Abstract

In this paper, the new concepts of Hahn diﬀerence operators are introduced. The properties of fractional Hahn calculus in the sense of a forward Hahn diﬀerence operator are introduced and developed.

MSC: 39A10; 39A13; 39A70

Keywords: fractional Hahn integral; fractional Hahn diﬀerence operator; Jackson-Nörlund integral

1 Introduction

The quantum calculus, known as calculus without the consideration of limits, involves sets of non-diﬀerentiable functions. There are many types of quantum diﬀerence opera-tors such as the Jacksonq-diﬀerence operator, the forward (delta) diﬀerence operator, the backward (nabla) diﬀerence operator, and so on. These operators are employed in many applications, for example, combinatorics, orthogonal polynomials, basic hypergeometric functions, hypergeometric series, complex analysis, the calculus of variations, the theory of relativity, quantum mechanics, and particle physics [–].

In , Hahn [] introduced the Hahn diﬀerence operatorDq,ωas follows:

Dq,ωf(t) :=

f(qt+ω) –f(t) t(q– ) +ω , t=

ω

 –q.

This operator is created with a combination of two well-known operators, the forward diﬀerence operator and the Jacksonq-diﬀerence operator. We observe that

Dq,ωf(t) =ωf(t) wheneverq= ,

Dq,ωf(t) =Dqf(t) wheneverω= , and

Dq,ωf(t) =f(t) wheneverq= ,ω→.

Particularly, the Hahn diﬀerence operator has been employed to construct families of or-thogonal polynomials as well as to examine some approximation problems (see [–] and the references therein).

In  Aldwoah [, ] (PhD thesis supervised by Annaby and Hamza) deﬁned the right inverse ofDq,ωin terms of both the Jacksonq-integral containing the right inverse ofDq[] and the Nörlund sum involving the right inverse ofω[].

(2)

Malinowska and Torres [, ] studied the Hahn quantum variational calculus in . Moreover, in , Malinowska and Martins [] studied the generalized transversality conditions for the Hahn quantum variational calculus. In the same year, Hamzaet al.[– ] studied the theory of linear Hahn diﬀerence equations. They established the existence and uniqueness results for the initial value problems for Hahn diﬀerence equations by using the method of successive approximations. In addition, they proved Gronwall’s and Bernoulli’s inequalities with respect to the Hahn diﬀerence operator and investigated the mean value theorems, Leibniz’s rule and Fubini’s theorem for this calculus. For the bound-ary value problems, in , Sitthiwirattham [] considered a nonlinear Hahn diﬀerence equation with nonlocal boundary value conditions

Dq,ωx(t) +ft,x(t),Dp,θx(pt+θ)

= , t∈[ω,T]q,ω,

x(ω) =ϕ(x), (.)

x(T) =λx(η), η∈(ω,T)q,ω,

where  <q< ,  <ω<T, ω := –qω , ≤λ< T–ωη–ω, p=qm, m∈N, θ =ω(–p–q), f : [ω,T]q,ω×R×R→Ris a continuous function, andϕ:C([ω,T]q,ω,R)→Ris a given functional. Moreover, in this year , Sriphanomwan et al. [] studied a nonlocal boundary value problem for second-order nonlinear Hahn integro-diﬀerence equation with integral boundary condition

Dq,ωx(t) =ft,x(t),Dp,θx(pt+θ),p,θx(pt+θ)

, t∈[ω,T]q,ω,

x(ω) =x(T), (.)

x(η) =μ

T

ω

g(s)x(s)dq,ωs, η∈(ω,T)q,ω,

where  <q< ,  <ω<T,ω:=–qω ,μ T

ωg(r)dq,ωr= ,μ∈R,p=q

m,mN,θ=ω(–p –q), fC([ω,T]q,ω×R×R×R→R), andgC([ω,T]q,ω×R+) are given functions, and forϕC([ω,T]q,ω×[ω,T]q,ω, [,∞))

Ψp,θx(t) := t

ω

ϕ(t,ps+θ)x(ps+θ)dp,θs. (.)

In particular, the fractional Hahn diﬀerence equations have not been studied. We ob-serve that in , Čermák and Nechvátal [] introduced the fractional (q,h)-diﬀerence operator and the fractional (q,h)-integral forq> . Čermák et al.[] studied discrete Mittag-Leﬄer functions in linear fractional diﬀerence equations forq>  in . In the same year Rahmat [, ] investigated the (q,h)-Laplace transform and some (q,h )-analogues of integral inequalities on discrete time scales forq> . Recently Duet al.[] studied the monotonicity and convexity for nabla fractional (q,h)-diﬀerence forq> ,q=  in . However, these operators are not satisﬁed with fractional Hahn operators because fractional Hahn operators require the condition  <q< .

(3)

this paper as follows. In Section , some basic formulas of the Hahn diﬀerence operator and the associated Jackson-Nörlund integral calculus are brieﬂy reviewed. In Section , we present the fractional Hahn integral and develop some fundamental properties. The fractional Hahn diﬀerence operators are presented in Sections  and .

2 Preliminary deﬁnitions and properties

The following notations, deﬁnitions, and lemmas will be used in proving the main results. Letq∈(, ),ω> ,ω=–qω , and deﬁne

[n]q,ω= [n]q:= –q n

 –q =q

n–+· · ·+q+  and [n]q,ω! = [n]q! := n

k=  –qk

 –q.

Theq-analogue of the power function (ab)nqwithn∈N:= [, , , . . .] is

(ab)q:= , (ab)nq:= n–

k=

abqk, a,b∈R.

Theq,ω-analogue of the power function (ab)nq,ωwithn∈N:= [, , , . . .] is

(ab)q,ω:= , (ab)nq,ω:= n–

k=

abqk+ω[k]q, a,b∈R.

More generally, ifα∈R, we have

(ab)αq=

n=  – (b

a)q n

 – (ba)qα+n, a= ,

(ab)α

q,ω= (aω)α

n=

 – (a–ωb–ω)qn

 – (b–ωa–ω)q

α+n=

(aω) – (bω) α

q, a=ω.

Note thataαq =and (aω)αq,ω= (aω)α. We use the notation ()αq= (ω)αq,ω=  for

α> . Forα,β,γ,λ∈R, we have

(A) (λβγ λ)αq=γα(βλ) α q,

(A) (βγ)α+γq,ω = (βγ)αq,ω(βqαωλ) γ q,ω,

(A) (ts)αq,ω= ,ts,α∈/N, fort,sITq,ω:={qkT+ω[k]q:k∈N}. Theq-gamma andq-beta functions are deﬁned by

q(x) :=

( –q)x–q

( –q)x–, x∈R\ {, –, –, . . .}, Bq(x,s) :=

tx–( –qt)s–q dqt

= ( –q)qn

n=

qnα– –qn+qβ–=q(x)q(s)

q(x+s) ,

(4)

Theq,ω-forward jump operator,q,ω-backward jump operator, andq,ω-forward grain-iness function are deﬁned by

σq,ω(t) :=qt+ω, ρq,ω(t) :=tω the following properties:

(5)

=ρq,ω(t) –ωα–

k=( –

β–ωρq,ω(t)–ωq

k)

k=( – β–ω

ρq,ω(t)–ωqk+α–)

 –  –q

= [α]qρq,ω(t) –βα–

q,ω.

So, (a) holds. Proceeding similarly as above, we ﬁnd that (b) holds.

Lettinga,bI⊆Rwith a<ω<b and [k]q= –q

k

–q,k∈N:=N∪ {}, we deﬁne the q,ω-interval by

[a,b]q,ω:=

qka+ω[k]q:k∈N

qkb+ω[k]q:k∈N

∪ {ω}

= [a,ω]q,ω∪[ω,b]q,ω

= (a,b)q,ω∪ {a,b}=

a,b)q,ω∪ {b}= (a,bq,ω∪ {a}.

Observe that, for eachs∈[a,b]q,ω, the sequence{σq,ωk (s)}∞k=={qks+ω[k]

q}∞k=is uniformly convergent toω.

Also we deﬁne the forward jump operatorσq,ωk (t) :=qkt+ω[k]

qand the backward jump

operatorρkq,ω(t) :=t–ω[k]qk q fork∈N.

Deﬁnition . LetIbe any closed interval ofRcontaininga,b, andω. Assuming that f :I→Ris a given function, we deﬁneq,ω-integral off fromatobby

b

a

f(t)dq,ωt:= b

ω

f(t)dq,ωta

ω

f(t)dq,ωt,

where

x

ω

f(t)dq,ωt:=

x( –q) –ω

k=

qkfxqk+ω[k]q

, xI,

provided that the series converges atx=aandx=b.fis calledq,ω-integrable on [a,b], and the sum to the right-hand side of the above equation will be called the Jackson-Nörlund sum.

We note that:

(i) The actual domain of functionf is deﬁned on[a,b]q,ω⊂I. (ii) For eachx∈[a,b]q,ω, we havelimk→∞σq,ωk (x) =ω. It implies that

x

ω

f(t)dq,ωt= ρq,ω(ω)

s=x

s( –q) –ωf(s).

Lemma .([]) Let q∈(, ),ω> ,a,bIT

q,ω,and f,g be q,ω-integrable on Iq,ωT .Then the following formulas hold:

(a) aaf(t)dq,ωt= ;

(b) abαf(t)dq,ωt=α b

a f(t)dq,ωt,α∈R;

(c) abf(t)dq,ωt= – a

b f(t)dq,ωt;

(d) abf(t)dq,ωt= b

c f(t)dq,ωt+ c

(6)

(e) ab[f(t) +g(t)]dq,ωt= b

a f(t)dq,ωt+ b

a g(t)dq,ωt;

(f ) ab[f(t)Dq,ωg(t)]dq,ωt= [f(t)g(t)]bab

a[g(σq,ω(t))Dq,ωf(t)]dq,ωt.

We next introduce the fundamental theorem and Leibniz formula of Hahn calculus.

Lemma .(Fundamental theorem of Hahn calculus []) Let f :I→Rbe continuous at

ω.Deﬁne

F(x) := x

ω

f(t)dq,ωt, xI.

Then F is continuous atω.Furthermore,Dq,ωF(x)exists for every xI and

Dq,ωF(x) =f(x).

Conversely, b

a

Dq,ωf(t)dq,ωt=f(b) –f(a) for all a,bI.

Lemma .(Leibniz formula of Hahn calculus []) Let f :IT

q,ω×Iq,ωT →R.Then Dq,ω

t

ω

f(t,s)dq,ωs

= t

ω

tDq,ωf(t,s)dq,ωs+f

σq,ω(t),t,

wheretDq,ωis Hahn diﬀerence with respect to t.

Next, we give some auxiliary lemmas used for simplifying calculations.

Lemma .([]) Let q∈(, ),ω> and f :I→Rbe continuous atω.Then t

ω r

ω

f(s)dq,ωs dq,ωr= t

ω t

qs+ω

f(s)dq,ωr dq,ωs.

Lemma .([]) Let q∈(, )andω> .Then

t

ω

dq,ωs=tωand t

ω

t– (qs+ω)dq,ωs=

(tω)  +q .

3 Fractional Hahn integral

Now, we introduce fractional Hahn integral.

Deﬁnition . Forα,ω> ,q∈(, ) and f deﬁned on [ω,T]q,ω, the fractional Hahn integral is deﬁned by

q,ωf(t) := 

q(α) t

ω

tσq,ω(s)α–q,ωf(s)dq,ωs

= [t( –q) –ω]

q(α) ∞

n=

qntσq,ωn+(t)α–q,ωq,ωn (t),

and (I

(7)

Since ( –q)tω= ( –q)(tω), associated with (A), we have

tσq,ωn+(t)α–q,ω =(tω) –σq,ωn+(t) –ωα–

q

=(tω) –qn+(tω) α–

q

= (tω)α– –qn+α–q .

It implies that

q,ωf(t) =

( –q)(tω)α

q(α) ∞

n=

qn –qn+α–q q,ωn (t).

Next, we provide some auxiliary lemmas for simplifying calculations.

Lemma . Letα,β> ,p,q∈(, ),andω> .Then

t

ω

tσq,ω(s)α–q,ω(sω)q,ωβ dq,ωs= (tω)α+βBq(β+ ,α),

t

ωx

ω

tσp,ω(x)α–p,ωxσq,ω(s)β–q,ωdq,ωs dp,ωx=

(tω)α+β [β]q

Bp(β+ ,α).

Proof From the deﬁnition ofq,ω-analogue of the power function and Deﬁnition ., we obtain

t

ω

tσq,ω(s)α–q,ω(sω) β q,ωdq,ωs

= (tω)α( –q) ∞

n=

qn –qn+α–q qn(tω)β

= (tω)α+β( –q) ∞

n=

qn –qn+α–q qnβ

= (tω)α+βBq(β+ ,α),

and t

ωx

ω

tσp,ω(x)α–p,ωxσq,ω(s)β–q,ωdq,ωs dp,ωx

= t

ω

tσp,ω(x)α–p,ω

x

ω

xσq,ω(s)β–q,ωdq,ωs

dp,ωx

=  [β]q

t

ω

tσp,ω(x)α–p,ω(xω)βdp,ωx

=(tω) α+β

[β]q Bp(β+ ,α).

(8)

Theorem . For f :IT

q,ω→R,α> ,q∈(, ),ω> ,and aIq,ωT ,

q,ωf(t) =Iq,ωα+

Dq,ωf(t)

+ f(ω)

q(α+ )(tω) α

.

Proof Using Lemma .(b) and Lemma ., we obtain

q,ωf(t) = –  [α]qq(α)

t

a

Dq,ω(ts)αq,ωf(s)dq,ωs

= 

q(α+ )

(tω)αq,ωf(ω) + t

a

(tσq,ω)αq,ωDq,ωf(s)dq,ωs

=Iq,ωα+Dq,ωf(t)

+ f(ω)

q(α+ )(tω) α q,ω

=Iq,ωα+Dq,ωf(t)

+ f(ω)

q(α+ )

(tω)α.

Theorem . For f :IT

q,ω→R,α,β> ,q∈(, ),ω> ,and aIq,ωT , a

ω

tσq,ω(s)β–q,ωIq,ωα f(t)dq,ωs= .

Proof Forn∈N,

q,ωf

σq,ωn (a)= 

q(α) σqn,ω(a)

ω

σq,ωn (a) –σq,ω(s)α–q,ωf(s)dq,ωs

=[σ n

q,ω(a)( –q) –ω]

q(α)

k=

qkσq,ωn (a) –σq,ωn+k(a)α–q,ωq,ωn+k(a).

Employing (A) implies that (σq,ωn (a) –σq,ωn+k(a))α–q,ω = . Thus,

q,ωf

σq,ωn (a)= . (.)

Finally, using Deﬁnition ., we have

a

ω

tσq,ω(s)β–q,ωIq,ωα f(t)dq,ωs

=( –q)aω

k=

qktσq,ωk+(a)β–q,ωIq,ωα q,ωk (a)= .

Theorem . For f :IT

q,ω→R,α,β> ,q∈(, ),ω> ,and aIq,ωT ,

q,ω

q,ωf(t)

(9)

Proof FortIT

From Theorem ., we have t

Similarly, we have q,ωI

Proof Using Lemma .(c) and Lemma .(b), we have

(10)

=Dq,ω

Proof Substitutingf asDq,ωf into Theorem ., we have

Repeating the same procedure as abovep–  times, we obtain

4 Fractional Hahn difference operator of Riemann-Liouville type

In this section, we introduce a fractional Hahn diﬀerence operator of Riemann-Liouville type.

Deﬁnition . Forα,ω> ,q∈(, ), andf deﬁned on [ω,T]q,ω, the fractional Hahn diﬀerence operator of Riemann-Liouville type of orderαis deﬁned by

(11)

Proof For someN–  <α<N,N∈N, by using Deﬁnition . and Lemma ., we have

q,ωf(t) =DNq,ωIq,ωN–αf(t) =DN–q,ωDq,ωIq,ωN–αf(t)

=DN–q,ω

Dq,ω

q(Nα) t

ω

tσq,ω(s)N–α–q,ω f(s)dq,ωs

=DN–q,ω

q(Nα– ) t

ω

tσq,ω(s)N–α–q,ω f(s)dq,ωs

+ 

q(Nα)

σq,ω(t) –σq,ω(t)N–α–q,ω f(t)

=DN– q,ω

q(Nα– ) t

ω

tσq,ω(s)N–α–q,ω f(s)dq,ωs

.

RepeatingN–  times, we obtain

q,ωf(t) =DN–Nq,ω

q(–α) t

ω

tσq,ω(s)–α–q,ω f(s)dq,ωs

+ 

q( –α)(–α– ) –α

q,ωf(t+α+ )

= 

q(–α) t

ω

tσq,ω(s)–α–q,ω f(s)dq,ωs

=[( –q)tω]

q(–α) ∞

k=

qktσq,ωk+(t)–α–q,ω q,ωk (t)

=( –q)(tω) –α

q(–α) ∞

k=

qk –qk+–α–q,ω q,ωk (t).

In the following theorem, we introduce the properties of fractional Hahn diﬀerence op-erator of Riemann-Liouville type.

Theorem . Forα> ,q∈(, ),ω> ,and f :IT q,ω→R, q,ωIq,ωα f(t) =f(t).

Proof For someN–  <α<N,N∈N,

q,ωIq,ωα f(t) =DNq,ωIq,ωN–αIq,ωα f(t)

=DNq,ωIq,ωα Iq,ωN–αf(t)=DNq,ωIq,ωN f(t) =f(t).

Theorem . Forα> ,q∈(, ),ω> ,and f :IT q,ω→R,

q,ωDαq,ωf(t) =f(t) – N–

k=

(tω)α–N+k

q(αN+k+ )

Dα–N+kq,ω f(ω)

,

(12)

Proof From Deﬁnition ., we have

q,ωD α

q,ωf(t) =I α q,ω

DNq,ωIq,ωN–αf(t)=Iq,ωα DNq,ωIq,ωN–αf(t).

Using Theorem ., we obtain

q,ωD α

q,ωf(t) =DNq,ω

q,ωIq,ωN–αf(t)

N–

k=

(tω)α–N+k

q(αN+k+ )D k q,ω

IN–α

q,ω f(ω)

=DNq,ωIq,ωN f(t)– N–

k=

(tω)α–N+k

q(αN+k+ )

Dk–(N–α)q,ω f(ω)

=f(t) – N–

k=

(tω)α–N+k

q(αN+k+ )

Dα–N+kq,ω f(ω).

Corollary . Letα> ,q∈(, ),ω> ,and f :Iq,ωT →R,

q,ωD α

q,ωf(t) =f(t) +C(tω)α–+· · ·+CN(tω)α–N

for some Ci∈R,i=N,N and N–  <α<N,N∈N.

5 Fractional Hahn difference operator of Caputo type

Now, we introduce a fractional Hahn diﬀerence operator of Caputo type.

Deﬁnition . Forα,ω> ,q∈(, ), andf deﬁned on [ω,T]q,ω, the fractional Hahn

diﬀerence operator of Caputo type of orderαis deﬁned by

CDα q,ωf(t) :=

IN–α

q,ω DNq,ωf

(t)

= 

q(Nα) t

ω

tσq,ω(s)N–α–q,ω DNq,ωf(s)dq,ωs,

andCD

q,ωf(t) =f(t), whereN–  <α<N,N∈N. Theorem . Forα> ,q∈(, ),ω> ,and f :IT

q,ω→R,

CDα q,ωf(t) =

[( –q)tω]

q(Nα) ∞

k=

qktσq,ωk+(t)q,ωN–α–DNq,ωq,ωk (t)

=( –q)(tω) N–α

q(Nα) ∞

k=

qk –qk+Nq,ω–α–DNq,ωq,ωk (t),

(13)

Proof FortIT

q,ω, by Deﬁnition ., we have

CDα

q,ωf(t) =Iq,ωN–αDNq,ωf(t) = 

q(Nα) t

ω

tσq,ω(s)Nq,ω–α–DNq,ωf(s)dq,ωs

=[( –q)tω]

q(Nα) ∞

k=

qktσq,ωk+(t)q,ωN–α–DNq,ωq,ωk (t)

=( –q)(tω) N–α

q(Nα) ∞

k=

qk –qk+Nq,ω–α–DNq,ωq,ωk (t).

In the following theorem, we introduce the properties of fractional Hahn diﬀerence op-erator of Caputo type.

Theorem . Forα> ,q∈(, ),ω> ,and f :IT q,ω→R, CDα

q,ωI α

q,ωf(t) =f(t).

Proof For someN–  <α<N,N∈N, under Deﬁnition . and Theorem ., we have CDα

q,ωI α

q,ωf(t) =Iq,ωN–αDNq,ωI α

q,ωf(t) =Iq,ωN–αDNq,ω–αf(t)

=f(t) – N–

k=

(tω)k–α

q(kα+ )

Dkq,ω q,ωf(ω)

.

From (.), we have

N–

k=

(tω)k–α

q(kα+ )

Dkq,ωIq,ωα f(ω)= .

It implies that

CDα q,ωI

α

q,ωf(t) =f(t).

Theorem . Forα> ,q∈(, ),ω> ,and f :IT q,ω→R,

q,ωCDαq,ωf(t) =f(t) – N–

k=

(tω)k

q(k+ )

Dkq,ωf(ω)

,

where N–  <α<N,N∈N.

Proof From Deﬁnition . and Theorem ., we have

q,ωCD α

q,ωf(t) =I α q,ω

IN–α

q,ω DNq,ωf(t)

=Iq,ωN DNq,ωf(t)

=f(t) – N–

k=

(tω)k

q(k+ )

Dkq,ωf(ω)

.

(14)

Corollary . Letα> ,q∈(, ),ω> ,and f :IT q,ω→R,

q,ωCD α

q,ωf(t) =f(t) +C+C(tω) +· · ·+CN–(tω)N–

for some Ci∈R,i=N,N–,and N–  <α<N,N∈N.

6 Conclusions

In this paper, we have introduced a fractional Hahn integral, Riemann-Liouville and Ca-puto fractional Hahn diﬀerence operators. Many properties of these fractional Hahn oper-ators have been proved. This work is certainly not complete and should be a starting point of many other works. For example, in future works, one could deﬁne the Laplace trans-form for Hahn calculus. Also, another work will be to ﬁnd the Hahn-convolution product and compute its Hahn-Laplace transform, so we could be able to solve many more Hahn diﬀerence equations.

Acknowledgements

This research is supported by Suan Dusit University, Thailand.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TS and TB worked together in the derivation of the mathematical results. All authors read and approved the ﬁnal manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional aﬃliations.

Received: 10 August 2017 Accepted: 27 October 2017

References

1. Annaby, MH, Mansour, ZS:q-Fractional Calculus and Equations. Springer, Berlin (2012) 2. Kac, V, Cheung, P: Quantum Calculus. Springer, New York (2002)

3. Jagerman, DL: Diﬀerence Equations with Applications to Queues. Dekker, New York (2000)

4. Aldowah, KA, Malinowska, AB, Torres, DFM: The power quantum calculus and variational problems. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms19, 93-116 (2012)

5. Birto da Cruz, AMC, Martins, N, Torres, DFM: Symmetric diﬀerentiation on time scales. Appl. Math. Lett.26(2), 264-269 (2013)

6. Cruz, B, Artur, MC: Symmetric quantum calculus. PhD thesis, Aveiro University (2012)

7. Wu, GC, Baleanu, D: New applications of the variational iteration method from diﬀerential equations toq-fractional diﬀerence equations. Adv. Diﬀer. Equ.2013, 21 (2013)

8. Tariboon, J, Ntouyas, SK: Quantum calculus on ﬁnite intervals and applications to impulsive diﬀerence equations. Adv. Diﬀer. Equ.2013, 282 (2013)

9. Álvarez-Nodarse, R: On characterization of classical polynomials. J. Comput. Appl. Math.196, 320-337 (2006) 10. Hahn, W: Über Orthogonalpolynome, dieq-Diﬀerenzenlgleichungen genügen. Math. Nachr.2, 4-34 (1949) 11. Costas-Santos, RS, Marcellán, F: Second structure relation forq-semiclassical polynomials of the Hahn tableau.

J. Math. Anal. Appl.329, 206-228 (2007)

12. Kwon, KH, Lee, DW, Park, SB, Yoo, BH: Hahn class orthogonal polynomials. Kyungpook Math. J.38, 259-281 (1998) 13. Foupouagnigni, M: Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: fourth-order

diﬀerence equation for the rth associated and the Laguerre-Freud equations recurrence coeﬃcients. PhD thesis, Université Nationale du Bénin, Bénin (1998)

14. Aldwoah, KA: Generalized time scales and associated diﬀerence equations. PhD thesis, Cairo University (2009) 15. Annaby, MH, Hamza, AE, Aldwoah, KA: Hahn diﬀerence operator and associated Jackson-Nörlund integrals. J. Optim.

Theory Appl.154, 133-153 (2012)

16. Jackson, FH: Basic integration. Q. J. Math.2, 1-16 (1951)

17. Malinowska, AB, Torres, DFM: The Hahn quantum variational calculus. J. Optim. Theory Appl.147, 419-442 (2010) 18. Malinowska, AB, Torres, DFM: Quantum Variational Calculus. Springer Briefs in Electrical and Computer Engineering

-Control, Automation and Robotics. Springer, Berlin (2014)

19. Malinowska, AB, Martins, N: Generalized transversality conditions for the Hahn quantum variational calculus. Optimization62(3), 323-344 (2013)

(15)

21. Hamza, AE, Ahmed, SM: Existence and uniqueness of solutions of Hahn diﬀerence equations. Adv. Diﬀer. Equ.2013, 316 (2013)

22. Hamza, AE, Makharesh, SD: Leibniz’s rule and Fubini’s theorem associated with Hahn diﬀerence operator. J. Adv. Math.

12(6), 6335-6345 (2016)

23. Sitthiwirattham, T: On a nonlocal boundary value problem for nonlinear second-order Hahn diﬀerence equation with two diﬀerentq,ω-derivatives. Adv. Diﬀer. Equ.2016, 116 (2016)

24. Sriphanomwan, U, Tariboon, J, Patanarapeelert, N, Ntouyas, SK, Sitthiwirattham, T: Nonlocal boundary value problems for second-order nonlinear Hahn integro-diﬀerence equations with integral boundary conditions. Adv. Diﬀer. Equ.

2017, 170 (2017)

25. ˇCermák, J, Nechvátal, L: On (q,h)-analogue of fractional calculus. J. Nonlinear Math. Phys.17(1), 51-68 (2010) 26. ˇCermák, J, Kisela, T, Nechvátal, L: Discrete Mittag-Leﬄer functions in linear fractional diﬀerence equations. Abstr. Appl.

Anal.2011, Article ID 565067 (2011)

27. Rahmat, MRS: The (q,h)-Laplace transform on discrete time scales. Comput. Math. Appl.62, 272-281 (2011) 28. Rahmat, MRS: On some (q,h)-analogues of integral inequalities on discrete time scales. Comput. Math. Appl.62,

1790-1797 (2011)

29. Du, F, Jai, B, Erbe, L, Peterson, A: Monotonicity and convexity for nabla fractional (q,h)-diﬀerence. J. Diﬀer. Equ. Appl.

References

Related documents

Thus, users are alienated from themselves because they are coerced to use Facebook by way of peer pres- sure and a lack of viable alternatives (Fuchs and Sevignani 2013, 257);

Evidence from this major English longitudinal study specifically commissioned to investigate the impact of pre-school education on the socio- emotional and cognitive development

The percentage number of probe responses were submitted to a 2 x 2 x 2 within- participants ANOVA with factors Load (high, low) x View (intact, split) x Repetition

Part II of Un Art Moyen contained a chapter by Robert Castel and Dominique Schnapper which manifestly reinforced Bourdieu’s position; a chapter by Jean-Claude Chamboredon

[r]

The population of Zhejiang province, Southeast China, bordering Shanghai, speak various sub- dialects of the Shanhainese dialect group (Wuyu) (Christiansen 2003:17).. The

(I use the term ‘traditional’ to describe norms that align with Brannon’s ( 1976 ) stereotypes, e.g., risk-taking and toughness.) These studies have challenged various dominant

Her PhD research is concerned with the ways in which migrant solidarity activists and organisations in the European Union have responded to the Europeanisation of